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1. The need for Fuzzy Class Theory



Foundations of fuzzy mathematics

Traditional fuzzy mathematics:
• Fuzzy sets represented by their membership functions

= classical (crisp) model of fuzzy sets
• Uses classical Boolean logic

(since it reasons about crisp membership functions)
• Approaches fuzziness only indirectly

(through the crisp model of membership function)

A genuine fuzzy approach:
• Fuzzy sets are a primitive notion

(like sets in classical mathematics)
• Uses fuzzy logic

(a logic appropriate for reasoning about fuzzy sets)
• Speaks directly about fuzzy phenomena

(not via a crisp model)



Formal fuzzy logic

Fuzzy logic describes the laws of truth preservation in reasoning

under (a certain form of) vagueness

Its interpretation in terms of truth degrees is just a model

(a classical rendering of vague phenomena)

Although such models have originally been employed for discov-

ering the laws of approximate reasoning, they must be regarded

as secondary (essentially classical, not genuinely vague)

Formal theories over fuzzy logic—assuming that fuzzy logic faith-

fully approximates the laws of truth preservation in reasoning

fraught with vagueness—are genuinely fuzzy



Axiomatization of fuzzy mathematics

The need for axiomatization of further areas of fuzzy mathe-
matics is beyond doubt (axiomatization has always aided the
development of mathematical theories)

Previous attempts:
• Usually designed ad hoc
• Only some concepts turned fuzzy
• Based on non-systematic intuitions or intended applications
• Often semi-classical (truth degrees, membership functions)

Fragmentation of fuzzy mathematics:
• Completely different sets of primitive concepts
• Incompatible formalisms
• Virtually impossible to combine any two theories



Formal fuzzy mathematics

We propose a unified methodology for the axiomatization of
fuzzy mathematics

It would
• Facilitate the exchange of results between its branches
• Result in a systematic development of their concepts

Work deductively in a formal axiomatic theory over fuzzy logic,
not in a particular model!

(“Formalistic imperative”)

⇒ Formal theories over Hájek-style fuzzy logics

Běhounek-Cintula: From fuzzy logic to fuzzy mathematics:

a methodological manifesto. FSS 2006 (to appear)



Foundations of fuzzy mathematics

Architecture of classical mathematics:
• Logic: (first-order) Boolean logic

governs reasoning in mathematical theories
• Foundations: set theory (type theory, . . . )

a formal theory giving a general framework
• Particular disciplines: graph theory, topology, . . .

formalized within the foundational theory

Proposed architecture of fuzzy mathematics:
• Logic: (first-order) fuzzy logic

developed enough for building formal theories
• Foundations: a kind of formal fuzzy set theory

proposed here
• Particular disciplines: fuzzy graph theory, fuzzy topology, . . .

formalized within the foundational theory



Proposed foundations: Fuzzy Class Theory

Great flexibility and generality ⇒ “arbitrary” fuzzy logic F
Analogy with classical foundations ⇒ higher-order
Axiomatizability ⇒ Henkin-style

Henkin-style higher-order fuzzy logic F = FCT over F

Formal theory ⇒ axiomatic method
Intended models = Zadeh’s fuzzy sets of any order over a fixed

domain
Soundness ⇒ results are valid of real fuzzy sets

Unified formalism for various branches of fuzzy mathematics

Běhounek-Cintula: Fuzzy class theory. FSS 2005



2. Building Fuzzy Class Theory



Second-order logic F2—axiomatic system

Propositional axioms: axioms of the logic F

First-order axioms: usual axioms of quantifiers

Second-order axioms:

• Comprehension axioms: y ∈ {x | ϕ(x)} ↔ ϕ(y)

(witness the existence of all definable fuzzy sets)

• Extensionality: from (∀x)(x ∈ A ↔ x ∈ B) infer A = B

(fuzzy sets are determined by their membership functions)

• Axioms for tuples: tuples equal iff all components equal, etc.

(usual axioms, tuples usually come out crisp)



Second-order logic F2—semantics

Intended models of F2:

U

L

0

1

A

x

Ax

U a set (universe)

L an F-algebra (of truth-values)

Object variables range over U

Class variables range over LU

‖x ∈ A‖ = ‖A‖ (‖x‖)
‖ϕ ◦ ψ‖ = ‖ϕ‖ ◦L ‖ψ‖
∀,∃ . . . inf, sup resp.

