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The Axiom of Choice and Transfinite Induction

To prove the Completeness Theorem in its full strength (i.e., for aribitrary languages), we will
use certain set-theoretic principles in the metatheory (see also the notes following the proof
of the Completeness Theorem). In our version of the proof, we will use the Well-Ordering
Principle and Transfinite Induction:

Definition. Let A be a set and ≤ a partial order on A. An element a is the least element
of the set X ⊆ A (w.r.t. ≤) if a ∈ X and (∀x ∈ X)(a ≤ x). An ordering ≤ on a set A is a
well-ordering if every subset of A has the least element w.r.t. ≤.

Well-Ordering Principle: Every set can be well-ordered. (I.e., for every set A there exists
a well-ordering ≤ on A.) In Zermelo–Fraenkel set theory ZF, the Well-Ordering Principle is
equivalent to the Axiom of Choice.

Theorem (Transfinite induction). Let ϕ(x) be a formula in the language of set theory and
≤ a well-ordering of a set A. Then ZF proves: (∀a ∈ A)

((
(∀x ≤ a)ϕ(x)

)
→ ϕ(a)

)
→

(∀a ∈ A)ϕ(a).

Completion of theories

Theorem. Each consistent theory T has a consistent complete extension T ′ in the same
language.

Proof. Let � be a well-ordering of the closed formulae of the language L of T . For each
sentence ϕ of L, we shall construct by transfinite recursion a theory Tϕ in L in such a way
that either ϕ or ¬ϕ is an axiom of Tϕ. The induction hypothesis is that Tϕ is a consistent
extension of T and for each ψ ≺ ϕ, the theory Tϕ is an extension of Tψ.

To construct the theory Tϕ from the theories Tψ for ψ ≺ ϕ, we first define an auxiliary theory
Sϕ in the language L:

• If ϕ is the first element in �, then let Sϕ = T . (Sϕ is obviously consistent.)

• Otherwise let Sϕ =
⋃
ψ≺ϕ Tψ. The theory Sϕ is consistent, since any proof of a contra-

diction could only contain finitely many formulae, and therefore there would be theories
Tψ1 , . . . , Tψk

for ψ1, . . . , ψk ≺ ϕ containing all of the axioms of Sϕ needed for the proof
of the contradiction. Since k is finite and � is linear, some theory Tψj

for j ≤ k contains
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all Tψ1 , . . . , Tψk
, and so the contradiction proof is a proof in Tψj

. This, however, is a
(metamathematical) contradiction with the induction hypothesis that all Tψ for ψ ≺ ϕ
are consistent.

Sϕ extends T and all Tψ for ψ ≺ ϕ. We define the theory Tϕ as follows:

• If Sϕ ∪ {ϕ} is consistent, let Tϕ = Sϕ ∪ {ϕ}. The induction hypothesis then trivially
holds for Tϕ.

• If Sϕ ∪ {ϕ} is inconsistent, let Tϕ = Sϕ ∪ {¬ϕ}. The consistency of Tϕ (and so the
induction hypothesis) follows from the fact that since S ∪ {ϕ} is inconsistent and ϕ is
closed, we have S ` ¬ϕ. Thus, since Sϕ is consistent, so is S ∪ {¬ϕ}.

Finally, define T ′ =
⋃
ψ∈L Tψ and prove its consistency analogously as in the case of Sϕ.

Canonical structures

Definition. Let T be a theory whose language L = 〈Pred,Func〉 contains at least one con-
stant. Then its canonical structure (or term model) isMT = 〈ṀT , (PMT

)P∈Pred, (FMT
)F∈Func〉,

where ṀT is the set of closed terms of L, PMT
is the set of all 〈t1, . . . , tk〉 ∈ ṀT such that

T ` P (t1, . . . , tk); and FMT
assigns the term F (t1, . . . , tk) to each 〈t1, . . . , tk〉 ∈ ṀT .

Theorem (of canonical structure). The canonical structure of a complete Henkin theory
(without equality) is its model.

Proof. Let T be a complete Henkin theory in the language L without equality. Without loss
of generality (as T ` ϕ iff T ` (∀x)ϕ) assume that T only contains closed formulae. For each
closed instance ϕ̃ of a formula ϕ of L we shall show that

T ` ϕ̃ iff MT |= ϕ̃.

We proceed by induction on the complexity of ϕ:

• The step for closed instances of atomic formulae is trivial due to the definition of MT .

