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1 Introduction

The systematic development of the formal theory of fuzzy sets and fuzzy relations has challenged
many researchers since the very beginning, as reflected by a huge number of papers and book
chapters. It might seem that nothing new can be done in this field. Nevertheless, interesting
questions arise when studying compositions of fuzzy relations: Is it possible to represent the
notions related to fuzzy sets and relations in a unified form? And if so, what are the benefits of
such an approach?

In fact, many notions related to the theory of fuzzy sets and fuzzy relations can be expressed
by means of logical connectives and the particular suitable choice of a composition enables to
transform the given notion into its equivalent composition-based form. Hence, the answer for
the first question is positive. The way of representation of composition-related notions has been
briefly and informally sketched in Bělohlávek’s book [4, Remark 6.16]. Indeed, the observation
that finally leads to the apparatus exploiting the analogies between such notions systematically
has appeared already in [7]. Recently, the soundness of this apparatus has been shown in [1] by
means of formal interpretations.

The calculations with composition-related notions reduce to simple manipulation over a special
language. Additionally, it is possible to obtain hundreds of (easy) theorems on fuzzy relations for
free simply as consequences of several known properties of compositions. The unification of notions
by means of compositions significantly simplifies proofs of properties of the composition-related
notions and allows us to handle the above mentioned problems automatically by a computer; this
presents one of the main benefits of this approach.

2 Fuzzy classes—basic notions

In [2], fuzzy class theory is developed as a theory in the multi-sorted first-order logic ÃLΠ. However,
it is obvious that the definitions of fuzzy class theory can be carried out in any fuzzy logic which
extends, say, MTL∆. For the sake of generality, we shall therefore prefer to work in fuzzy class
theory over MTL∆.

Let us recall that FCT is a theory with object variables (lowercase letters x, y, . . .), class
variables (uppercase letters X, Y, . . .), variables for classes of classes (calligraphic letters X ,Y, . . . ),
etc. Tuples are denoted by 〈x1, . . . , xk〉 or briefly x1 . . . xn (for all sorts of variables). The only
primitive symbols of FCT are the binary membership predicates ∈ between successive levels of
the type hierarchy; instead of x ∈ A we may write briefly Ax. For the axioms and details on
multi-sorted first-order fuzzy logic see [2], where the necessary apparatus for the subsumption of
sorts has been introduced.
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Strong (co-norm) disjunction will be denoted by ∨, other connectives and quantifiers as usual.
Empty conjunction is defined as 1. The following defined connectives will be useful:

ϕ = ψ ≡df ∆(ϕ ↔ ψ), ϕ ≤ ψ ≡df ∆(ϕ → ψ).

Definition 2.1 Let ϕ(p1, . . . , pn) be a propositional formula.

• We define the n-ary class operation generated by ϕ as

Opϕ(X1, . . . , Xn) =df {x | ϕ(x ∈ X1, . . . , x ∈ Xn)}.

• The n-ary uniform relation between X1, . . . , Xn generated by ϕ is defined as

Rel∀ϕ(X1, . . . , Xn) =df (∀x)ϕ(x ∈ X1, . . . , x ∈ Xn).

• The n-ary supremal relation between X1, . . . , Xn generated by ϕ is defined as

Rel∃ϕ(X1, . . . , Xn) =df (∃x)ϕ(x ∈ X1, . . . , x ∈ Xn).

We will use the following important kinds of elementary class operations, properties, and relations:

Fuzzy class operations:

∅ =df {x | 0} empty class
V =df {x | 1} universal class

V2 =df {xy | 1} total relation⋃A =df {x | (∃A ∈ A)(x ∈ A)} class union⋂A =df {x | (∀A ∈ A)(x ∈ A)} class intersection
Pow A =df {X | X ⊆ A} power class

Fuzzy class properties and relations:

Hgt(A) ≡df (∃x)Ax height
A ⊆ B ≡df (∀x)(Ax → Bx) inclusion
A v B ≡df ∆(A ⊆ B) strict inclusion
A ‖ B ≡df (∃x)(Ax & Bx) compatibility

We shall freely use all elementary theorems on these notions which follow from the metatheorems
proved in [2], and thus can be checked by simple propositional calculations. In the same source,
the wide overview of class operations, properties, and relations can be found.

3 Fuzzy classes and truth values as fuzzy relations

Fuzzy classes and truth values can be represented as fuzzy relations of a certain form, described
below. This representation will allow us straightforwardly to apply the properties of various kinds
of compositions of fuzzy relations to many more derived concepts which involve fuzzy classes
and/or truth values.

The identification of fuzzy classes and truth values with certain fuzzy relations is carried out in
a rigorous formal way by means of formal interpretations of fuzzy theories in FCT. For technical
details on formal interpretations in FCT see [1].