Generally, second-order fuzzy logic is not axiomatizable

⇒ General (Henkin) models:

• Predicate variables range over a subset of LU

• Axioms insure that all definable fuzzy classes are present



Higher-order logic Fn

Generalization to fuzzy sets of higher order

(fuzzy sets of fuzzy sets, of fuzzy sets of fuzzy sets, etc.):

Third-order fuzzy logic F3:

• New sort of variables for classes of classes X ,Y, . . .

• New membership predicate X ∈ X
• Extensionality and comprehension axioms for classes of classes

• All definitions and theorems translate a level higher

Higher-order fuzzy logic Fω

• Iterate the construction for all levels n ∈ ω

• If necessary, mark the type of variables: x(0), X(1), Y (n), . . .

• All definitions and theorems translate to all higher levels



Atomic formulae of Fω

Variables

• x, y, . . . for atomic objects

• X, Y, . . . for (fuzzy) sets of atomic objects

• X ,Y, . . . for (fuzzy) sets of (fuzzy) sets of atomic objects

• Generally X(n) for (fuzzy) sets of the n-th order

• Tuples 〈X1, . . . , Xk〉 of objects or sets of any order

• No variables for truth degrees: expressed by atomic formulae

Atomic formulae

• x ∈ A (or Ax) expresses the membership degree of x in A

Type match: X(n) ∈ Y (m) wff iff n ≤ m

• Crisp identity of objects x = y or sets A = B (or X(n) = Y (n))

(identical membership functions, intersubstitutable)



Logical connectives of ÃLΠω (standard semantics)

• T-norms ∗ or &∗ (finite ordinal sums of G, ÃL, Π) Ax ∧ Bx

• R-implications ⇒∗ (their residua) Ax ∗Bx ⇒∗ Ax

• T-conorms, S-implications for ∗ (definable from ∗, ⇒∗)
• Truth constants m

n (added by an axiom) Ax ∨ m
n

• Arithmetical operations +, −, ·, : (bounded) 1−Ax ·Bx

• Comparisons =, <, ≤, 6= of truth degrees Ax ≤ 1
2

• and any definable from these, e.g. negations Ax ⇒∗ 0
(strict Ax 6= 0, involutive 1−Ax)

Notice the difference:
Ax = Bx . . . logical connective (compares truth degrees)
x = y, A = B . . . atomic predicate (identity of objects)

Esteva-Godo-Montagna: The ÃLΠ and ÃLΠ1
2

logics. AML 2001



Logical symbols of Fω

Quantifiers:

(∀x)ϕ(x) . . . infx ϕ(x) infx Ax . . . (∀x)Ax

(∃x)ϕ(x) . . . supx ϕ(x)

ϕ crisp: (∀x)ϕ . . . ϕ holds for all x

ϕ fuzzy: (∀x)ϕ . . . the infimum of the truth values of ϕ

Set comprehension terms:

A = {x | ϕ(x)} iff Ax = ϕ(x) {x | Ax ∧ Bx}

ϕ crisp: {x | ϕ} . . . the set of all x such that ϕ

ϕ fuzzy: {x | ϕ} . . . the set to which x belongs in the degree ϕ



FCT and FTT

Fuzzy class theory
• Russell style syntax
• Based of sets (classes)
• Comprehension terms
• Foundations oriented
• Stratified type hierarchy
• Simple axiomatization
• Set theoretical concepts are

more natural
• Direct formalization of Zadeh’s

fuzzy sets
• Easy generalization to other

fuzzy logics

B&C.: Fuzzy class theory FSS 2005

These two theories seem to be equivalent

Fuzzy type theory
• Church style syntax
• Based on functions
• Lambda terms
• Natural language oriented
• Multi-dimensional type hierarchy
• Simple set of primitive concepts
• Truth values and functional

concepts are more natural
• Direct formalization of

certain linguistic concepts
• Formalization of natural hu-

man reasoning

Novák: On fuzzy type theory FSS 2004



Defined symbols of FCT

Set constants:
• ∅ =df {x | 0} ∅x = 0 for all x

• V =df {x | 1} Vx = 1 for all x

• Id =df {〈x, y〉 | x = y}

Elementary set operations:
• A ∩B =df {x | Ax&Bx} A ∩B = B ∩A

• A ∪B =df {x | Ax ∨ Bx}
• A uB =df {x | Ax ∧Bx} (∀A)(A tA = A)
• A tB =df {x | Ax ∨Bx}
• Ker A =df {x | Ax = 1}
• SuppA =df {x | Ax > 0}
• \A =df {x | ¬G(Ax} strict complement
• −A =df {x | ¬ÃL(Ax)} involutive complement



Properties of fuzzy sets

Crisp properties:

