IT4I

Formal Calculi of Fuzzy Relations

Libor Běhounek

Institute for Research and Applications of Fuzzy Modeling
University of Ostrava

libor.behounek@osu.cz

SFLA, Čeladná, 16 August 2016

Outline

Fuzzy Relations: Why Formalize?

Predicate Fuzzy Logic as a Calculus for Fuzzy Relations

3 Tarski-style Fuzzy Relational Calculi

4 References

Outline

Fuzzy Relations: Why Formalize?

2 Predicate Fuzzy Logic as a Calculus for Fuzzy Relations

3 Tarski-style Fuzzy Relational Calculi

4 References

Fuzzy sets

Recall:

Fuzzy set = a set with weighted membership, $A: V \to \mathbf{L}$

Conventions:

- L usually a (residuated) lattice, often $[0,1] \subseteq \mathbb{R}$
- ullet Crisp subsets of V identified with fuzzy sets $C\colon V o \{0,1\} \subseteq \mathbf{L}$

Fuzzy sets

Notation:

- Membership degrees: A(x) or just Ax
- Write $A = \{x \mid\mid f(x)\}$ if Ax = f(x) for all $x \in V$

Examples:

$$A\cap B=\{x\parallel Ax\wedge Bx\} \qquad \qquad (A\cap B)x\equiv \min(Ax,Bx)$$

$$V=\{x\parallel 1\} \qquad \qquad \text{analogously }\emptyset=\{x\parallel 0\}$$

$$\ker A=\{x\parallel Ax=1\} \qquad \qquad \text{analogously supp }A$$

Fuzzy relations

Recall:

- (Binary) fuzzy relation = a fuzzy set of pairs, $R: V^2 \to \mathbf{L}$
- ullet n-Ary fuzzy relation = a fuzzy set of n-tuples, $S\colon V^n o {f L}$
- Fuzzy relation from X to Y (for $X,Y\subseteq V$) ... $T\colon X\times Y\to \mathbf{L}$ (treat as $V^2\to \mathbf{L}$: add 0's elsewhere, ignore $V^2-(X\times Y)$)

Fuzzy relations

Notation:

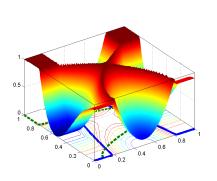
- Membership degrees: Rxy, Sxyz,
- Write $R = \{xy \mid\mid f(x,y)\}$ if Rxy = f(x,y) for all $x,y \in V$

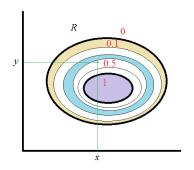
Examples:

$$\operatorname{supp} R = \{xy \parallel Rxy > 0\}$$

$$\operatorname{Id} = \{xy \parallel x = y\}$$

• Graphs (3D or contours = a system of horizontal cuts)

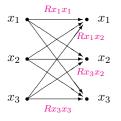




• Matrices (esp. for finite fuzzy relations):

$$R = \begin{pmatrix} Rx_1x_1 & Rx_1x_2 & \cdots & Rx_1x_n \\ Rx_2x_1 & Rx_2x_2 & \cdots & Rx_2x_n \\ \vdots & \vdots & \ddots & \vdots \\ Rx_nx_1 & Rx_nx_2 & \cdots & Rx_nx_n \end{pmatrix}, \quad \text{e.g.,} \quad R = \begin{pmatrix} 0.7 & 0.1 & 0.2 \\ 0.2 & 0.9 & 0.3 \\ 0.1 & 0 & 1 \end{pmatrix}$$

• Co-graphs (weighted co-graphs of classical relations):



For a binary fuzzy relation R define:

$$Ry = \{x \parallel Rxy\}$$
$$xR = \{y \parallel Rxy\}$$

foreset (of
$$x \in V$$
) afterset (of $x \in V$)



Formalization of the theory of fuzzy relations

Formalization = specification of:

- A formal language (formulae for statements about fuzzy relations)
- An interpretation of the formal language (translation of formulae into statements about fuzzy relations)
- Derivation rules (to derive true statements about fuzzy relations)

Formalization of the theory of fuzzy relations

Why formalize?

- We restrict the language in order to enable formal (symbolic) manipulation with statements about fuzzy relations
- Derivation of schematic theorems
- Automatic (machine) deduction
- Metamathematical results (on expressivity, complexity, ...)