Convention 3.1 Let 0 be an arbitrary fixed element of V. (I.e., 0 is a constant denoting an
atomic individual of the domain of discourse.) The fuzzy class {0} (i.e., the crisp singleton of 0)
will be denoted by 1.
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Convention 3.2 A fuzzy class A v V will be identified with the fuzzy relation A × 1 = {〈x, 0〉 |
x ∈ A}. When representing the fuzzy class A, the fuzzy relation A × 1 will be written as A (the
same letter in boldface).

This identification is quite natural and well-known (the apparatus of FCT just extends it to
infinite classes as well). If the universe of discourse is finite, consisting of elements x1, . . . , xn,
fuzzy relations can be represented by (n × n)-matrices of truth values, R = (Rxixj)ij . Assume
that 0 denotes the element x1. The fuzzy class A is then identified with the relation

A =




A0 0 · · · 0
Ax2 0 · · · 0

...
...

. . .
...

Axn 0 · · · 0




which by the usual convention of linear algebra can be written as the (file) vector n × 1, A =
(A0 Ax2 . . . Axn)T.

A similar trick will allow us to represent truth values as certain relations. First observe that
truth values can be internalized in FCT as subclasses of an arbitrary crisp singleton, e.g., 1, in
the following way:

• The truth value of a formula ϕ will be represented by the class ϕ =df {0 | ϕ}. Then by
definition, ϕ v 1 and ϕ ↔ (0 ∈ ϕ).

• Vice versa, every α v 1 represents the truth value of a formula—e.g., of 0 ∈ α, since
(∀α v 1)(0 ∈ α = α).

The truth values are thus represented by subclasses of 1, where the truth value is the membership
degree of 0 into the subclass. We shall therefore call the elements of Ker Pow 1 the inner (or
formal) truth values and denote them by lowercase Greek letters α, β, . . . The system Ker Pow 1
of formal truth values will for brevity’s sake be denoted by L.

Now as the truth values are represented by special fuzzy classes (viz. subclasses of 1), they
can be identified with certain fuzzy relations by Convention 3.2. Namely, an inner truth value
α v 1 is identified with the fuzzy relation α× 1 = {〈0, 0〉 | 0 ∈ α}. By the same convention, when
representing the truth value α, the fuzzy relation α× 1 can be denoted by boldface α.

Again, if the universe of discourse is finite and consists of the elements 0, x2, . . . , xn, an inner
truth value α is identified with the relation

α =




α0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 =




α0
0
...
0




which by usual conventions of linear algebra can be identified with the (1× 1)-matrix (or scalar)(
α0

)
. (Recall that α0, or 0 ∈ α, has the truth value that is represented by α.)

Convention 3.3 We shall always assume that R, S, or T (possibly subscripted) denote fuzzy
relations v V2; A, B, or C (possibly subscripted) denote unary classes v V, and α, β, γ (possibly
subscripted) denote inner truth values v 1. (We can then abandon the distinction between A,α,
etc. and A,α, etc. in formulae.)

4 Sup-T-compositions and derived notions

The usual definition of the composition of fuzzy relations R and S is as follows:

R ◦ S ≡df {xy | (∃z)(Rxz & Szy)}.
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Notice that the defining formula is the same as the defining formula of the relational composition in
classical mathematics, the fuzziness being introduced only by the semantics of the logical symbols
∃ and &. This makes it the “default” definition of fuzzy relational compositions according to the
methodology of [3].

As already mentioned in the Introduction, the method of transferring the results on relational
compositions to related notions like images or preimages has already been suggested in [4, Re-
mark 6.16]. In our formal setting we can exploit the method systematically:

There are three variables in the definition of sup-T-composition and each of them can be
replaced by the dummy value 0; this yields eight relational operations derived from sup-T-
composition of fuzzy relations: they are summarized in Table 1.

{xy | (∃z)(Rxz & Szy)} = R ◦ S . . . composition R ◦ S

x = 0 {0y | (∃z)(AT0z & Rzy)} = RT ◦A . . . image R ′′A
y = 0 {x0 | (∃z)(Rxz & Az0)} = R ◦A . . . pre-image R ←A

z = 0 {xy | (∃0)(Ax0 & BT0y)} = A ◦BT . . . Cartesian product A×B

x, y = 0 {00 | (∃z)(AT0z & Bz0)} = AT ◦B . . . compatibility A ‖B

x, z = 0 {0y | (∃0)(αT00 & AT0y)} = A ◦α . . . α-resize αA
y, z = 0 {x0 | (∃0)(Ax0 & α00)} = A ◦α . . . α-resize αA

x, y, z = 0 {00 | (∃0)(α00 & β00)} = α ◦ β . . . conjunction α & β

Table 1: Operations derived from the sup-T-composition

Besides the operations listed in Table 1, further important relational operations are definable
from compositions—e.g., by taking the universal class V for an argument in some of the derived
notions. Some of such derived notions are listed in Table 2:

domain Dom R = R ←V . . . R ◦V
range Rng R = R ′′V . . . RT ◦V
height HgtA = A ‖V = V ‖A . . . AT ◦V = VT ◦A

