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The Soundness Theorem

Theorem. For every theory T and every formula ϕ in the language of T :

if T ` ϕ then T |= ϕ.

(In particular, |= ϕ only if ` ϕ.)

Proof. First we shall prove that for any model M , any M -evaluation e, and any axiom ϕ of
predicate logic, M |= ϕ[e]:

• By Tarski’s conditions, M |= (ϕ → (ψ → ϕ))[e] iff: M |= ϕ[e] implies that M |= ψ[e]
implies M |= ϕ[e], which is a (metamathematically) valid statement. (We assume that
classical propositional logic is part of our semantic metatheory.) Similarly for other
propositional axioms.

• By Tarski’s conditions, M |= (∀x)ϕ→ ϕ(t/x)[e] iff:

M |= (∀x)ϕ[e] implies M |= ϕ(t/x)[e]

Clearly M |= ϕ(t/x)[e] iff M |= ϕ
[
e[x 7→ ‖t‖M,e]

]
. By Tarski’s conditions, M |= (∀x)ϕ[e]

iff M |= ϕ(x)[e[x 7→ a]] for all a ∈ Ṁ , so in particular for a = ‖t‖M,e. Therefore the
displayed implication, and so the specification axiom, holds in M, e. The distribution
axiom is proved in a similar way.

Second we prove the soundness of the inference rules of modus ponens and generalization:

• Let M |= ϕ[e] and M |= ϕ→ ψ[e]. By Tarski’s conditions, the latter is equivalent to the
implication: if M |= ϕ[e] then M |= ψ[e]. Applying modus ponens (on the metalevel),
we obtain M |= ψ[e].

• Let M |= ϕ. Then M |= ϕ[e] for every e, so M |= ϕ
[
e[x 7→ a]

]
for all a ∈ Ṁ , and so

M |= (∀x)ϕ[e] for every e.

Finally, let ϕ1, . . . , ϕn be a proof of ϕ in T and let M be a model of T . The previous
cases prove all induction steps needed for showing that M |= ψi[e] for each i ≤ n and each
M -evaluation e.
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Notice that while the rule of modus ponens preserves validity under a given evaluation e, the
rule of generalization only preserves validity under all evaluations in a model (i.e., M |= ϕ
implies M |= (∀x)ϕ; counterexamples to M |= ϕ[e] implies M |= (∀x)ϕ[e] are easy to find).

Observe also that all of the proof steps for the axioms and rules utilized the same axiom or
rule at the metalevel. This is not a circular reasoning, since the proof is not intended as
justification of the rules and axioms of predicate logic. On the contrary—they are assumed
to be valid principles of logic: they are part of our metatheory. The aim of the soundness
proof is rather to show that our syntactic formalization of these logical principles (as axioms
and rules of a formal language of first-order logic) is sound w.r.t. the semantics we use.

Corollary. If M 6|= ϕ[e] for some model M of T and an M -evaluation e, then T 6` ϕ.

Proof. Trivial by contraposition of the definition of T |= ϕ.

Corollary. If a theory is inconsistent, than it has no model.

Proof. An inconsistent theory proves all formulae of the language, so also a pair ϕ and ¬ϕ.
Any model of an inconsistent theory would therefore have to validate both ϕ and ¬ϕ, which
is absurd due to the Tarski condition for negation.

Exercise. Prove that for all closed formulae ϕ in the language of T :

T ` ϕ iff the theory T,¬ϕ is inconsistent.

Some useful metatheorems on provability

Observation (Closure Theorem). For any formula ϕ, variable x, and theory T ,

T ` ϕ iff T ` (∀x)ϕ.

Proof. Left to right: append (∀x)ϕ (by generalization) to the proof of ϕ in T . Right to left:
append, to the proof of (∀x)ϕ in T , the formulae (∀x)ϕ→ ϕ (an instance of the specification
axiom) and ϕ (obtained by modus ponens from the preceding two formulae).

Corollary. T proves ϕ iff T proves the universal closure of ϕ.

Note that since a semantic counterexample invalidating ϕ → (∀x)ϕ can easily be found, the
Closure Theorem cannot be strengthened to T ` ϕ↔ (∀x)ϕ. This exemplifies the difference
between provable equivalence and (mere) equiprovability. After we prove the Completeness
Theorem, we will be able to give the following semantic characterization of these notions:

• Provable equivalence (T ` ϕ↔ ψ): in every model of T , the formulae ϕ and ψ have the
same truth value under every evaluation of object variables.

• Equiprovability (T ` ϕ iff T ` ψ): ϕ is true in all models of T under every evaluation
iff so is ψ.

