
185.A09 Advanced Mathematical Logic
www.volny.cz/behounek/logic/teaching/mathlog13

Libor Běhounek, behounek@cs.cas.cz

Lecture #6, January 7, 2014

This and the next lecture give a brief sketch of topics related to (un)decidability and (in)com-
pleteness of theories. Some simplifications had to be made in this exposition; for a thorough
and rigorous exposition consult the literature on classical mathematical logic.

Models of computation

There are several widely known mathematical models of computation, or algorithmic manip-
ulation with symbols. Let us briefly describe just three of them.

Turing machine. Informally, a Turing machine consists of:

• An infinite tape divided into cells, each of which can contain a symbol of a given finite
alphabet; the alphabet is supposed to contain a special blank symbol.

• A head that can read and write the symbols on a tape, and move over the tape to the
right or to the left by one cell in each step.

• A state register registering one of the finitely many states in which the machine can be;
one of the states is designated as the start state, and a subset of states is designated as
the final states.

• And a program, or a finite set of instructions of the form

〈state1, symbol1, symbol2, direction, state2〉.

The machine works in steps. In each step, the instruction matching the state of the machine
and the symbol under its head is executed, interpreted as:

“If the machine is in state1 and the head reads symbol1, overwrite the cell to
symbol2, move the head in the direction (left, right, or stay) and assume state2”.

Initially, the machine is in the initial state, and the tape is supposed to contain only finitely
many non-blank symbols. The computation terminates as soon as the the machine reaches
one of the final states; the contents of the tape is then the output of the computation of the
machine for the input given by the initial state of the tape.

This informal description can be formalized as a mathematical object in a straightforward
way (as a 7-tuple of suitable sets of symbols, states, and instructions).

1



Register machine with a structured programming language. The machine has in-
finitely many registers for natural numbers (only finitely many of which are initialized by
non-zero numbers) and a program consisting of instructions of the form INC(X) (increment
by 1 of the register X), DEC(X) (decrement), CLR(X) (setting to 0), and X := Y (assign-
ment); concatenations begin P1; . . . ;Pn end of programs; and constructions for X do P
(perform the program P X-times) and while X 6= 0 do P (with the usual meaning).

Exercise. Program addition of natural numbers on the register machine.

Recursive functions. Arithmetic functions are all functions f : X → N , where X ⊆ Nk.
If X = Nk, the arithmetic function is total.

Basic recursive functions are the functions o(x) = 0 (zero function), s(x) = x+ 1 (successor),
and pni (x1, . . . , xn) = xi (i-th projection of n).

An (n + 1)-ary function is derived by primitive recursion from the n-ary function g and the
(n+ 2)-ary function h if

f(0, y1, . . . , yn) = g(y1, . . . , yn)

f(x+ 1, y1, . . . , yn) = h(f(x, y1, . . . , yn), x, y1, . . . , yn)

An n-ary function f is derived by minimization from the (n+ 1)-ary function g if:
f(x1, . . . , xn) = y iff [g(y, x1, . . . , xn) = 0 and (∀v < y)(g(v, x1, . . . , xn) 6= 0)]

The set of primitive recursive functions is the smallest set of arithmetic functions containing
the basic recursive functions and closed under functional composition and primitive recursion.

The set of partial recursive functions is the smallest set of arithmetic functions containing
basic recursive functions and closed under functional composition, primitive recursion, and
minimization.

An arithmetic function is recursive if it is partially recursive and total.

A set of natural numbers A is (primitive) recursive if its characteristic function χA is (primi-
tive) recursive; it is recursively enumerable if there is a partial recursive function f such that
A = Dom(f).

Church thesis

By a suitable encoding of the alphabet, any finite input and output can be encoded by (tuples
of) natural numbers, and vice versa, any (tuple of) natural numbers can be encoded by a
sequence of symbols of any (at least two-element) alphabet. Any function computed by one
of the above computational models can thus be regarded as an arithmetical function.

By mutual simulation (under a suitable encoding) one can show that all of the aforementioned
models of computation are equivalent. In particular, the (arithmetical) functions computable
by a Turing machine or a structured program are exactly the partial recursive functions.
(Recursive functions are those computable by a structured program not using while.)

Since Turing machines or structured programs capture our intuitive idea of algorithmic com-
putation, partial recursive functions represent the arithmetical model of computable functions.