Table 2: Further operations derived from sup-T-compositions

The point of the reduction of the above notions to compositions is of course that the well-known
properties of sup-T-compositions (see, e.g., [5]):

Transposition : (R ◦ S)T = ST ◦RT

Associativity : (R ◦ S) ◦ T = R ◦ (S ◦ T )
Monotony : R1 ⊆ R2 → R1 ◦ S ⊆ R2 ◦ S

Union :
( ⋃

R∈A
R

)
◦ S =

⋃

R∈A
(R ◦ S)

Intersection :
( ⋂

R∈A
R

)
◦ S ⊆

⋂

R∈A
(R ◦ S)

automatically transfer to all of them. Thus we now get dozens of theorems on fuzzy relational
operations entirely for free. Moreover, the associativity and transposition properties of sup-T-
compositions plus properties of V, T and × yield an enormous number of identities between
expressions composed of the operations from Tables 1 and 2. As an example, let us show the
following two identities

(A×B) ◦R = A ◦BT ◦R = A ◦ (RT ◦B)T = A× (R ′′B),
A ‖ Dom R = AT ◦R ◦V = (RT ◦A)T ◦V = Hgt(R ′′A).

4



5 The equational calculus

The reduction of notions listed in Tables 1 and 2 to sup-T-compositions thus yields a simple
method of proving identities between well-formed terms (i.e., terms that respect the required
arities of arguments) composed of the operations ◦, T, ′′,←,×, ‖, resize,&, Dom, Rng, Hgt, V. As
could be observed above, provable identities in this language can be derived equationally by only
a few simple rules. These rules can therefore be viewed as axioms of an equational calculus
for proving the identities between fuzzy relational operations. For the reference, we give it in a
separate definition.

Definition 5.1 The equational calculus Eqc◦ for identities between well-formed terms in the typed
language L◦ consisting of the operations ◦, T, ′′,←,×, ‖, resize, &,Dom, Rng, Hgt, V, 1 is given by the
definitions of Tables 1 and 2 and the following rules:

(a) (X ◦ Y )T = Y T ◦XT (d) XTT = X
(b) αT = α (e) VT ◦V = 1
(c) Z ◦ 1 = Z

for α a scalar, Z a scalar or file-vector, X arbitrary, and Y of a compatible type for composing
with X.

The rules of Eqc◦ were chosen to be valid (i.e., provable in FCT) properties of the relational
operations from L◦. Thus Eqc◦ is a sound calculus of fuzzy relational operations, i.e., all identities
provable in Eqc◦ are provable laws of FCT (modulo the representation of fuzzy classes and inner
truth values by the corresponding fuzzy relations): for any well-formed terms τ1, τ2 over L◦ (which
are then also well-formed terms of FCT), if Eqc◦ ` τ1 = τ2, then FCT ` τ1 = τ2. It is an open
question whether the rules (a)–(e) are exhaustive, i.e., whether Eqc◦ is also complete as regards
the identities expressible in the language L◦.

Remark: The calculations in Eqc◦ are simple enough that they can be automated by a computer.
A decision procedure for the derivability in the calculus can employ the fact that every term in
the language of sup-T-operations can be translated to an expression consisting only of ◦, T, V,
and variables, by the definitions from Tables 1 and 2. Every such expression can then be reduced
to its “flat” form, i.e., a form in which T is only applied to variables or V. Although the flat form
of a term is never unique (as, e.g., αT = α and AT ◦ V = VT ◦ A, and a flat term can always
contain redundant sequences of VT ◦V), establishing equality of flat terms can be done effectively
in a bounded number of steps.

6 Conclusions

The apparatus of fuzzy class theory employed here just extends the usual correspondence between
fuzzy relations, sets, and truth values on the one hand and matrices, vectors, and scalars of truth
values on the other hand, to arbitrary (not only finite) fuzzy relations and classes, and provides
a uniform way of formal handling thereof. In this contribution, only the particular case study of
sup-T-compositions has been elaborated. But the reduction of fuzzy classes and truth values to
fuzzy relations allows us to extend the apparatus of various products (or generalized compositions
e.g. [6]) of fuzzy relations to fuzzy classes and truth values, apply the results on compositions to
a rich variety of derived notions, and get the proofs of their properties for free.

Additionally, the equational calculus Eqc◦ consisting of the simple rules transforming between
equivalent flat terms will be much more effective for automated proving of fuzzy relational identities
expressible in L◦ than automated proving of the same theorems directly in FCT (or even in
semantical models of membership functions).
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