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The semantics of classical first-order logic

We will represent the two truth values of classical logic by the numbers 0 (false) and 1 (true).

A structure M for the predicate language L = 〈Pred,Func〉 (or an L-structure) has the form:
M = 〈Ṁ, (PM )P∈Pred, (FM )F∈Func〉, where Ṁ is a non-empty set; for each n-ary predicate
symbol P ∈ Pred, PM is an n-ary relation on Ṁ (identified with an element of {0, 1} if n = 0);
for each n-ary function symbol F ∈ Func, FM is a function Ṁn → Ṁ (identified with an
element of Ṁ if n = 0).

Example. A structure for the language of elementary group theory is any algebra with one
binary, one unary, and one nullary operation (not necessarily a group).

Let M be a structure for L. An M -evaluation of the object variables is a mapping v which
assigns an element from M to each object variable. Let v be an M -evaluation, x a variable,
and a ∈ Ṁ . Then by v[x7→a] we denote the M -evaluation such that v[x7→a](x) = a and
v[x7→a](y) = v(y) for each object variable y different from x.

Let M be an L-structure and v an M -evaluation. We define the values of terms and the truth
values of formulae in M for an evaluation v recursively by Tarski’s conditions:

‖x‖M,v = v(x)

‖F (t1, . . . , tn)‖M,v = FM (‖t1‖M,v , . . . , ‖tn‖M,v), for every n-ary F ∈ Func

‖P (t1, . . . , tn)‖M,v = PM (‖t1‖M,v , . . . , ‖tn‖M,v), for every n-ary P ∈ Pred

‖c(ϕ1, . . . , ϕn)‖M,v = c(‖ϕ1‖M,v , . . . , ‖ϕn‖M,v), for every n-ary propositional connective c

‖(∀x)ϕ‖M,v = inf{‖ϕ‖M,v[x 7→a] | a ∈ Ṁ}

‖(∃x)ϕ‖M,v = sup{‖ϕ‖M,v[x7→a] | a ∈ Ṁ}

Note that in the clause for P , the characteristic function of the relation PM is used on the
right-hand side, and in the clause for c, the left-hand side refers to the connective (syntax),
while the right-hand side refers to the function realizing the connective (semantics).

In classical first-order logic with equality, we additionally have the following Tarski condition
for the equality predicate:

‖t1 = t2‖M,v = idM (‖t1‖M,v , ‖t2‖M,v),

where idM is the characteristic function of the identity relation on Ṁ .
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We shall write:

• ‖ϕ(a1, . . . , an)‖M instead of ‖ϕ(x1, . . . , xn)‖M,v if v(xi) = ai for all i ≤ n
• M |= ϕ[v] if ‖ϕ‖M,v = 1

• M |= ϕ if M |= ϕ[v] for each M -evaluation v

• |= ϕ if M |= ϕ for each L-structure M (we also say that ϕ is a tautology).

Exercise. Formalize in classical first-order logic: “There is a man such that if he drinks,
then everybody drinks,” and decide whether it is a tautology of classical first-order logic.

Let M be an L-structure and T an L-theory. Then M is called a model of T (or T -model) if
M |= ϕ for each ϕ ∈ T . As obviously each structure is a model of the empty theory, we shall
use the term model for both models and structures in the rest of the text.

Example. An algebra is a model of elementary group theory iff it is a group.

Caveat: 〈V,E〉, where V is the universe of sets and E = {〈x, y〉 ∈ V 2 | x ∈ y} is the
membership relation, is not a model of set theory (not even a structure for the language of
set theory), since V is not a set. However, it will be shown in this course that if set theory (say,
ZFC) is consistent, then it has a (set-sized, even countable) model within the universe of sets.
Notice the apparent Skolem paradox (there is a countable model of set theory, even though
set theory proves the existence of uncountable sets), which is dissolved by a careful distinction
between the object theory and its metatheoretical models (as will be further elucidated later
in the course).

We shall write T |= ϕ if M |= ϕ for each model M of T , and say that T entails ϕ (or
synonymously, that ϕ is a consequence of T ). The relation |= between theories and formulae
is called the (semantic) consequence (or entailment) relation of classical first-order logic.

Local and global consequence relation: There are in fact two competing definitions of
the consequence relation for predicate logic that can be found in the literature.

The definition used in this course, also called the global consequence relation, can be expanded
as follows:

T |= ϕ ≡df (∀M)
(

(∀v)(M |= T [v])⇒ (∀v)(M |= ϕ[v])
)
,

where M |= T [v] abbreviates “M |= ϕ[v] for all ϕ ∈ T”. The alternative definition, of the
local consequence relation, reads as follows:

T |=loc ϕ ≡df (∀M)(∀v)
(

(M |= T [v])⇒ (M |= ϕ[v])
)
.

Observe that the relations |= and |=loc differ, e.g., in the soundness of the generalization rule:
Px |= (∀x)Px, but Px 6|=loc (∀x)Px. Nevertheless, the two consequence relations coincide
if T is a set of closed formulae. In particular, the tautologies of predicate logic (i.e., the
consequences of T = ∅) are the same under both definitions. The difference can therefore be
neutralized by requiring theories to comprise closed formulae only (which is mostly harmless,
as M |= ϕ iff M |= (∀x)ϕ, so formulae have the same models as their universal closures).

Semantic completeness: We say that a theory T is semantically complete w.r.t. a class
K of T -models if it holds for all formulae ϕ that T ` ϕ iff for each M ∈ K, M |= ϕ.

We aim at Gödel’s Completeness Theorem, which says that each theory in classical first-order
logic is semantically complete w.r.t. the class of all of its models: for example, that group
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theory proves exactly those identities that hold in every group. (Gödel’s Incompleteness The-
orem, on the other hand, asserts the semantic incompleteness of certain theories of arithmetic
w.r.t. the single standard model N of arithmetic.)

