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The Löwenheim–Skolem Theorem

Theorem (Löwenheim–Skolem Downward Theorem). Let T be a consistent theory in the
language L of cardinality λ. Then T has a model of cardinality κ ≤ max(ℵ0, λ).

Proof. By inspection of the proof of the Completeness Theorem, we can find a bound on the
cardinality of the canonical structure for L. (We use ZFC as our metatheory. Recall that in
ZFC, κ+ λ = max(κ, λ) = κ× λ if κ ≥ ℵ0 or λ ≥ ℵ0.)

The set of symbols that can occur in L-formulae consists of L (of cardinality λ) plus countably
many individual variables plus a finite set of connectives, quantifiers, and parentheses; its car-
dinality is therefore λ′ = λ+ℵ0 = max(λ,ℵ0). L-formulae are finite sequences of such symbols,
so its cardinality is at most λ′ × ℵ0 = max(λ′,ℵ0) = max(max(λ,ℵ0),ℵ0) = max(λ,ℵ0) = λ′.
Henkin constants are added in ℵ0 steps; in each step, new Henkin constants correspond
uniquely to the formulae of the current language, which by induction has the cardinality at
most λ′ (as there are at most λ′ × ℵ0 = λ′ formulae in the new language at each step). The
cardinality of the language L′ of the Henkin completion of T is therefore at most λ′. Closed
terms of L′ are finite sequences of symbols from L′ plus countably many logical symbols, so
again there are at most λ′+ℵ0 = λ′ of them. The cardinality of the universe of the canonical
structure of T is therefore at most λ′ = max(λ,ℵ0).

Corollary. Any consistent theory in a countable language has a countable model.

Example. Zermelo–Fraenkel set theory ZF can be formulated in the language {∈}. Conse-
quently, if ZF is consistent, it has a countable model.

The apparent contradiction of the existence of a countable model of ZF with Cantor’s theorem
(entailing the existence of uncountable sets) is called Skolem’s paradox. Its solution consists
in an appropriate distinction between the object level and metalevel: at the object level, ZF
indeed proves the existence of uncountable sets; however, its metalevel models need not be
uncountable.

The discrepancy between the object-level uncountability and metalevel countability of a set
a in a countable model M of ZF can be accounted for as follows: internally (i.e., as regards
formulae true in M), a is uncountable, since in Ṁ there is no individual f that (in M) would
be an injective function mapping the elements (in the sense of M) of a to the elements of the
set ω (in M). Thus M |= ‘a is uncountable’, even though a has only countably many elements
from the metalevel point of view. Informally speaking, there are no injective functions in M
that would make a countable in M .
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The Compactness Theorem

Theorem. For any theory T and formula ϕ,

T |= ϕ iff there is a finite T ′ ⊆ T such that T ′ |= ϕ.

Proof. Left to right: By the Completeness Theorem, if T |= ϕ then T ` ϕ. Since the proof
of ϕ in T can use only finitely many axioms of T , there is a finite T ′ ⊆ T such that T ′ ` ϕ.
Then by the Soundness Theorem T ′ |= ϕ.

Right to left: If T ′ |= ϕ, then T ′ ` ϕ by the Completeness Theorem. Since T ′ ⊆ T , trivially
T ` ϕ, too. Thus by the Soundness Theorem, T |= ϕ.

Similarly as in the Soundness and Completeness Theorems, there is an alternative formulation
of the Compactness Theorem connecting models and consistency of theories:

Theorem. A theory T has a model if and only if every finite theory T ′ ⊆ T has a model.

Proof. If every finite theory T ′ ⊆ T has a model, then (by the Soundness Theorem) every
such theory T ′ is consistent. Consequently, T is consistent (as any proof of a contradiction
would only use finitely many axioms of T , and so would be a proof in some finite T ′ ⊆ T ).
Thus by the Completeness Theorem, T has a model. The converse direction is trivial.

True arithmetic

Definition. The language of arithmetic consists of the binary functions + and ·, the con-
stant 0, the unary function s (the successor), and the binary predicates ≤, <.

The numerals are the closed terms of the language of arithmetic arising by iteration of the
successor function on the constant 0. For each metamathematical natural number n we define
the numeral n by induction as follows: 0 is the term 0; n+ 1 is the term s(n). (Thus 1 is the
term s(0); 2 is the term s(s(0)); 3 is the term s(s(s(0))); etc.)

Definition. Let M be a structure for the language L. The set Th(M) =df {ϕ a sentence |
M |= ϕ} of the sentences true in M is called the theory of M .

Definition. The structure N = 〈ω,+, ·, s,≤, <〉, where ω is the set of all (metamathematical)
natural numbers, + and · are the operations of addition and multiplication, s is the function
assigning n + 1 to each n ∈ ω, and ≤, < are the usual ordering relations on ω, is called the
standard model of arithmetic. The theory Th(N) is called true arithmetic.

