185.A09 Advanced Mathematical Logic

www.volny.cz/behounek/logic/teaching/mathlogl3

Libor Béhounek, behounek@cs.cas.cz

Lecture #7, January 21, 2014

Undecidability and incompleteness of arithmetic

Not all theories are decidable. Examples of undecidable theories include Robinson, Peano,
and True Arithmetic. True Arithmetic is not even recursively enumerable; consequently, PA
and Q are also incomplete (PA is recursive, so Thm(PA) is recursively enumerable; thus
Th(N) \ Thm(PA) # (.)

The above claims constitute (a particular form of) Gddel’s Incompleteness Theorem. The
main idea of the proof, due to Gdodel, consists in formalizing (or encoding) the syntax of
arithmetical theories in (Peano or Robinson) arithmetic. In this way, arithmetical formulae
become capable of referring to (encoded) arithmetical formulae and their provability, and a
diagonal argument showing the incompleteness and undecidability can be made.

A full proof of Incompletness Theorems exceeds the scope of this course; therefore we just
sketch the main ideas underlying the proof (for more details see standard textbooks on classical
mathematical logic).

Arithmetical characterization of recursivity

In order to capture the notion of recursivity in the framework of arithmetization, we need a
syntactic criterion for decidability and recursive enumerability of sets delimited by arithmeti-
cal formulae:

Definition. An arithmetical formula ¢ is:

Bounded if every quantification in ¢ is bounded, i.e., is of the form (Vz <y)y or
(Jz < y)y (which abbreviates (Vz)(x <y —) and (3z)(z < y A), resp.).

A ¥ -formula if it is of the form (3xy,...,zx)Y, where ¢ is a bounded formula.

A Aq-formula if both ¢ and —¢ are Y;-formulae.

A bounded/¥1/A; in a theory T if there is a bounded/¥;-/A;-formula ¢ such that
ThHo<+ .

Example. The formulae Odd(z) =gt ~(Jy < z)(x =y +y) and z |y =qr (Fz < y)(z -2z =y)
are bounded.

Observation. In any theory T, bounded and Aj-formulae are closed under A, V, =, and
bounded quantification, and Xi-formulae are closed under A, V, and 3.

It can furthermore be shown that the class of A;-formulae is additionally closed under quan-
tification bounded by defined functional terms (rather than just variables, as required by the
definition of bounded quantification).

Observation. If p(x1,...,x%) is a bounded/¥-/A;-formula, then the set delimited by ¢,
ie., {(n1,...,ng) € N¥| N |= ¢(n1,...,nx)}, is primitive recursive / recursively enumerable
/ recursive. (Hint: Bounded: evaluate bounded quantifications as disjunctions of instances
from 0 up to the bound. X;: evaluate the existential quantifier by a while-cycle from 0
upwards. Aj: by Post’s theorem.)

It can in fact be shown that the classes of sets delimited by Aj- / ¥i-formulae coincide with
the classes of recursive / recursively enumerable sets in N.

Arithmetization of syntax

The syntax of first-order logic has been formulated by means of finite set theory: for instance,
a formula is defined as a finite sequence of symbols; a proof as a finite sequence of formulae; etc.
To represent the syntax within arithmetic, we need first to represent the basic set-theoretic
notions of pair, finite set, and finite sequence in arithmetic. There are many possible encodings
suitable for our purposes; we will choose one which is close to Godel’s original proof and is
easily expressible in Q. We will take care to define our encoding by Aj- (sometimes even
bounded) or at worst 3;-formulae, to ensure their algorithmic tractability.

1. Pairs. Observe that the function f: (m,n) — L(m + n)(m +n+ 1) +m is a bijec-
tion N2 — N. It can be formalized in arithmetical language by the defined predicate
Pair(z,y,2) =qr 2-2 = (x +y) - (x + y + 1) + 2 - z;, expressing that “the number z
encodes the pair (z,y)”. Observe that Pair is an open (so bounded) formula. Moreover,
if x,y > 1, the code z is larger than both z,y (a property important later for obtaining
bounds on quantifiers and for induction on the length of formalized formulae). Impor-
tantly, the requisite properties of Pair are provable in PA (most of them already in Q):
e.g., PA+ (Vz,y)(32) Pair(z, y, 2), the bijectivity of Pair, etc. (these properties are thus
ensured if PA is our metamathematics).

2. Finite sets. Our encoding of finite sets of numbers by a single number will make
use of the defined predicate Lem(z,y) expressing “y is the least common multiple
of all numbers 0 < ¢ < z”; it can be defined by a bounded formula, using the
(bounded) predicate z |y (exercise). Again, PA ‘knows’ its requisite properties (e.g.,
PA + (Vz)(3y) Lem(z,y), PA F Lem(z, y) — = < y, etc.).