The identification of algorithmically computable functions with partial recursive functions
(or equivalently, functions computable by any model of computation equivalent to Turing

2



machines) is called the Church (or Church–Turing) thesis. N.B.: The Church thesis is not
a mathematical statement (it refers to the intuitive idea of algorithm). Caveat: Not every
‘computation’ corresponds to a Turing machine—e.g., if the inputs are dynamically changing
during the computation (e.g., the results of measurement of a real-world process).

Not all arithmetic functions are computable. The computability of functions is studied by
recursion theory, an important branch of mathematical logic (and the foundations of computer
science). An example of non-computable function is the halting problem, i.e., the problem
whether a program terminates for a given input: there is no program that would decide
this for all pairs program–input (as proved by Turing in 1936). Examples of non-computable
functions (incl. the halting problem) can be constructed by diagonalization, i.e., by showing
that a program computing the function would not work when applied to itself (i.e., to its own
formalization) on input.

Recursively enumerable sets are those which can be algorithmically enumerated, i.e., all of
its elements be algorithmically generated one by one so that each element of the set will
sooner or later occur on the list. However, the membership in a recursively enumerable set
cannot in general be decided in a finite time, since for a non-element we will never know
during the enumeration whether it is going to be listed in the future or not. On the other
hand, the membership in recursive sets is algorithmically decidable, since by definition of
recursive function, the decision algorithm for its membership always terminates (recall, e.g.,
that recursive functions are computable by structured programs without while-cycles, which
always terminate). If both the membership and non-membership lists of a set X can be
algorithmically generated, then generating them in parallel gives a decision procedure for X.
This fact is formalized by Post’s Theorem: if both X and the complement of X are recursively
enumerable, then X is recursive.

Decidability of theories in logic

The question of algorithmic computability can be applied to sets of formulae (such as the
set of axioms of a given theory, the set of theorems provable in a given theory, or the set of
formulae true in a given model).

Gödel’s Completeness Theorem showed that a ‘non-finitistic’ problem of validity in a (usually
infinite) class of models of a given theory can be reduced to a ‘finitistic’ problem of provability
in the theory (recall that a proof is a finite sequence of finite formulae). However, this
reduction does not address the algorithmic feasibility of the task: e.g., if the set of the
axioms of the theory is not recursively enumerable (i.e., by Church thesis, algorithmically
computable), then we have no algorithmic method how to recognize a valid proof in the
theory.

Taking the algorithmic aspects into account, the problem of the computability of the sets of
formulae occurring in mathematical logic becomes prominent. Thus in mathematical logic,
we are predominantly interested in recursive theories, as only those have algorithmically
decidable set of axioms.

Let Thm(T ) denote the set of sentences provable in a (first-order classical) theory T and
Rft(T ) the set of sentences refuted by T , i.e., Thm(T ) = {ϕ a sentence | T ` ϕ} and Rft(T ) =
{ϕ a sentence | T ` ¬ϕ}.

It can be shown that if T is recursively enumerable, then so are Thm(T ) and Rft(T ). Moreover,
if T is recursively enumerable, then there is a recursive T ′ such that Thm(T ) = Thm(T ′) (and
consequently Rft(T ) = Rft(T ′)). (Thus we can restrict our interest to recursively axiomatized

3



theories, even though recursively enumerable sets of axioms are computable, too.)

Since a recursive theory T has a recursively enumerable set Thm(T ) of theorems, the theorems
of T can be algorithmically generated. However, in order to have an algorithmic decidability
of theoremhood, Thm(T ) need be recursive. Therefore we define:

A theory is decidable if the set Thm(T ) (so also Rft(T )) is recursive; otherwise it is undecidable.

Trivially, every inconsistent theory is decidable (as the set of all formulae is recursive). The
decidability of some important theories occurring in mathematical practice has been proved;
for instance, the theory RCF of real closed fields or Presburger arithmetic PrA (i.e., roughly
speaking, Robinson’s arithmetic without multiplication).

Note, however, that recursive decidability only reflects theoretical algorithmic computability,
and neglects such features as the feasibility of computation. Such features are treated in
the subject area of computational complexity, another branch of modern mathematical logic,
which refines the class of decidable theories into a hierarchy of subclasses according to their
demands on computational resources (e.g., computation time, memory space, etc.).