Predicate fuzzy logic: language

Example of formalization: predicate fuzzy logic

We restrict the mathematical language of fuzzy set theory to:

- Algebraic operations in L: \land , \lor , *, \Rightarrow_* , \triangle , ... (logical connectives)
- Infima and suprema \bigwedge , \bigvee (written as the quantifiers \forall , \exists)

Optionally:

- Crisp equality = of elements and fuzzy sets $(=, \le \text{ on } \mathbf{L} \text{ definable})$
- (Eliminable) set-terms $\{\vec{x} \parallel \varphi\}$
- Variables for fuzzy sets of fuzzy relations (A, B, ...) etc.
 (then add the axioms of equality, comprehension, and extensionality)

Predicate fuzzy logic: interpretation

The meaning of symbols in predicate fuzzy logic:

Atomic formulae:

- Unary predicate symbols P: fuzzy sets
- Unary atomic formulae Px: membership degree of x in P
- n-Ary predicate symbols R: fuzzy relations
- n-Ary atomic formulae Rxy, Sxyz, ...:

membership degree of the n-tuple in the fuzzy relation

Predicate fuzzy logic: interpretation

Connectives:

- Min-conjunction ∧: minimum (in the lattice L of degrees)
- Max-disjunction ∨: maximum
- Strong conjunction &: a (left-)continuous t-norm * $\text{T-norm} = * \colon [0,1]^2 \to [0,1] \text{ commutative associative monotone, unit } 1$ E.g.: product, min, the Łukasiewicz t-norm $\max(\alpha+\beta-1,0)$ More generally, the monoidal operation * of the residuated lattice L
- Implication \rightarrow : the residuum \Rightarrow_* of * $(\alpha \Rightarrow_* \beta) = \sup_{\gamma * \alpha \leq \beta} \gamma$ $(\alpha \Rightarrow_* \beta) = 1$ iff $\alpha \leq \beta$
- Negation \neg : the function $\alpha \Rightarrow_* 0$ (e.g., 1α for * Łukasiewicz)
- Equivalence \leftrightarrow : the biresiduum $\min(\alpha \Rightarrow_* \beta, \beta \Rightarrow_* \alpha)$
- Delta \triangle : indicator of $\alpha = 1$ (in linear L)

Predicate fuzzy logic: interpretation

Quantifiers:

- Universal quantifier ∀: infimum (in the complete lattice L)
- Existential quantifier ∃: supremum

Example:

$$(\forall x)(\exists y)(Px \land Qy \to Rxy) \\ \bigwedge_x \bigvee_y (\min(Px,Qy) \Rightarrow_* Rxy)$$

Predicate fuzzy logic: axiomatic system

```
Aim: generate only (and all?) formulae \varphi s.t. always \varphi=1 = soundness (and, sometimes, completeness)
```

- (a) For a given (left-)continuous t-norm *:
 - For the Łukasiewicz *: Łukasiewicz logic
 - For the minimum: Gödel logic
 - For the product: product logic, etc.
- (b) For a given class of continuous t-norms:
 - All continuous t-norms: Hájek's logic BL
 - All left-continuous t-norms: MTL, etc.
- (c) Variations: adding connectives, relaxing conditions, ...

Predicate fuzzy logic: axiomatic system

Example: Łukasiewicz fuzzy logic

Axioms:

$$\varphi \to (\psi \to \varphi) \qquad \qquad \alpha \le (\beta \Rightarrow_* \alpha)$$

$$(\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi)) \qquad \alpha \Rightarrow_* \beta \le (\beta \Rightarrow_* \gamma) \Rightarrow_* (\alpha \Rightarrow_* \gamma)$$

$$((\varphi \to \psi) \to \psi) \to ((\psi \to \varphi) \to \varphi) \qquad \max(\alpha, \beta) \le \max(\beta, \alpha)$$

$$(\neg \varphi \to \neg \psi) \to (\psi \to \varphi) \qquad (\alpha \Rightarrow_* 0) \Rightarrow_* (\beta \Rightarrow_* 0) \le (\beta \Rightarrow_* \alpha)$$

$$(\forall x) Px \to Py \qquad \qquad \bigwedge_x Px \le Py$$

$$(\forall x) (\varphi \to Px) \to (\varphi \to (\forall x) Px) \qquad \bigwedge_x (\alpha \Rightarrow_* Px) < \alpha \Rightarrow_* \bigwedge_x Px$$

Rules: Uniform substitution and

$$\varphi, \varphi \to \psi \vdash \psi$$
 if $\alpha = 1$ and $\alpha \le \beta$ then $\beta = 1$ $Px \vdash (\forall x)Px$ if $Px = 1$ for all x , then $\bigwedge_x Px = 1$

Outline

1 Fuzzy Relations: Why Formalize?

2 Predicate Fuzzy Logic as a Calculus for Fuzzy Relations

- 3 Tarski-style Fuzzy Relational Calculi
- 4 References

Fuzzy relational operations (formalized)

Recall: In formal fuzzy logic, predicates are interpreted by fuzzy relations (and unary predicates by fuzzy sets)

 \Rightarrow Predicate fuzzy logic is in fact a formal calculus for fuzzy relations!