The empty set () is encoded by the number 0. For non-empty sets, the encoding of

A = {ni,...,np} C N is done as follows: let n = max(ni,...,ng); take m such that
Lem(n,m); let p = Hle(l + (1 +n;) - m); the code of A is then the (code of the) pair
(m, p).

The decoding of (m,p) # 0 is done by taking the largest n such that Lem(n, m); the set
A then consists of all £ < n such that 1+ (1 +¢) - m| p.

Based on this description, it should be clear how to formally define the arithmetical
predicates Set(x) of being a code of a set (left as an exercise) and = € y (“z is an
element of the set encoded by y”):

x €y =ar Set(y) Ay #0A (Fu,v < y)(Pair(u,v,y) AT+ (T+y) u|v)

Observe: € (as well as Set) is defined by a bounded formula, and the code of a set is
larger than all of its elements (important later for bounds on quantifiers and inductive
proofs). Again, PA can prove all requisite properties of Set and € (including, e.g., the
extensionality of sets).

3. Finite sequences are encoded straightforwardly as sets of pairs. Predicates for common
manipulations with sequences can be defined by arithmetical formulae, in particular:
Seq(x) “z is a code of a sequence”, Len(z,y) “y is the length of the sequence x”, and
Cat(x,y,z) “z is the concatenation of the sequences y and z”. All of these predicates
are bounded and PA ‘knows’ their requisite properties.

With this set-theoretic machinery in place, we can proceed to encoding the syntax of first-
order logic:

4. Logical symbols: Let us encode variables x1,z2,... by odd numbers (being a variable
is thus a bounded condition) and the symbols (,), —,,V, =, s, +, - respectively by the
numbers 0,2,4,...,16. (In languages with further function or predicate symbols use
further even numbers.)

5. Terms can suitably (and equivalently to our definition from Handout 1) be defined as
the last elements of term formation sequences, i.e., sequences whose each element is
either a variable, or arises from applying a function symbol to preceding elements of the
sequence. (For example, a term formation sequence for the term (s(0)+s(0))-s(s(0)) is:
0,5(0),s(s(0)),s(0)+s(0), (s(0)+s(0))-s(s(0)).) The syntactic criterion for being a term
formation sequence can easily be translated into an arithmetic condition on the codes of
sequences (exercise). Moreover, since obviously the length of a minimal term formation
sequence as well as the length of each of its elements must be smaller than the length of
the term itself, an upper bound on the code of a minimal term formation sequence for
a given term ¢ can be given as a definable function of (the code of) ¢. Consequently (by
the earlier mentioned fact that A is closed under quantification bounded by definable
functions of variables) the formula defining the predicate TFS(x) “z is a term formation
sequence”, and thus also the predicate Term(x) of being a term, is Aj. The encoding
is clearly injective, i.e., different terms are assigned different codes. (Again, these facts
are provable in PA.)

6. Formulae can be defined by a Aj-condition analogously as terms (by means of formula
formation sequences). Again, the encoding is injective and its requisite properties are
provable in PA. The code of a formula ¢ (in a given encoding) is called the Gddel
number of ¢ and denoted by ®. (The same notation is employed also for parts of
formulae, including terms and logical symbols: e.g., =, T, etc.)

7. Theories are (possibly infinite) sets of formulae. We are mainly interested in recursive
theories, as only these are algorithmically tractable. The recursive set of axioms of a
given theory T can be delimited by a Aj-formula 7(z); we say that 7 is the formalization
of the theory T'.

Ezample: The formalization ¢(x) of Robinson arithmetic Q is the disjunction of 9 clauses
comparing = to the Godel codes of the 9 axioms of Q:

q(z) =gz =s(x) =s(y) 2 x =y Va=-(s(xr) =0) V etc.

(As an advanced exercise, put down the formula 7(z) formalizing PA.)

8. Provability in a recursive theory. Given a recursive theory T formalized by a Aj-
formula 7, it is an easy (though tedious) exercise to put down a Aj-formula Prf,(z,y)
expressing the condition that “x encodes a proof of a formula encoded by y”. Notice
that 7 is a subformula of Prf; (corresponding to the clause “... or the formula is an
axiom of 7" ...” in the definition of proof) rather than its argument. (Thus, it is
“hardwired” in Prf,(z,y): for each 7 we have a different formula Prf (x,y), though
algorithmically constructible from 7.)

The property of being provable in 7' is then formalized by the predicate Pr,(y) =q4¢
(3z) Prf (z,y), a ¥1-formula. (We are unable to give a bound for z: short theorems
can have long proofs.) Again, PA proves many properties of Pr;, e.g., PA + Pr () A
Pr, (o — 1) — Pr,(¢), etc.

Finally, we can define formal consistency of T' as the sentence Con, =q; = Pr,(L). (No-
tice that it is = Con, which is a ¥1-formula, rather than Con, itself: indeed, successive
generation of all proofs in 1" will eventually yield a proof of a contradiction if T is
inconsistent, while no step of the generation can confirm its consistency.)