Theorem (of Equivalence). Let ϕ[θ′1/θ1, . . . , θ
′
k/θk] be a formula that results from replacing

some occurrences of the subformulae θ1, . . . , θk in ϕ by the formulae θ′1, . . . , θ
′
k, resp. Then

θ1 ↔ θ′1, . . . , θk ↔ θ′k ` ϕ↔ ϕ[θ′1/θ1, . . . , θ
′
k/θk].
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In the proof, we will take the provability of certain propositional tautologies for granted (their
provability follows from the Weak Completeness of our propositional axioms, which can be
proved separately, or by elaborating their direct proofs in our axiomatic system).

Proof. By induction on the complexity of ϕ:

Let ψ be a subformula of ϕ. Denote ψ[θ′1/θ1, . . . , θ
′
k/θk] by ψ̃ and {θ1 ↔ θ′1, . . . , θk ↔ θ′k}

by T . We distinguish the following cases:

(a) ψ is θi for some i ≤ k. Then ψ̃ is θ′i and the equivalence ψ ↔ ψ̃ is an axiom of T .

(b) ψ is an atomic formula other than all θi. Then ψ̃ is ψ, and so ψ ↔ ψ̃ is an instance of
the propositional tautology p↔ p.

(c) ψ is ¬χ. Then ψ̃ is ¬χ̃. By the induction hypothesis, T ` χ↔ χ̃; so also T ` ¬χ↔ ¬χ̃.
(To prove the latter step, use the instance (χ↔ χ̃)→ (¬χ̃↔ ¬χ) of the propositional
tautology (p↔ q)→ (¬p↔ ¬q) and modus ponens.)

(d) ψ is χ → χ′. Then ψ̃ is χ̃ → χ̃′. By the induction hypothesis, T ` χ ↔ χ̃ and
T ` χ′ ↔ χ̃′, so T ` (χ → χ′) ↔ (χ̃ → χ̃′). (To prove the latter step, use the
propositional tautology (p↔ q)→ ((r ↔ s)→ ((p→ r)↔ (q → s))) and twice modus
ponens.)

(e) ψ is (∀x)χ. Then ψ̃ is (∀x)χ̃. By the induction hypothesis, T ` χ↔ χ̃, so T ` χ→ χ̃,
so T ` (∀x)(χ→ χ̃) by generalization, so T ` (∀x)χ→ (∀x)χ̃ by the theorem of classical
first-order logic, (∀x)(ζ → η)→ ((∀x)ζ → (∀x)η), whose proof is left as an exercise.

Analogously, T ` (∀x)χ̃ → (∀x)χ, so T ` (∀x)χ ↔ (∀x)χ̃ (by the propositional tautol-
ogy (p→ q)→ ((q → p)→ (p↔ q)).

Note that the theorem cannot be strengthened to

` (θ1 ↔ θ′1) ∧ . . . ∧ (θk ↔ θ′k)→ (ϕ↔ ϕ[θ′1/θ1, . . . , θ
′
k/θk]),

which is refuted by the following counterexample:

Example. Let M be a structure for the language {P,Q}, where P,Q are unary predicates,
with Ṁ = {a, b}, ‖P‖M = {a}, ‖Q‖M = {a,b}, and e be an evaluation of individual variables
such that e(x) = a. Then clearly M |= Px ↔ Qx[e], but M 6|= (∀x)Px ↔ (∀x)Qx[e]. Thus
6|= (Px↔ Qx)→ ((∀x)Px↔ (∀x)Px[Qx/Px]).

The counterexample exemplifies the difference between provable implication and (mere) prov-
ability for non-closed formulae. After we prove the Completeness Theorem, we will be able
to give the following semantic characterization of these notions:

• Provable implication (T ` ϕ → ψ): in every model M of T and every evaluation e in
M , whenever ϕ is true in e, so is ψ.

• Provability (T, ϕ ` ψ): in every model M of T in which ϕ is true under every evaluation,
ψ is true under every evaluation, too.

For closed formulae, both concepts are equivalent due to the Deduction Theorem (notice the
necessity of the closedness assumption for ϕ in the Deduction Theorem).

Exercise. Prove the following metatheorems on proof methods:
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1. T ` ϕ iff T,¬ϕ ` ¬(ϕ→ ϕ) (“reductio ad absurdum”)

2. T, ϕ ∨ ψ ` χ iff (T, ϕ ` χ and T, ψ ` χ) (“proof by cases”)

3. T ` ψ iff (T, ϕ ` ψ and T,¬ϕ ` ψ) (“neutral formula”)

The proof of Gödel’s completeness theorem

The Completeness Theorem for classical first-order logic was proved by Kurt Gödel in the
end of the 1920’s (it comprised his 1929 doctoral dissertation at the University of Vienna and
was published in 1930). Leon Henkin’s 1949 simplification of the proof by means of Henkin
completion of theories, being easier to survey, has become a standard version of the proof
in textbooks. An outline of Gödel’s original proof (translated into modern notation) can be
found in English Wikipedia, entry Original proof of Gödel’s completeness theorem.