Recall: Restricting the language enables formal manipulation, automatic deduction, schematic theorems, metamathematical results

Large expressive power of predicate fuzzy logic \Rightarrow can be used as the language of the theory of fuzzy relations

Fuzzy relational operations (formalized)

Notice: Fuzzy relations are fuzzy sets

⇒ Fuzzy set-theoretical operations apply to fuzzy relations, too

$$\begin{split} R \cap S =_{\mathsf{df}} \{xy \parallel (Rxy \wedge Sxy)\} & \text{min-intersection} \\ (R \cap S)xy = Rxy \wedge Sxy & \text{analogously: } \cap, \cup \\ -R =_{\mathsf{df}} \{xy \parallel \neg Rxy)\} & \text{complement} \\ (-R)xy = (Rxy \Rightarrow_* 0) & \text{also written } \overline{R}, R^c, \backslash R, \dots \\ \ker R =_{\mathsf{df}} \{xy \parallel \triangle Rxy)\} & \text{kernel} \\ xy \in \ker R \text{ iff } Rxy = 1 & \text{analogously: supp } (\neg \triangle \neg) \\ \bigcap \mathcal{A} =_{\mathsf{df}} \{xy \parallel (\forall R)(\mathcal{A}R \to Rxy)\} & \text{fuzzy set-intersection} \\ (\bigcap \mathcal{A})xy = \bigwedge_R (\mathcal{A}(R) \Rightarrow_* Rxy) & \text{analogously: } \bigcup \end{split}$$

Properties of fuzzy relations

Fuzzy set-theoretical properties of fuzzy relations:

$$\begin{array}{lll} \operatorname{Hgt} R \equiv_{\operatorname{df}} (\exists xy) Rxy & \operatorname{height} \\ & \operatorname{Hgt} R = \bigvee_{x,y} Rxy & \operatorname{analogously: Plt} (\forall / \wedge) \\ R \subseteq S \equiv_{\operatorname{df}} (\forall xy) (Rxy \to Sxy) & \operatorname{graded inclusion} \\ & (R \subseteq S) = \bigwedge_{x,y} (Rxy \Rightarrow_* Sxy) & \operatorname{graded compatibility} \\ & R \between S \equiv_{\operatorname{df}} (\exists xy) (Rxy \& Sxy) & \operatorname{graded compatibility} \\ & (R \between S) = \bigvee_{x,y} (Rxy * Sxy) & = \operatorname{Hgt}(R \cap S) \end{array}$$

Notice: \subseteq is graded

$$(R \subseteq S) = 1$$
 iff $Rxy \le Sxy$ for all xy ... $\triangle (R \subseteq S)$

Properties of fuzzy relations

Example (for * Łukasiewicz):

$$\begin{pmatrix} 0.7 & 0.1 & 0.3 \\ 0.2 & 0.8 & 0.3 \\ 0.1 & 0.2 & 0.3 \end{pmatrix} \subseteq \begin{pmatrix} 0.7 & 0.1 & 0.2 \\ 0.2 & 0.9 & 0.3 \\ 0.1 & 0 & 1 \end{pmatrix} = 0.8$$

Properties of fuzzy relations

Fuzzy set-theoretical laws apply to fuzzy relations, too. Examples:

$$\begin{split} (R\cap S) \cup T &= (R\cup T) \cap (S\cup T) \\ R\cap S &\subseteq R\cup S \\ \mathsf{Hgt}(R\cap S) &< \mathsf{Hgt}\,R \land \mathsf{Hgt}\,S, \quad \mathsf{etc.} \end{split}$$

Derivation in fuzzy logic (MTL, using Lemma: $(\exists x)(\varphi \land \psi) \rightarrow (\exists x)\varphi \land (\exists x)\psi$):

$$\mathsf{Hgt}(R \cap S) \longleftrightarrow (\exists xy)((R \cap S)xy) \longleftrightarrow (\exists xy)(Rxy \land Sxy) \longrightarrow (\exists xy)Rxy \land (\exists xy)Sxy \longleftrightarrow \mathsf{Hgt}\,R \land \mathsf{Hgt}\,S$$

$$\begin{split} \operatorname{Hgt}(R \cap S) &= \bigvee_{xy} ((R \cap S)xy) = \bigvee xy(Rxy \wedge Sxy) \leq \\ &\qquad \qquad \bigvee_{xy} Rxy \wedge \bigvee xySxy = \operatorname{Hgt} R \wedge \operatorname{Hgt} S \end{split}$$

Basic fuzzy relational operations

Basic fuzzy relational operations

$$\begin{aligned} \operatorname{dom} R &=_{\operatorname{df}} \{x \parallel (\exists y) Rxy\} & \operatorname{domain} \\ (\operatorname{dom} R)x &= \bigvee_{y} Rxy & \operatorname{analogously: rng} \end{aligned}$$

$$R \xrightarrow{\hspace{0.5cm}} A &=_{\operatorname{df}} \{y \parallel (\exists x) (Ax \& Rxy)\} & \operatorname{image} \\ (R \xrightarrow{\hspace{0.5cm}} A)y &= \bigvee_{x} (Ax * Rxy) & \operatorname{analogously: preimage} \xleftarrow{\hspace{0.5cm}} \\ A \times B &=_{\operatorname{df}} \{xy \parallel Ax \& By\} & \operatorname{Cartesian product} \\ (A \times B)xy &= Ax * By & \operatorname{analogously: } n\text{-ary, powers} \end{aligned}$$

Example:

$$dom \begin{pmatrix} 0.7 & 0.1 & 0.2 \\ 0.2 & 0.9 & 0.3 \\ 0.1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0.7 \\ 0.9 \\ 1 \end{pmatrix}$$