The definitions ensure the intended meaning of these defined predicates in the standard
model N of arithmetic (e.g., N = Pr (p) iff ¢ is provable in T'). However, in non-standard
models of arithmetic, the predicates are satisfied as well by some non-standard (“infinite”)
numbers, which do not encode any formula or proof of finite length. Thus in general we
have to distinguish between formal provability, formal consistency, etc. (defined by the above
predicates in PA) and our usual metamathematical notions of provability, consistency, etc.

Godel’s Incompleteness Theorems

Several variants of Incompleteness Theorems (with assumptions of varying strengths) can be
proved; for simplicity, we will formulate the theorems just for PA, even though many of them
already work for Q. We skip the numerous lemmata needed for the proof (in particular, the
provability in PA of requisite properties of the Gédel encoding and formal provability, and
the representability of all recursive functions in PA).

With the syntax of PA represented within PA, arithmetical formulae with free variables can
be applied to Godel numbers of arithmetical formulae, and so express various (formalized)
properties of arithmetical formulae (such as their provability in recursive theories). In partic-
ular, they apply to their own Godel codes, and so are subject to various diagonal arguments.
For any sound (i.e., N = T') recursive theory T" extending PA, a particular (rather involved)
diagonalization argument produces an (explicitly constructed) sentence which “claims its own
unprovability” (or more rigorously, which is equivalent to its own formalized unprovability,
ie, T+ ¢ <> = Pr.(¢)). Such a sentence has to be true in N, and therefore unprovable in
T (if it were false in N, by PA F —¢ <+ Pr.(®) it would provable in T, a contradiction with
the assumed soundness of T'). This yields Gédel’s First Incompleteness Theorem: Any sound
recursive theory T' extending PA is incomplete. (A further argument shows that any such T
is also undecidable.)

A crucial step in the proof of the Incompleteness Theorem is the Autoreference (or Diagonal)
Lemma: For any arithmetical formula ¢ (x) with a single free variable x there is a sentence ¢
such that PA F ¢ < ¢($). (Such a ‘fixed-point’ sentence ¢ can be algorithmically constructed
by a diagonalization trick: given 1, the sentence ¢ is defined as the formula x (%) for a suitable

formula x algorithmically constructed from v, and PA F x(X) < ¥(x(X)) then follows by
PA-provable properties of the Godel encoding.) Godel’s Incompleteness Theorem is then

obtained by taking the formula = Pr.(x) for ¢(z), which yields PA F ¢ <» = Pr.(p).

A corollary to Godel’s First Incompleteness Theorem is an observation (following easily from
the First Incompleteness Theorem by PA-provable properties of provability) called Gédel’s
Second Incompleteness Theorem: If T is a consistent theory containing PA, then T ¥ Con,
(i.e., T does not prove its own formal consistency).

In particular, the Second Incompleteness Theorem shows that the consistency of set theory
(say, ZF) cannot be proved in sound recursive theories weaker than ZF. This refutes the
possibility of Hilbert’s Program of finitistic justification of infinitistic methods in mathematics
(under most plausible interpretations of “finitistic”).

Besides their implications for the philosophy of mathematics, Godel’s Incompleteness Theo-
rems are useful for showing some negative metamathematical results, such as the following:

e Classical second-order logic (i.e., logic with variables and quantifiers not only for ele-
ments, but also subsets of the domain of discourse) cannot be recursively axiomatized,
since it interprets True Arithmetic. (Recursive axiomatization is thus prevented by the
First Incompleteness Theorem.)

e Zermelo—Fraenkel set theory ZF is not finitely axiomatizable. (If ZF were finitely ax-
iomatized, then by the so-called reflection principle ZF would prove the existence of a
model of ZF, and so its own consistency—a contradiction with the Second Incomplete-
ness Theorem.)

e The existence of the satisfaction relation (i.e., the relation formalizing satisfaction of
formulae under evaluations) is not provable in set theory. (Formal consistency of the
theory is derivable from the existence of the satisfaction relation—a contradiction with
the Second Incompleteness Theorem).

However, it should be stressed that many philosophical interpretations of the Incomplete-
ness Theorems are misguided. (For one reason, notice that the incompleteness only regards
truly infinite sets of natural numbers: arithmetic up to any finite number, however huge, is
complete and decidable, being a theory of a finite model.) A comprehensive book on the
misinterpretations of Godel’s theorems is Torkel Franzén: Gddel’s Theorem: An Incomplete
Guide to its Use and Abuse. A.K. Peters, 2005.

Acknowledgment: Two Czech textbooks (A. Sochor: Klasickd matematickd logika, V. Svejdar: Logika:
nedplnost, sloZitost, nutnost) have been used in preparation of these handouts.