• Norm(A) ≡df (∃x)(Ax = 1)
• Crisp(R) ≡df (∀x)[(Ax = 0) ∨ (Ax = 1)]
• Fuzzy(A) ≡df ¬Crisp(A)

Graded properties:
• Hgt(A) ≡df (∃x)Ax

(the truth degree supx Ax is expressed by a formula of FCT)

Notice: Fuzzy properties of sets are objects of FCT:
Hgt =df {A | Hgt(A)} . . . a 2nd-order fuzzy set

to which A belongs in the degree of its height
Even principles can be formalized as objects of FCT

(Zadeh’s extension principle is a certain 3rd order class)



Relations between fuzzy sets

Crisp relations:

• A v B ≡df (∀x)(Ax ≤ Bx) (traditional) fuzzy set inclusion

Graded relations:

• A ⊆ B ≡df (∀x)(Ax → Bx) (graded) fuzzy set inclusion

• A ≈ B ≡df (∀x)(Ax ↔ Bx) fuzzy set similarity

• A || B ≡df (∃x)(Ax&Bx) fuzzy set compatibility

Not only true or false, but graded

More general, but easy to handle in FCT:

the same form and similar proofs as in classical mathematics



Theory of fuzzy relations

In FCT, we define the following operations:

A×B =df {〈x, y〉 | Ax & By} Cartesian product
Dom(R) =df {x | Rxy} Domain
Rng(R) =df {y | Ryx} Range

R ◦ S =df {〈x, y〉 | (∃z)(Rxz & Szy)} Composition
R−1 =df {〈x, y〉 | Ryx} Inverse

Id =df {〈x, y〉 | x = y} Identity



Properties of fuzzy relations

Crisp properties:

• Crisp(R) ≡df (∀x, y)[(Rxy = 0) ∨ (Rxy = 1)]
• Fuzzy(R) ≡df ¬Crisp(R)

Graded properties:

• Refl(R) ≡df (∀x)(Rxx) reflexivity
• Sym(R) ≡df (∀x, y)(Rxy → Ryx) symmetry
• Trans(R) ≡df (∀x, y, z)(Rxy & Ryz → Rxz) transitivity
• ASymE(R) ≡df (∀x, y)(Rxy & Ryx → Exy) E-asymmetry
• QOrd(R) ≡df Refl(R) & Trans(R) quasi-ordering
• OrdE(R) ≡df QOrd(R) & ASymE(R) E-ordering
• Sim(R) ≡df QOrd(R) & Sym(R) similarity
• Equ(R) ≡df Sim(R) & (∀x, y)(∆Rxy → x = y) equality



Graded properties of fuzzy relations

In classical mathematics: crisp R is reflexive ≡df (∀x)Rxx

Traditionally: fuzzy R is reflexive ≡df for all x, Rxx = 1

In FCT, this is expressed by the formula (∀x)(Rxx = 1)

In our approach: fuzzy R is reflexive ≡df (∀x)Rxx

Not only true or false, but graded (R more or less reflexive)

cf. Gottwald: Fuzzy Sets and Fuzzy Logic: Foundations of
Application—from a Mathematical Point of View, 1993

More general, but easy to handle in FCT:

the same form and similar proofs as in classical mathematics



3. Using Fuzzy Class Theory



Exploiting the syntax

Formal syntactic manipulation can trivialize some areas of fuzzy

mathematics

Example:

A large part of elementary theory of fuzzy sets can effectively be

reduced to fuzzy propositional calculus

⇒ proofs of basic facts about fuzzy sets are trivialized

⇒ machine computable



Notation:

Opϕ(X1, . . . , Xn) =df {x | ϕ(x ∈ X1, . . . , x ∈ Xn)}
Rel∀ϕ(X1, . . . , Xn) ≡df (∀x)ϕ(x ∈ X1, . . . , x ∈ Xn)

Rel∃ϕ(X1, . . . , Xn) ≡df (∃x)ϕ(x ∈ X1, . . . , x ∈ Xn)

E.g.:

Opp&q(A, B) =df {x | Ax & Bx} = A ∩B

Rel∀p→q(A, B) ≡df (∀x)(Ax → Bx) = A ⊆ B

Rel∃∆p(A, B) ≡df (∃x)∆Ax = NormA



Metatheorem 1:

` ϕ(ψ1, . . . , ψn) (propositionally!)

iff ` Rel∀ϕ(Opψ1
(X11, . . . , X1k1

), . . . ,Opψn(Xn1, . . . , Xnkn))

iff ` Rel∃ϕ(Opψ1
(X11, . . . , X1k1

), . . . ,Opψn(Xn1, . . . , Xnkn))