Quantifier elimination

A method for showing the decidability of a theory is quantifier elimination. A theory has
quantifier elimination if every formula ϕ there is a quantifier-free formula ϕ′ such that T `
ϕ ↔ ϕ′. (This is usually proved by recursively eliminating quantifiers from a formula by
equivalences provable in the theory.) If a theory has quantifier elimination by a recursively
computable method, then the validity of formulae in the theory is algorithmically reduced to
the validity of quantifier-free sentences in the theory, which can often be easily shown to be
decidable.

The method will be illustrated on the theory of successors. Consider the following three
theories:

• Th(〈ω, 0, S〉), where S : n 7→ n+ 1 is the successor function on natural numbers; abbre-
viate the theory by Th(S).

• SUCC = Q1–Q3 plus the axiom schema S4, for each k:

S4: s(x1) = x2 ∧ s(x2) = x3 ∧ . . . ∧ s(xk−1) = xk → x1 6= xk

• SUCC+ = SUCC plus functions sn defined as follows: s0(x) = x and sn+1(x) = s(sn(x)),
for each metamathematical number n.

Lemma. Observe the following facts:

1. SUCC+ ` sk(x) 6= x for any k > 0.

2. Terms of SUCC+ contain at most one variable. Moreover, SUCC+ ` sn(sm(x)) = sm+n(x);
consequently, for any term t, SUCC+ ` t = sn(x) for some n and some variable x.

3. SUCC+ ` s(x) = s(y)↔ x = y. (Hint: ⇒ by Q1, ⇐ by equality axioms.)

4. SUCC+ ` (∃x)
(
y = sk(x)

)
↔

(
y 6= 0 ∧ . . . ∧ y 6= sk−1(0)

)
. (Hint: demonstrate the

provability by induction on k, using Lemma 3 and Q3.)

4



It can be shown that SUCC+ extends SUCC conservatively. Obviously the three theories are
consistent, since 〈ω, 0, S〉 is a model. Furthermore, Th(S) is complete and extends SUCC.
We shall prove by quantifier elimination that actually Th(S) = Thm(SUCC) and the three
theories are complete and decidable.

Let us call the following formulae simple: (i) all formulae of the form sn(x) = t where the
term t does not contain x and (ii) the formula 0 = 0. Let any simple formula or a negation
of a simple formula be called a simple literal, and any disjunction of conjunctions of simple
literals a simple DNF (disjunctive normal form).

Theorem. For any formula ϕ in the language of SUCC+ with Free(ϕ) ⊆ {x1, . . . , xn} there is
an algorithmically constructible formula ϕ′ in the same language with Free(ϕ′) ⊆ {x1, . . . , xn}
such that ϕ′ is a simple DNF and SUCC+ ` ϕ↔ ϕ′.

Proof. By induction on ϕ:

• If ϕ is atomic, then it is a formula s = t for some terms s, t.

(a) If neither t nor s contains a variable (i.e., are closed), then ϕ is sn(0) = sm(0) for
some m,n.

(a1) If n = m then SUCC+ ` sn(0) = sm(0) (proof: exercise!), so SUCC+ `
ϕ↔ 0 = 0, a simple formula.

(a2) If n 6= m then SUCC+ ` sn(0) 6= sm(0) (exercise!), so SUCC+ ` ϕ↔ 0 6= 0, a
simple literal.

(b) If t, s contain different variables or one of t, s is closed, then ϕ is already simple.

(c) If t, s contain both the same variable (say, x), then ϕ is sn(x) = sm(x). Apply
Lemma 3 above min(n,m) times:

(c1) If n = m, obtain SUCC+ ` ϕ↔ x = x, thus SUCC+ ` ϕ ↔ 0 = 0 (exercise:
why?), a simple formula.

(c2) If n 6= m, obtain SUCC+ ` ϕ↔ sk(x) = x for some k > 0; thus by Lemma 1,
SUCC+ ` ϕ↔ 0 6= 0, a simple literal.

• If ϕ is ¬ψ or ψ → χ, where ψ, χ are already simple DNFs, then apply (De Morgan and
double negation) propositional laws on ¬ψ or ¬ψ ∨ χ to obtain ϕ in simple DNF.