Gödel’s Completeness Theorem is the converse of the Soundness Theorem, and can be for-
mulated as the claim that each consistent theory has a model. The idea of the proof is to
construct a model of a consistent theory as a structure over its language (in particular, over
the set of its closed terms), in which the realization of predicates directly corresponds to the
provability of atomic formulae in the theory (the canonical structure). For the construction
to work well, the theory needs to be complete and have constants witnessing all existential
claims (the Henkin constants). The first part of the completeness proof thus consists of
demonstrating that these assumptions can be made without loss of generality. The canonical
structure of a complete Henkin extension of the theory is then a model of the theory.

For simplicity, we shall work with theories without equality. The proof for theories with
the equality predicate additionally involves factorization of the canonical structure by the
equivalence relation of provable equality of closed terms.

Henkin constants

Definition 1. Let ϕ(x) be a formula with a single free variable x and cϕ a constant (called
the Henkin constant corresponding to the formula ϕ). The formula (∃x)ϕ→ ϕ(cϕ/x) is called
the Henkin axiom corresponding to the formula ϕ.

Theorem (of Henkin constants). Let ϕ(x) be a formula in the language of a theory T . Let
S extend T by a new Henkin constant cϕ and the Henkin axiom corresponding to ϕ. Then S
extends T conservatively.

Proof. Let T ′ extend T just by adding the Henkin constant cϕ, and let ψ be a formula in the
language of T . Assume S ` ψ, i.e., T ′, (∃x)ϕ→ ϕ(cϕ/x) ` ψ. Let the variable y occur neither
in ϕ nor ψ. Then y is free for x in ϕ and the formula

(
((∃x)ϕ→ ϕ(y/x))→ ψ

)
(cϕ/y) is the

formula ((∃x)ϕ→ ϕ(cϕ/x))→ ψ. The proof is done as follows:

T ′ ` ((∃x)ϕ→ ϕ(cϕ/x))→ ψ by the Deduction Theorem

T ` ((∃x)ϕ→ ϕ(y/x))→ ψ by the Theorem of Constants

T ` (∀y)((∃x)ϕ→ ϕ(y/x)→ ψ) by generalization

T ` (∃y)((∃x)ϕ→ ϕ(y/x))→ ψ by ` (∀y)(χ→ ψ)↔ ((∃y)χ→ ψ), if y is not free in ψ

T ` ((∃x)ϕ→ (∃y)ϕ(y/x))→ ψ by ` (∃y)(χ→ ζ)↔ (χ→ (∃y)ζ), if y is not free in χ

T ` ψ by ` (∃x)ϕ↔ (∃y)ϕ(y/x), if y is not free in ϕ
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Exercise. Prove (syntactically) the theorems needed for Theorem of Henkin Constants:

1. ` (∀y)(χ→ ψ)↔ ((∃y)χ→ ψ), if y is not free in ψ

2. ` (∃y)(χ→ ζ)↔ (χ→ (∃y)ζ), if y is not free in χ

3. ` (∃x)ϕ↔ (∃y)ϕ(y/x), if y is not free in ϕ

Henkin extension

Definition 2. A theory T in a language L is a Henkin theory if for each formula ϕ(x) of L
with a single free variable x there is a constant cϕ in L such that T ` (∃x)ϕ→ ϕ(cϕ/x).

Theorem. For each theory T there is a Henkin theory S which extends T conservatively.

Proof. Let T0 = T . For each (metamathematical) natural number n we define Tn+1 as the
theory extending Tn by the Henkin constants and Henkin axioms corresponding to all formulae
in the language of Tn with a single free variable.

Tn+1 is a conservative extension of Tn, since every Tn+1-proof of any formula ϕ contains only
finitely many Henkin axioms not in Tn; consequently, a finite number of applications of the
Theorem of Henkin Constants shows the provability of ϕ in Tn.

Even though no Tn need be Henkin, the union S =
⋃∞

n=0 Tn is, since each formula in the
language of S is a formula in the language of some Tn, and so Tn+1 contains its Henkin
constant and axiom. Moreover, S extends T conservatively, since every proof in S contains
only finitely many axioms, and so is in fact a proof in some Tn.
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