Metatheorem 2:

`
k

&
i=1

ϕi( ~ψi) −→ ϕ′(~ψ′) (propositionally)

iff `
k

&
i=1

Rel∀ϕi

(−−−→
Opψi

( ~X)
)
−→ Rel∀ϕ′

(−−−→
Opψ′( ~X)

)



Metatheorem 3:

`
k

&
i=1

ϕi( ~ψi) −→ ϕ′(~ψ′) (propositionally)

iff `
k−1

&
i=1

Rel∀ϕi

(−−−→
Opψi

( ~X)
)

& Rel∃ψk

(
Opψk

( ~X)
)
−→

−→ Rel∃ϕ′
(−−−→
Opψ′( ~X)

)

Examples of corollaries:

` ∆p → p proves ` Ker A ⊆ A

` (p & q) → p ” ` A ∩B ⊆ A

` (p → q) → (p & r → q & r) ” ` A ⊆ B → A ∩ C ⊆ B ∩ C

` (p → q) → (p → q) ” ` A ⊆ B → (HgtA → HgtB)

. . .



Formal interpretations

Interpretation = syntactic translation of one theory into another
theory, which preserves provability

Assign:
to each sort s of variables . . . a sort s∗ and a function symbol F ∗s

function symbol F . . . a function symbol F ∗
predicate symbol P . . . a predicate symbol P ∗

Translate:
each variable x of sort s . . . the term F ∗s (x∗) for x∗ of sort s∗

term F (t1, . . . , tk) . . . the term F ∗(t∗1, . . . , t∗k)
formula P (t1, . . . , tk) . . . the formula P ∗(t∗1, . . . , t∗k)
formula c(t1, . . . , tk) . . . the formula c(t∗1, . . . , t∗k)
formula (∀x)ϕ . . . the formula (∀x∗)ϕ∗, dtto ∃

∗ interprets T in S . . . S ` ϕ∗ for all axioms ϕ of T , incl. ax. =



Proposition: If ∗ interprets T in S, then T ` ϕ implies S ` ϕ∗.

The definition of interpretation can be further generalized,
the proposition then requires additional preconditions. E.g.:

Translate connectives c of T by formulae ϕ of S
Require S ` ϕ∗ for all logical axioms ϕ of T

Example (upward type shift ]):

variable x(n) . . . variable x(n+1)

term {x(n) | ϕ} . . . term {x(n+1) | ϕ}
term 〈x(n)

1 , . . . , x
(n)
k 〉 . . . term 〈x(n+1)

1 , . . . , x
(n+1)
k 〉

predicate x(n) ∈ X(n+1) . . . predicate x(n+1) ∈ X(n+2)

] interprets FCT in FCT
⇒ all theorems are preserved under the upward shift of types
⇒ we prove theorems only for the lowest orders



Example (relativization to A):

Let A be crisp.

Leave all predicate and function symbols absolute, translate

[(∀x(n))ϕ]A . . . (∀x(n) ∈ A(n))ϕA

[(∃x(n))ϕ]A . . . (∃x(n) ∈ A(n))ϕA

where

A(1) = A

A(n+1) = KerPow A(n)

Relativization to A interprets FCT in FCT

⇒ any crisp class can serve as V



Example (interpretation of classical theories):

Let T be a classical theory formulated in higher-order logic
⇒ almost any mathematical theory

Translate y = F (x1, . . . , xk) as 〈x1, . . . , xk, y〉 ∈ F ∗
for each function symbol F of T

Let S be FCT plus the following axioms:

CrispP for all predicate symbols P of T

CrispF ∗ and 〈x1, . . . , xk, y〉 ∈ F ∗ & 〈x1, . . . , xk, y′〉 ∈ F ∗ → y = y′
for all function symbols F of T

The translation faithfully interprets T in FCT+S

∗ is faithful . . . T ` ϕ iff S ` ϕ∗, for all ϕ in the language of T

⇒ Any crisp structure can be introduced to FCT
⇒ available: N,Q,R, crisp metrics, measures, topologies,. . .



Natural fuzzification of classical theories
Uniform methodology towards fuzzy mathematics:

Let T be a classical axiomatic theory
(e.g., the axioms of topology)

Remove all axioms CrispP and CrispF ∗
from the above interpretation of T in FCT

Get a fuzzified version of the classical theory
!!! Not too mechanically:

– choose between classically equivalent definitions
– follow intuitive motivations, prefer good properties, . . .