• If ϕ is (∃x)ψ, where ψ is already a simple DNF:

1. Apply ` (∃x)(ψ1 ∨ ψ2) ↔ (∃x)ψ1 ∨ (∃x)ψ2: thus we can treat each disjunct sepa-
rately and assume without loss of generality that ψ is just a conjunction of simple
literals.

2. Rearrange the conjuncts in ψ so that ψ is ψ1 ∧ ψ2, where:

– ψ1 is conjunction of all conjuncts of ψ containing x

– ψ2 is conjunction of all conjuncts of ψ not containing x

Then apply ` (∃x)(ψ1 ∧ ψ2) ↔ ((∃x)ψ1) ∧ ψ2, a theorem of first-order classical
logic if ψ2 does not contain free x. Thus without loss of generality we can assume
that all conjuncts of ψ do contain x, i.e., that ϕ is:

(∃x)
(
sk1(x) = t1 ∧ . . . ∧ skn(x) = tn ∧ sk

′
1(x) 6= t′1 ∧ . . . ∧ s

k′
n′ (x) 6= t′n′

)
,

where ti, t
′
i do not contain x. (Note that conjuncts 0 = 0 are irrelevant and

conjuncts 0 6= 0 trivialize ϕ, so this is the only non-trivial form of ϕ). If n = n′ = 0,
we are done; thus assume n > 0 or n′ > 0.

5



3. Let k = max(k1, . . . , kn, k
′
1, . . . , k

′
n′). Apply Lemma 3 sufficiently many times to

obtain:

SUCC+ ` ϕ↔ (∃x)
(
sk(x) = t̂1 ∧ . . . ∧ sk(x) = t̂n ∧ sk(x) 6= t̂′1 ∧ . . . ∧ sk(x) 6= t̂′n′

)
Thus by ` (∃x)

(
ϕ(t(x)

)
↔ (∃y)

(
y = t(x) ∧ ϕ(y)

)
for any term t,

SUCC+ ` ϕ↔ (∃y)
(
y = sk(x) ∧ y = t̂1 ∧ . . . ∧ y = t̂n ∧ y 6= t̂′1 ∧ . . . ∧ y 6= t̂′n′

)
whence by Lemma 4,

SUCC+ ` ϕ↔ (∃y)
(
y 6= 0 ∧ . . . ∧ y 6= sk−1(0) ∧

y = t̂1 ∧ . . . ∧ y = t̂n ∧ y 6= t̂′1 ∧ . . . ∧ y 6= t̂′n′
)

(a) If n = 0, then SUCC+ ` ϕ ↔ 0 = 0, since 0, s(0), . . . , sk+n′
(0) are k + n′ + 1

terms provably non-equal in SUCC+ (so we can instantiate y among them to
prove ϕ)

(b) If n > 0, then (by ` (∃y)(y = t̂1 ∧ χ(y))↔ χ(t̂1); notice that it is here where
we eliminate the quantifier):

SUCC+ ` ϕ↔
(
t̂1 6= 0 ∧ . . . ∧ t̂1 6= sk−1(0) ∧

t̂1 = t̂1 ∧ . . . ∧ t̂1 = t̂n ∧ t̂1 6= t̂′1 ∧ . . . ∧ t̂1 6= t̂′n′
)

(b1) The conjuncts which are closed or contain the same variable on both sides
of the equality predicate will be replaced by 0 = 0 or 0 6= 0 as in the step
for atomic formulae.

(b2) The other conjuncts are already simple literals.

Observe that the construction of ϕ′ was algorithmic and that no new variables have been
introduced in the induction, therefore Free(ϕ′) ⊆ {x1, . . . , xn} as required.

Corollary. If ϕ is closed, then ϕ′ is closed as well.

Corollary. SUCC+ (so SUCC as well) is complete and decidable.

Proof. For every closed ϕ we have algorithmically found a closed SUCC+-equivalent ϕ′ in
simple DNF. Since the only closed simple literals are 0 = 0 and 0 6= 0, we can algorithmically
decide the provability of ϕ′ by evaluating the DNF as in classical propositional logic.

Corollary. Thm(SUCC) = Th(S), as Th(S) is a complete extension of SUCC, and SUCC
is already complete. Thus Th(S) is decidable, too.

6