• If ϕ has the form ¬ψ, then ϕ̃ has the form ¬ψ̃. Now T ` ¬ψ̃ iff T 6` ψ̃ by the completeness
of T (as ψ̃ is closed), which is equivalent to MT 6|= ψ̃ by induction hypothesis, and the
latter is equivalent to MT |= ¬ψ̃ by Tarski conditions.

• If ϕ has the form ψ → χ, then ϕ̃ has the form ψ̃ → χ̃, where ψ̃, χ̃ are, respectively,
closed instances of ψ, χ.

By Tarski conditions, MT |= ψ̃ → χ̃ iff (MT |= ψ̃ implies MT |= χ̃), which by induction
hypothesis is equivalent to (T ` ψ̃ implies T ` χ̃). Since T ` ψ̃ → χ̃ implies (T ` ψ̃
implies T ` χ̃), it is sufficient to prove the converse contrapositively, i.e., if T 6` ψ̃ → χ̃
then (T ` ψ̃ and T 6` χ̃):

If T 6` ψ̃ → χ̃, then T ` ¬(ψ̃ → χ̃), i.e., T ` ψ̃∧¬χ̃, by the completeness of T (as ψ̃ → χ̃
is closed). Thus T ` ψ̃ and T ` ¬χ̃, so T 6` χ̃ by the consistency of T , q.e.d.

• In the induction step for ∀ we can assume that ψ does not contain free variables other
than x (otherwise (∃x)ψ would not be closed) and that by induction hypothesis the
claim holds for ¬ψ.
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If T ` (∃x)ψ, then there is a constant c such that T ` ψ(c/x), since T is Henkin. Thus
by induction hypothesis, MT |= ψ(c/x), so by Tarski conditions MT |= (∃x)ψ.

If T 6` (∃x)ψ, then T ` (∀x)¬ψ by the completeness of T . By specification, T ` ¬ψ(t/x)
for each closed term t of L. Thus by induction hypothesis, MT |= ¬ψ(t/x). Since
the universe of MT comprises only closed terms of L, by Tarski conditions we obtain
MT |= ¬ψ[e] for each MT -evaluation e, and so MT |= (∀x)¬ψ, which is equivalent to
MT |= ¬(∃x)ψ.

The Completeness Theorem

Theorem. Each consistent theory has a model.

Proof. Let T be a consistent theory. Then there is a consistent Henkin extension T ′ of T
and a completion T ′′ of T ′ in the same language. Since T ′ is Henkin, so is T ′′. Therefore its
canonical structure is a model of T ′′, and so of T .

Corollary. For each theory T and each formula ϕ:

If T |= ϕ then T ` ϕ.

Proof. We shall prove the contrapositive claim. Let T 6` ϕ and let ϕ̄ be the universal closure
of ϕ. Then T ∪ {¬ϕ̄} is consistent, and therefore has a model M . Since M |= ¬ϕ̄, and since
a formula is true in a model iff its universal closure is, we also have M |= ¬ϕ. Consequently,
T 6|= ϕ.

Observe that the Completeness Theorem reduces an essentially ‘infinite’ problem (the truth of
a formula in a possibly infinite class of non-isomorphic models) to a ‘finite’ one (the existence
of a finite proof in an axiomatic system). This reduction is possible due to the limited
expressive power of first-order logic (e.g., it cannot express quantification over subsets of the
domain of a model).

Observe also that the metatheory needed for the Completeness proof is rather strong: it needs
to contain some form of the Axiom of Choice (AC). In our proof, we used the well-ordering
of the set of formulae, which is equivalent to the Axiom of Choice in the general case. For
particular theories, the restriction of AC to the cardinality of the language is sufficient: e.g.,
the axiom of Countable Choice for theories in countable languages. For theories in finite
languages it is sufficient to assume the well-ordering of the set of variables; since the latter
set is usually assumed to be countable, so well-ordered by definition, no AC is needed for the
Completeness Theorem in finite languages.

The assumption of AC in the general case is, however, unnecessarily strong: the Completeness
Theorem is in fact equivalent to a strictly weaker form of AC known as the Ultrafilter Lemma
(or the Boolean Prime Ideal Theorem), stating the existence of an ultrafilter extending any
filter in a Boolean algebra (which is a reformulation of the theorem of completion of theories
used in our proof).
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