Defined properties of fuzzy relations

$$\begin{array}{ll} \operatorname{Refl} R \equiv_{\operatorname{df}} (\forall x) Rxx & \operatorname{reflexivity} \\ \operatorname{Refl} R = \bigwedge_x Rxx & \\ \operatorname{Sym} R \equiv_{\operatorname{df}} (\forall xy) (Rxy \to Ryx) & \operatorname{symmetry} \\ \operatorname{Sym} R = \bigwedge_{x,y} (Rxy \Rightarrow_* Ryx) & \\ \operatorname{Trans} R \equiv_{\operatorname{df}} (\forall xyz) (Rxy \ \& \ Ryz \to Rxz) & \operatorname{transitivity} \\ \operatorname{Trans} R = \bigwedge_{x,y,z} (Rxy * Ryz \Rightarrow_* Rxz) & \\ \end{array}$$

Notice graded properties again:

Trans R = 1 iff $Rxy * Ryz \le Rxz$ for all x, y, z (crisp '*-transitivity')

Defined properties of fuzzy relations

Compound properties:

```
\triangle \operatorname{Sim} R \equiv_{\operatorname{df}} \triangle(\operatorname{Refl} R \wedge \operatorname{Sym} R \wedge \operatorname{Trans} R) ... similarity relation \operatorname{Sim} R = 1 iff \operatorname{Refl} R = \operatorname{Sym} R = \operatorname{Trans} R = 1 (a.k.a. indistinguishability, fuzzy equivalence relation)
```

Similarly: fuzzy preorders, fuzzy orders, ...

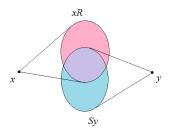
Modifications (Höhle, Bodenhofer): e.g.,

 $\operatorname{Refl}_E R \equiv_{\mathsf{df}} (\forall xy)(Exy \to Rxy)$ for an indistinguishability E

Fuzzy relational composition

$$R \circ S =_{\mathsf{df}} \{ xy \parallel (\exists z) (Rxz \& Szy) \}$$
$$(R \circ S) xy = \bigvee_{z} (Rxz * Szy)$$

Fore/afterset characterization: $(R \circ S)xy \equiv xR \ \lozenge \ Sy \equiv xR \cap Sy \neq \emptyset$ (crisp)

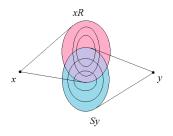


sup-T composition

Fuzzy relational composition

$$R\circ S =_{\sf df} \{xy \mid \! \mid (\exists z)(Rxz \& Szy)\}$$
 sup-T composition
$$(R\circ S)xy = \bigvee_z (Rxz * Szy)$$

Fore/afterset characterization: $(R \circ S)xy = xR \between Sy = \mathsf{Hgt}(xR \cap Sy)$ (fuzzy)



Fuzzy relational composition

$$R \circ S =_{\mathsf{df}} \{ xy \parallel (\exists z) (Rxz \& Szy) \}$$
$$(R \circ S) xy = \bigvee_{z} (Rxz * Szy)$$

sup-T composition

Co-graph visualization:

$$(R \circ S) xy$$

$$Rxz_1 Sz_1y$$

$$Rxz_2 Sz_2y$$

$$Rxz_3 Sz_3y$$

$$Sz_4y$$

Fuzzy relational composition

$$R\circ S =_{\mathsf{df}} \{xy \parallel (\exists z)(Rxz \& Szy)\}$$
 sup-T composition
$$(R\circ S)xy = \bigvee_z (Rxz * Szy)$$

Matrix 'multiplication':

$$\begin{pmatrix}
Sx_1x_1 & \cdots & Sx_1x_n \\
\vdots & \ddots & \vdots \\
Sx_nx_1 & \cdots & Sx_nx_n
\end{pmatrix}$$

$$\begin{pmatrix}
Rx_1x_1 & \cdots & Rx_1x_n \\
\vdots & \ddots & \vdots \\
Rx_nx_1 & \cdots & Rx_nx_n
\end{pmatrix}$$

$$\begin{pmatrix}
(R \circ S)x_1x_1 & \cdots & (R \circ S)x_1x_n \\
\vdots & \ddots & \vdots \\
(R \circ S)x_nx_1 & \cdots & (R \circ S)x_nx_n
\end{pmatrix}$$

Properties of sup-T composition

Theorem

$$\bullet \ (R \circ S) \circ T = R \circ (S \circ T)$$

 $\bullet \ R \circ \mathsf{Id} = \mathsf{Id} \circ R = R$

•
$$(R \circ S)^{-1} = S^{-1} \circ R^{-1}$$

•
$$R_1 \subseteq R_2 \to R_1 \circ S \subseteq R_2 \circ S$$

•
$$(\bigcup_{R \in A} R) \circ S = \bigcup_{R \in A} (R \circ S)$$

•
$$(\bigcap_{R \in \mathcal{A}} R) \circ S \subseteq \bigcap_{R \in \mathcal{A}} (R \circ S)$$