The Deduction Theorem

Theorem. For every closed formula ϕ in the language of the theory T :

T, ϕ ` ψ iff T ` ϕ→ ψ.

By the Deduction Theorem, the (metatheoretical) derivability relation between closed formu-
lae is internalized by implication in the object language (of the formulae of classical first-order
logic). The right-to-left direction is sometimes called the Detachment Theorem, and the equiv-
alence the Deduction–Detachment Theorem; the name Deduction Theorem is then reserved
for the left-to-right direction.

Proof. Right to left: Appending the formulae ϕ, ψ to the end of the proof of ϕ → ψ in T
yields the proof of ψ in T, ϕ.

Left to right: Let χ1, . . . , χn be a proof of ψ in T, ϕ. By induction on i ≤ n we prove that
T ` ϕ→ χi, taking the following cases:

1. If χi is an axiom of predicate logic or an axiom of T , then the following sequence of
formulae is the proof of ϕ→ χi in T :

χi → (ϕ→ χi) instance of the axiom of propositional logic

χi axiom of predicate logic or T

ϕ→ χi by modus ponens

2. If χi is the formula ϕ, then T ` ϕ → χi is an instance of the theorem ϕ → ϕ of
propositional logic.

3. If χi is derived from χj and χk by modus ponens, then χk is the formula χj → χi.
Furthermore, by the induction hypothesis there are proofs α1, . . . , αnj , ϕ → χj and
β1, . . . , βnk

, ϕ → (χj → χi) in T . Concatenating the latter two proofs and appending
the following three formulae:

(ϕ→ (χj → χi))→ ((ϕ→ χj)→ (ϕ→ χi)) instance of a propositional axiom

(ϕ→ χj)→ (ϕ→ χi) by modus ponens

ϕ→ χi by modus ponens

thus yields the proof of ϕ→ χi in T .

4. If χi is derived from χj by generalization, then χi is (∀x)χj for some variable x. Fur-
thermore, by induction hypothesis there is a proof α1, . . . , αnj , ϕ→ χj in T . Appending
to the latter proof the following three formulae:

(∀x)(ϕ→ χj) by generalization

(∀x)(ϕ→ χj)→ (ϕ→ (∀x)χj) the distribution axiom of predicate logic

ϕ→ (∀x)χj by modus ponens

then yields the proof of ϕ→ χi in T . (NB: the closedness of ϕ was needed in this step
for the distribution axiom.)
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Note that without the precondition of the closedness of ϕ, the Deduction Theorem would fail.
For example, Px ` Py (verify!), but Px → Py is not a theorem of classical first-order logic
(as will be easily seen after we prove the Soundness Theorem).

The Theorem of Constants

The restriction of the Deduction Theorem to closed formulae can sometimes be circumvented
by replacing free variables by new constants. The conservativeness of such replacements is
ensured by the Theorem of Constants.

Recall that the formula ϕ(t/x) results from replacing all free occurrences of the variable x
in ϕ by t. The definition can be straightforwardly extended to the substitution of a term t
for a constant c in ϕ, which will analogously be denoted by ϕ(t/c).

Theorem. Let T ′ extend T by adding the constant c to the language (not adding any new
axioms or rules, though). Then for each formula ϕ in the language of T :

T ` ϕ iff T ′ ` ϕ(c/x).

(Thus in particular, T ′ is a conservative extension of T .)

Proof. Left to right: Appending the following three formulae to any proof of ϕ in T yields a
proof of ϕ(c/x) in T ′:

(∀x)ϕ by generalization

(∀x)ϕ→ ϕ(c/x) by the axiom of specification

ϕ(c/x) by modus ponens

Right to left: Let ψ1, . . . , ψn be a proof of ϕ(c/x) in T ′. Let y be a new variable, not occurring
in the latter proof. Thus y is substitutable for c in each ψi. By induction on i ≤ n we show
that ψ1(y/c), . . . , ψi(y/c) is a proof in T , taking the following cases:

1. If ψi is a predicate axiom, then ψi(y/c) is also a predicate axiom (of the same form);
we only need to check the preconditions of the specification and distribution axioms:

(a) If ψi is a specification axiom, then it is a formula (∀z)α→ α(t/z) for some term t
free for z in α. Then t(y/c) is free for z in α(y/c), since α(y/c) contains only the
quantifiers occurring in α and y does not occur in α.

(b) If ψi is a distribution axiom, then it is a formula (∀z)(α → β) → (α → (∀z)β),
where z is not free in α. Then obviously z is not free in α(y/c), either.

2. If ψi is an axiom of T , then c does not occur in ψi, so ψi(y/c) is ψi.

3. If ψi is derived by modus ponens from ψj and ψk, then ψk is ψj → ψi and ψk(y/c) is
ψj(y/c) → ψi(y/c), so ψi(y/c) is derived from ψj(y/c) and ψk(y/c) by modus ponens,
too.

4. If ψi is derived from ψj by generalization, then ψi is (∀z)ψj for some variable z, and
(∀z)ψj(y/c) is derived from ψj(y/c) by generalization, too.
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We have shown that (ϕ(c/x))(y/c), i.e., ϕ(y/x) is provable in T . Since x is free for y in ϕ(y/x)
(as y only replaced free occurrences of x in ϕ), and since (ϕ(y/x))(x/y) is ϕ, appending the
following three formulae:

(∀y)ϕ(y/x) by generalization

(∀x)ϕ(y/x)→ (ϕ(y/x))(x/y) by specification

(ϕ(y/x))(x/y) by modus ponens

to the proof of ϕ(y/x) in T yields a proof of ϕ in T .
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