Example: fuzzified topology = fuzzy set of fuzzy neigborhoods

Optionally: keep some of the crispness assumptions
(controlled defuzzification)



Foreshadowed by U. Höhle (1987):

“It is the opinion of the author that from a mathematical

viewpoint the important feature of fuzzy set theory is the

replacement of the two-valued logic by a multiple-valued

logic. [. . . I]t is now clear how we can find for every

mathematical notion its ‘fuzzy counterpart’. Since ev-

ery mathematical notion can be written as a formula in

a formal language, we have only to internalize, i.e. to

interpret these expressions by the given multiple-valued

logic.”

Fuzzy real numbers as Dedekind cuts w.r.t. a multiple-valued logic, FSS 1987



Graded theories

Consequence of the methodology and apparatus:

Not only ∈, but all notions are naturally graded

In FCT we have:

• Graded inclusion ⊆ . . . inclusion to a degree

• Graded reflexivity Refl . . . reflexivity to a degree

• Graded property “being a fuzzy topological space”

• . . .

Graded properties of fuzzy relations pursued to a certain extent

already by Gottwald (1993, 2001), Bělohlávek (2002), . . .



The graded approach is important:

• Graded notions generalize the traditional (non-graded) ones
traditional = ∆(graded)

• Graded notions allow to infer relevant information when the
traditional conditions are almost fulfilled

cf. 0.999-reflexivity

• Graded notions are easily be handled by FCT
inferring by the rules of fuzzy logic

• Graded notions are more fuzzy
properties of fuzzy sets crisp?



The advanced gradedness of the notions has consequences that

have not been met in the traditional approaches:

Reading of graded theorems:

TransR & TransS → Trans(R ∩ S)

“The more both R and S are transitive,

the more their intersection is transitive”

This is stronger than

Assume TransR and TransS (to degree 1). Then Trans(R∩S).

⇒ Theorems should be formulated as implications,

proved by chains of provable implications in fuzzy logic



Implicational proofs

Proofs by chains of provable implications in fuzzy logic

= transmission of partial truth

Traditional proofs from 1-valid assumptions

= transmission of full truth only

Non-idempotent & in fuzzy logics (except for G)

⇒ multiple use of premises matters

ϕ & ϕ → ψ does not entail ϕ → ψ

⇒ Premises in graded theorems have exponents of multiplicity:

Trans2 E & SymE → ExtE E



Multiple premises

The premises in theorems cumulate independently:

Refl2 R & Sym3 R & TransR → . . .

⇒ Meaningful properties:
• Transitive similarity . . . SimR & TransR

≡ ReflR & SymR & Trans2 R

• Reflexive preorder . . . PreordR & ReflR

≡ Refl2 R & TransR

• Preorder similarity . . . SimR & PreordR

≡ Refl2 R & SymR & Trans2 R

≡ Symmetric double preorder . . . Preord2 R & SymR

⇒ Compound notions are just abbreviations (Sim,Preord,Ord, . . .)
rather than separate properties



The premises in theorems cumulate independently:
⇒ Definitions better without requiring particular properties

of their parameters
The properties of parameters appear only in theorems

in the required multiplicity
Example:

Upper A ≡df (∀xy)(Rxy → (Ax → Ay))

A↑ ≡df {x | (∀y)(Ay → Rxy)}
and dually Lower and A↓

Non-graded, these notions are most meaningful if R is a preorder
In the graded approach, we impose no restriction on R,

since theorems require properties with different multiplicities:

A ⊆ B → B↑ ⊆ A↑ no precondition on R
TransR → Upper A↑ TransR required
Trans2 R → (Lower A↓ & Upper A↑) Trans2 R required



4. Advancing Fuzzy Class Theory



State of the art

General aspects:
• Natural language proofs, proof cookbook
• Metamethematical properties of higher-order fuzzy logics

Particular areas of mathematics:

fuzzy relations - Běhounek, Cintula, Bodenhofer, Daňková
fuzzy partitions - Cintula
fuzzy measures - Kroupa, Běhounek
fuzzy numbers - Horč́ık, Běhounek

Next steps:
• Fuzzy quantifiers
• Fuzzy functions
• Fuzzy cardinalities



Recent results

• Běhounek, Daňková: generalized compositions of fuzzy relations
uniform treatment of fuzzy relational notions

• Cintula: fuzzy partitions via fuzzy quantifiers
basic concepts generalized

• Horč́ık: fuzzy interval arithmetics
dependent Zadeh extensions of arithmetical operations

• Kroupa, Běhounek: fuzzy filters and ultrafilters
graded rendering of filter theory

⇒ Special session on Wednesday



Thank you for your attention

www.cs.cas.cz/hp

⇒ slides, preprints, . . .