(associativity)

(identity)

(transposition) (monotony)

(union distributivity)

(intersection subdistributivity)

Derivation in predicate fuzzy logic

$$(R \circ S)^{-1} = S^{-1} \circ R^{-1} \tag{transposition}$$

Proof:

$$\begin{split} (R \circ S)^{-1}xy &\longleftrightarrow (R \circ S)yx &\longleftrightarrow (\exists z)(Ryz \& Szx) &\longleftrightarrow \\ &(\exists z)(S^{-1}xz \& R^{-1}zy) &\longleftrightarrow (S^{-1} \circ R^{-1})xy \end{split}$$

$$(R \circ S)^{-1}xy = (R \circ S)yx = \bigvee_{z}(Ryz * Szx) = \\ &\bigvee_{z}(S^{-1}xz * R^{-1}zy) = (S^{-1} \circ R^{-1})xy \end{split}$$

Derivation in predicate fuzzy logic

$$\left(\bigcap_{R\in\mathcal{A}}R\right)\circ S\subseteq\bigcap_{R\in\mathcal{A}}(R\circ S)$$

(intersection subdistributivity)

Proof:

$$\begin{array}{lll} Q_Lxy \equiv_{\mathsf{df}} \big(\big(\bigcap_{R \in \mathcal{A}} R \big) \circ S \big) xy \longleftrightarrow & Q_Lxy = \big(\big(\bigcap_{R \in \mathcal{A}} R \big) \circ S \big) xy = \\ (\exists z) ((\forall R)(\mathcal{A}(R) \to Rxy) \& Szy) \longleftrightarrow & \bigvee_z \big(\bigwedge_R (\mathcal{A}(R) \Rightarrow_* Rxy) * Szy \big) \leq \\ (\exists z) (\forall R)(\mathcal{A}(R) \to Rxy \& Szy) \longleftrightarrow & \bigvee_z \bigwedge_R (\mathcal{A}(R) \Rightarrow_* (Rxy * Szy)) \leq \\ (\forall R)(\exists z) (\mathcal{A}(R) \to Rxy \& Szy) \longleftrightarrow & \bigwedge_R \bigvee_z (\mathcal{A}(R) \Rightarrow_* (Rxy * Szy)) \leq \\ (\forall R)(\mathcal{A}(R) \to (\exists z) (Rxy \& Szy)) \longleftrightarrow & \bigwedge_R (\mathcal{A}(R) \Rightarrow_* (Rxy * Szy)) = \\ (\forall R)(\mathcal{A}(R) \to (R \circ S)xy) \longleftrightarrow & \bigwedge_R (\mathcal{A}(R) \Rightarrow_* (R \circ S)xy) = \\ (\bigcap_{R \in \mathcal{A}} (R \circ S)) xy \equiv_{\mathsf{df}} Q_Rxy & (\bigcap_{R \in \mathcal{A}} (R \circ S)) xy = Q_Rxy \\ & \text{Thus provably,} & Q_Lxy \to Q_Rxy \\ Q_Lxy \to Q_Rxy & (Q_Lxy \Rightarrow_* Q_Rxy) = 1\\ (\forall xy)(Q_Lxy \to Q_Rxy) & \bigwedge_{x,y} (Q_Lxy \Rightarrow_* Q_Rxy) = 1\\ Q_L \subset Q_R & (Q_L \subset Q_R) = 1 \end{array}$$

Inf-R compositions of fuzzy relations

Compositions of fuzzy relations (a.k.a. fuzzy relational products):

$$R \circ S =_{\mathsf{df}} \{ xy \parallel (\exists z) (Rxz \& Szy) \}$$
$$(R \circ S) xy = \bigvee_{z} (Rxz * Szy)$$

$$\begin{split} R \triangleleft S =_{\mathsf{df}} \{ xy \parallel (\forall z) (Rxz \to Szy) \} \\ (R \triangleleft S) xy = \bigwedge_z (Rxz \Rightarrow_* Szy) \end{split}$$

$$a.k.a.\ BK-(sub)$$
 product

$$R \triangleright S =_{\mathsf{df}} \{ xy \parallel (\forall z)(Szy \to Rxz) \}$$
$$(R \triangleright S)xy = \bigwedge_{z} (Szy \Rightarrow_{*} Rxz)$$

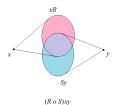
$$R \square S =_{\mathsf{df}} \{ xy \parallel (\forall z) (Rxz \leftrightarrow Szy) \}$$
$$(R \square S) xy = \bigwedge_{z} (Rxz \Leftrightarrow_{*} Szy)$$

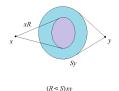
Inf-R compositions of fuzzy relations

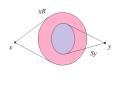
Characterization in terms of foresets and aftersets:

$$(R \circ S)xy = xR \between Sy$$

 $(R \triangleleft S)xy = xR \subseteq Sy$
 $(R \triangleright S)xy = Sy \subseteq xR$







 $(R \triangleright S)xy$

Inf-R compositions of fuzzy relations

Example (crisp/graded):