True arithmetic is the set of all sentences that are true in the standard model N . Obviously,
N is a model of Th(N). However, it follows from the Compactness Theorem that Th(N) has
also other models which are not isomorphic to N :

Example. Let L be the language of arithmetic expanded by a new constant c. Let T be
the theory in L that extends Th(N) by the axioms c > n for all (metamathematical) nat-
ural numbers n. Clearly, each finite subtheory T ′ of T has a model—namely N expanded
by c interpreted as a number larger than all numerals occurring in T ′. Therefore, by the
Compactness Theorem, T is also consistent and has a model.

Let us denote this model by M . Since Th(N) ⊆ T , M is a model of true arithmetic. However,
it contains a number (namely, the interpretation of the constant c) which, by the axioms
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of T , is larger than any numeral. Since numerals are in one-to-one correspondence with
metamathematical natural numbers, the interpretation of c in the model M of true arithmetic
is larger than all metamathematical natural numbers.

In models of arithmetic, interpretations of numerals are called the standard numbers; other
elements are called non-standard numbers; all elements of a model of arithmetic are called just
numbers. A model of arithmetic that contains non-standard numbers is called a non-standard
model.

Non-standard numbers in a model of true arithmetic are, from the metamathematical point
of view, ‘infinitely large’ (i.e., larger than any metamathematical natural number). Still,
they obey all rules of ordinary (true) arithmetic expressible in the (first-order) language of
arithmetic. They can be used for the construction of non-standard models of mathematical
analysis (as the reciprocal values of such infinitely large numbers are infinitely small, i.e.,
smaller than any standard rational number, but larger than 0), restoring the original idea
of infinitesimals. Non-standard set theories formalizing these ideas are, e.g., Vopěnka’s Al-
ternative Set Theory or Hrbáček’s non-standard set theory (Google these names for more
information).

Robinson and Peano arithmetic

The axioms of true arithmetic Th(N) are not defined by an effective procedure (being all
sentences true in the standard model, including, e.g., difficult Diophantine equations). Nev-
ertheless, it has been observed in the XIX century that many truths of arithmetic follow from
a rather limited set of axioms. A collection of such sufficiently strong axioms was used by
Dedekind, Peano, Frege, Peirce, and others to formalize a large part of arithmetic. In the
metamathematical investigations, the following axioms have become prominent:

1. s(x) = s(y)→ x = y

2. s(x) 6= 0

3. x 6= 0→ (∃y)(x = s(y))

4. x+ 0 = x

5. x+ s(y) = s(x+ y)

6. x · 0 = 0

7. x · s(y) = x · y + x

8. x ≤ y ↔ (∃z)(z + x = y)

9. x < y ↔ (∃z)(s(z) + x = y)

10.
(
ϕ(0) ∧ (∀x)(ϕ(x)→ ϕ(s(x))

)
→ (∀x)ϕ(x),

for all formulae ϕ in the language of arithmetic (‘the induction schema’)

The axioms 1–9 are known as Robinson arithmetic Q, and the axioms 1–10 as Peano arith-
metic PA.

Similarly as Th(N), also Q and PA have non-standard models. Since Q ` x ≤ n ∨ n ≤ x,
all models of Q (and PA and Th(N)) have an initial segment of standard numbers, possibly
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followed by segments of non-standard numbers. In PA (or any stronger theory, including
true arithmetic), the properties of successors ensure that every non-standard number lies in
a segment order-isomorphic to the set Z of (metamathematical) integer numbers; however,
this need not be so in Q:

Example. The following structure is a non-standard model of Q:

Ṁ = {a0, a1, a2, . . . , b0, b1, b2 . . .}, where a0 < a1 < a2 < · · · < b0 < b1 < b2 < . . . .

s(ai) = ai+1, s(bi) = bi (sic!) for all (metamathematical) i ∈ ω.

+ am bm
an an+m bm+1

bn bn bm+1

· a0 am+1 bm
an a0 an·(m+1) b0
bn a0 bn+1 bn+1

Notice that M 6|= x < s(x), thus x < s(x) is not provable in Q (though it is provable in PA).

Observe that the set of standard numbers is not definable in PA (i.e., there is no formula ϕ(x)
in the language of PA such that M |= ϕ(a) iff a is a standard number in a model M of PA), as
the induction axiom for ϕ would fail in M . (Similarly, since PA ⊆ Th(N), standard numbers
are not definable in true arithmetic.)

Exercise. 1. Prove in Robinson arithmetic that m+ n = m+ n.

2. Prove in Robinson arithmetic that x ≤ n→ (x = 0 ∨ x = 1 ∨ . . . ∨ x = n).

3. Prove in Peano arithmetic that x < s(x).

4. Prove that PA ` (∃x)ϕ(x)→ (∃x)(ϕ(x) ∧ (∀y)(y < x→ ¬ϕ(y))), for each formula ϕ of
the language of arithmetic (the least number principle).
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