Rps = patient p shows symptom s

```
Ssd=s is a symptom of disease d (R\circ S)pd= some symptoms shown by patient p are symptoms of disease d (R \circ S)pd= all symptoms shown by patient p are symptoms of disease d (R \rhd S)pd= all symptoms of disease d are shown by patient p (R \square S)pd= patient p shows exactly the symptoms of disease d
```


Expressivity of fuzzy relational products

Many relational properties can be characterized by means of fuzzy relational products

Examples:

$$\begin{array}{lll} \operatorname{Trans} R \; \leftrightarrow \; R \subseteq R \circ R & \operatorname{Trans} R \; \leftrightarrow \; R \subseteq R \rhd R^{-1} \\ \operatorname{Refl} R \; \to \; R \circ R \subseteq R & \operatorname{Refl} R \; \leftrightarrow \; R \rhd R^{-1} \subseteq R \end{array}$$

Properties of BK-products

Theorem

- $R \triangleright S = (S^{-1} \triangleleft R^{-1})^{-1}$ $R \square S = (R \triangleleft S) \cap (R \triangleright S)$
- $(R \triangleleft S)^{-1} = S^{-1} \triangleright R^{-1}$ $(R \triangleright S)^{-1} = S^{-1} \triangleleft R^{-1}$
- $R \triangleleft (S \triangleleft T) = (R \circ S) \triangleleft T$ $(R \triangleright S) \triangleright T = R \triangleright (S \circ T)$
- $(R \triangleleft S) \triangleright T = R \triangleleft (S \triangleright T)$

(interdefinability)

(transposition)

(residuation)

(quasi-associativity)

Properties of BK-products

Theorem

• $R_1 \subseteq R_2 \to R_2 \triangleleft S \subseteq R_1 \triangleleft S$ $S_1 \subseteq S_2 \to R \triangleleft S_1 \subseteq R \triangleleft S_2$

(union subdistributivity)

(monotony)

- $\bigcap_{R \in \mathcal{A}} (R \triangleleft S) = \left(\bigcup_{R \in \mathcal{A}} R\right) \triangleleft S$ $\bigcap_{S \in \mathcal{A}} (R \triangleleft S) = R \triangleleft \bigcap_{S \in \mathcal{A}} S$
- $\bigcup_{R \in \mathcal{A}} (R \triangleleft S) \subseteq (\bigcap_{R \in \mathcal{A}} R) \triangleleft S$ $\bigcup_{S \in \mathcal{A}} (R \triangleleft S) \subseteq R \triangleleft \bigcup_{S \in \mathcal{A}} S$

(intersection distributivity)

De Baets-Kerre modification of BK-products

De Baets-Kerre modification of BK-products

$$R \triangleleft' S =_{\mathsf{df}} \{ xy \parallel (\forall z) (Rxz \to Szy) \land (\exists z) Rxz \}$$
$$(R \triangleleft' S) xy = \bigwedge_{z} (Rxz \Rightarrow_{*} Szy) \land \bigvee_{z} Rxz$$

(analogously for \triangleright', \Box')

Motivation: to avoid the 'useless pairs'

(good for some applications, many BK-properties preserved)

Modifications of BK-products

Example:

```
Rps = patient p shows symptom s
Ssd = s is a symptom of disease d
```

 $(R \triangleleft S)pd = \text{all symptoms shown by patient } p \text{ are symptoms of disease } d$ (trivially true if p shows no symptoms)

 $(R \triangleleft' S)pd = \text{patient } p \text{ shows some symptoms, all of which are symptoms of } d \\ \text{(much more relevant for diagnosis)}$

Other side-condition modifications of fuzzy relational products possible e.g., to exclude *incompatible* pairs (Štěpnička, Holčapek, Cao)

Outline

1 Fuzzy Relations: Why Formalize?

2 Predicate Fuzzy Logic as a Calculus for Fuzzy Relations

3 Tarski-style Fuzzy Relational Calculi

4 References

Tarski's relational calculus

Tarski's relational calculus for crisp relations = $\text{an equational calculus using } \cup, -, \circ, ^{-1}, \operatorname{Id}$

Strong expressive power—can express:

- Classical first-order logic with max 3 variables
- Peano arithmetic ⇒ incomplete (Gödel's theorems apply)
- ZFC set theory ⇒ math can be done w/o quantifiers

Tarski's relational calculus

Axioms of crisp relational calculus

$$R \cup S = S \cup R$$

$$R \cup (S \cup T) = (R \cup S) \cup T$$

$$-(-R \cup S) \cup -(-R \cup -S)) = R$$
 = axioms of BA
$$R \circ (S \circ T) = (R \circ S) \circ T$$

$$R \circ \operatorname{Id} = R$$

$$(R^{-1})^{-1} = R$$

$$(R \circ S)^{-1} = S^{-1} \circ R^{-1}$$

$$(R \cup S)^{-1} = R^{-1} \cup S^{-1}$$

$$(R \cup S) \circ T = (R \circ T) \cup (S \circ T)$$

$$(R^{-1} \circ -(R \circ S)) \cup -S = -S$$

Rules: uniform replacement, substitution of equals for equals

Fuzzy relational calculus

Fuzzy relational calculus = Tarski's calculus adapted for fuzzy relations

A simple way: replace the axioms of BA by the axioms of fuzzy logic

Example for Łukasiewicz logic: add \cup , \emptyset^2 , replace BA-axioms with MV-axioms:

$$R \cup S = S \cup R$$

$$R \cup (S \cup T) = (R \cup S) \cup T$$

$$R \cup \emptyset^2 = R$$

$$R \cup -\emptyset^2 = -\emptyset^2$$

$$-(-R) = R$$

$$R \cup S = -(-R \cup S) \cup S$$

$$R \cup S = S \cup R$$

Theorem: The 'non-logical' relational axioms carry over to fuzzy relations based on any (left-)continuous t-norm (Kohout 2002)

Only sketched by Kohout, many open problems (expressive power, ...)

Composition-based calculus for fuzzy sets and relations

Extension to fuzzy set-theoretical notions (Běhounek–Daňková 2009) by including BK-products and identification of fuzzy sets and truth degrees with certain fuzzy relations

Compare:

$$\begin{array}{ll} R\circ S =_{\mathsf{df}} \{xy \parallel (\exists z)(Rxz \& Szy)\} & (R\circ S)xy = \bigvee_z (Rxz*Szy) \\ R \overset{\leftarrow}{-} A =_{\mathsf{df}} \{x \parallel (\exists z)(Rxz \& \textbf{\textit{A}}z)\} & (R \overset{\rightarrow}{-} A)x = \bigvee_z (Rxz*\textbf{\textit{A}}z) \end{array}$$

Idea: Add a dummy constant \mathbf{o} and identify Ax with $S_A x \mathbf{o}$

This reduces \leftarrow to \circ :

$$R \circ S_A =_{\mathsf{df}} \{ x\mathbf{o} \parallel (\exists z) (Rxz \& S_A z\mathbf{o}) \} \quad (R \circ S_A) x\mathbf{o} = \bigvee_z (Rxz * S_A z\mathbf{o})$$

Composition-based calculus for fuzzy sets and relations

Consequently, properties of \circ transfer to \leftarrow , e.g.:

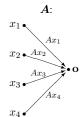
$$(R_1 \subseteq R_2) \to (R_1 \circ S \subseteq R_2 \circ S) \qquad (\bigcap_{R \in \mathcal{A}} R) \circ S \subseteq \bigcap_{R \in \mathcal{A}} (R \circ S)$$
$$(R_1 \subseteq R_2) \to (R_1 \stackrel{\leftarrow}{A} \subseteq R_2 \stackrel{\leftarrow}{A}) \qquad (\bigcap_{R \in \mathcal{A}} R) \stackrel{\leftarrow}{A} \subseteq \bigcap_{R \in \mathcal{A}} (R \stackrel{\leftarrow}{A})$$

Similarly for many other fuzzy set- and relation-theoretical notions

Fuzzy relational representation of fuzzy sets

In general, identify a fuzzy set A with the fuzzy relation $\mathbf{A} = A \times \{\mathbf{o}\}$: (i.e., a $1 \times N$ fuzzy relation if finite)

$$\mathbf{A} = \begin{pmatrix} Ax_1 \\ \vdots \\ Ax_n \end{pmatrix}$$



Fuzzy relational representation of fuzzy sets

Then
$$R \leftarrow A = R \circ \mathbf{A} = \begin{pmatrix} Rx_1x_1 & \cdots & Rx_1x_n \\ \vdots & \ddots & \vdots \\ Rx_nx_1 & \cdots & Rx_nx_n \end{pmatrix} \circ \begin{pmatrix} Ax_1 \\ \vdots \\ Ax_n \end{pmatrix} = \begin{pmatrix} (R \leftarrow A)x_1 \\ \vdots \\ (R \leftarrow A)x_n \end{pmatrix}$$

Similarly: $R \to A = R^{-1} \circ A$, dom $R = R \circ V$, $A \times B = A \circ B^{-1}$, etc.

Fuzzy relational representation of truth degrees

Furthermore, identify a truth degree α with the fuzzy set $\alpha = \{\mathbf{o} \mid\mid \alpha\}$ (i.e., a 1×1 fuzzy relation)

$$\alpha = (\alpha)$$
 α :

Fuzzy relational representation of truth degrees

Then, e.g.,
$$A \subseteq B = (\forall x)(Ax \to Bx) = (\forall x)(Ax\mathbf{o} \to Bx\mathbf{o}) = (\forall x)(A^{-1}\mathbf{o}x \to Bx\mathbf{o}) = A^{-1} \triangleleft B$$

$$\begin{array}{c|cccc}
 & & & & & Bx_1 \\
 & & & \vdots \\
 & & Bx_n \\
\hline
 & & & Ax_n \\
\hline
 & & & & Ax_n \\
\end{array}$$

Fuzzy relational representation of truth degrees

Similarly:
$$\operatorname{Hgt} A = \mathbf{V}^{-1} \circ \mathbf{A}$$
, $\operatorname{Plt} A = \mathbf{V}^{-1} \triangleleft \mathbf{A}$, $(A \between B) = \mathbf{A}^{-1} \circ \mathbf{B}$, etc.

Moreover, propositional connectives reduce to relational products, too:

$$(\alpha \& \beta) = \alpha \circ \beta$$
$$(\alpha \to \beta) = \alpha \triangleleft \beta$$
$$(\alpha \leftrightarrow \beta) = \alpha \square \beta$$

$$\begin{array}{c|c} \circ & (\alpha) \\ \hline (\beta) & (\alpha \& \beta) \end{array}$$

Transfer of properties of compositions

Properties of compositions apply to the notions reduced to compositions:

Examples:

Equational derivations of fuzzy set-theoretic laws

Example:

$$R \to (\operatorname{rng} S) = \operatorname{rng}(S \circ R)$$

Recall:

$$R \xrightarrow{} A = R^{-1} \circ \mathbf{A}$$
$$\operatorname{rng} R = R \xrightarrow{} V = R^{-1} \circ \mathbf{V}$$

Derivation:

$$\begin{split} R & \stackrel{\rightarrow}{\rightarrow} (\operatorname{rng} S) = R^{-1} \circ (S^{-1} \circ \boldsymbol{V}) = (R^{-1} \circ S^{-1}) \circ \boldsymbol{V} = \\ & (S \circ R)^{-1} \circ \boldsymbol{V} = \operatorname{rng}(S \circ R) \end{split}$$

Equational derivations of fuzzy set-theoretic laws

Example:

$$\mathsf{Hgt}(\mathsf{dom}\,R) = \mathsf{Hgt}(\mathsf{rng}\,R)$$

Recall:

$$\begin{array}{l} \operatorname{\mathsf{Hgt}} A = \boldsymbol{A}^{-1} \circ \boldsymbol{V} = \boldsymbol{V}^{-1} \circ \boldsymbol{A} \\ \operatorname{\mathsf{dom}} R = R \stackrel{\leftarrow}{} V = R \circ \boldsymbol{V} \\ \operatorname{\mathsf{rng}} R = R \stackrel{\rightarrow}{} V = R^{-1} \circ \boldsymbol{V} \end{array}$$

Derivation:

$$\begin{aligned} \mathsf{Hgt}(\mathsf{dom}\,R) &= \mathbf{V}^{-1} \circ (R \circ \mathbf{V}) = (\mathbf{V}^{-1} \circ R) \circ \mathbf{V} = \\ & (R^{-1} \circ \mathbf{V})^{-1} \circ \mathbf{V} = \mathsf{Hgt}(\mathsf{rng}\,R) \end{aligned}$$

Outline

1 Fuzzy Relations: Why Formalize?

2 Predicate Fuzzy Logic as a Calculus for Fuzzy Relations

3 Tarski-style Fuzzy Relational Calculi

4 References

References: Predicate fuzzy logic

P. Hájek:

Metamathematics of Fuzzy Logic (Ch. 1–5, 7) Kluwer, 1998.

L. Běhounek, P. Cintula, & P. Hájek:

Introduction to mathematical fuzzy logic ($\S1-2$, $\S5$)

In P. Cintula, P. Hájek, & C. Noguera (eds.): Handbook of Mathematical Fuzzy Logic, Vol. I, pp. 1–101. College Publications, 2011.

(Available at http://www.mathfuzzlog.org/index.php/Handbook of Mathematical Fuzzy Logic.)

S. Gottwald:

A Treatise on Many-Valued Logics (esp. Part III) Research Studies Press. 2001.

References: Fuzzy relations

S Gottwald:

A Treatise on Many-Valued Logics (Part IV) Research Studies Press. 2001.

L. Běhounek, U. Bodenhofer, & P. Cintula:

Relations in Fuzzy Class Theory: Initial steps.

Fuzzy Sets and Systems 159 (2008) 1729–1772.

References: Fuzzy relational compositions

W. Bandler & L.J. Kohout:

Semantics of implication operators and fuzzy relational products.

International Journal of Man-Machine Studies 12 (1980) 89-116.

B. De Baets & E. Kerre:

Fuzzy relational compositions.

Fuzzy Sets and Systems 60 (1993) 109-120.

W. Bandler & L.J. Kohout:

On the universality of the triangle superproduct and the square product of relations.

International Journal of General Systems 25 (1997) 399-403.

References: Tarski-style fuzzy relational calculi

A. Tarski:

On the calculus of relations

Journal of Symbolic Logic 6 (1941) 73-89.

L.J. Kohout:

Fuzzy logic-based extension of Tarski's relational systems using non-associate BK-products of relations.

In O. Majer (ed.): The Logica Yearbook 2001, pp. 111–126. Filosofia, Prague, 2002.

L. Běhounek & M. Daňková:

Relational compositions in Fuzzy Class Theory.

Fuzzy Sets and Systems 160 (2009) 1005-1036.

