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Abstract—The paper studies graded properties of MTL4-
valued binary connectives, focusing on conjunctive connectives
such as t-norms, uninorms, aggregation operators, or quasi-
copulas. The graded properties studied include monotony, a
generalized Lipschitz property, unit and null elements, commuta-
tivity, associativity, and idempotence. Finally, a graded notion of
dominance is investigated and applied to transmission of graded
properties of fuzzy relations. The framework of Fuzzy Class
Theory (or higher-order fuzzy logic) is employed as a tool for
easy derivation of graded theorems on the connectives.

I. INTRODUCTION

In the early 1990’s, Gottwald introduced what he called
graded properties of fuzzy relations [1], [2], [3]: an approach in
which it is possible to deal with partial—graded—fulfillment
of properties like reflexivity, transitivity, etc. In this approach,
it is not only possible to define properties in a graded way,
but also to generalize theorems on fuzzy relations so that their
conclusions hold to degrees depending on the degrees to which
the relations fulfill the preconditions of the theorems.

Thus while traditional theory of fuzzy relations proves
theorems of the following form:

If the assumptions ϕ1, . . . , ϕn are fully true
then the conclusion ψ is fully true,

under the graded approach theorems of the following form are
proved:

The more the aggregation of (graded) assumptions
ϕ1, . . . , ϕn is true (even if partially),

the more the (graded) conclusion ψ is true.
The ‘graded’ theorems thus provide lower bounds on the truth
degree of the conclusion, given by the aggregation (usually by
a left-continuous t-norm) of the truth degrees of the graded
assumptions.

Even though these ideas are sound and meaningful (and
paralleling similar efforts, e.g., in fuzzy topology, cf. [4]),
Gottwald’s approach unfortunately found only little resonance
(with a few exceptions, e.g., [5], [6]), possibly because the
proofs were too complex in the traditional, non-axiomatic
framework.

With the advent of Fuzzy Class Theory (FCT) [7], a formal
axiomatic framework is available in which it is just natural
to consider properties of fuzzy relations in a graded manner.
Graded notions can in FCT be inspired by (and derived from)

the corresponding notions of classical mathematics [8]; the
syntax of FCT is close to the syntax of classical mathematical
theories and the proofs in FCT thus resemble the proofs of the
corresponding classical theorems. Therefore, it is technically
easier to handle graded properties of fuzzy relations than
in Gottwald’s previous works and it is possible to access
deeper results. For a treatment of basic graded properties of
fuzzy relations (esp. of fuzzy preorders and similarities) in the
framework of FCT see [9].

Here we apply the graded approach to binary fuzzy con-
nectives, or truth-value operators. Many crisp classes of such
operators (e.g., t-norms, uninorms, copulas, negations, etc.)
can be defined by formulae of FCT. The apparatus, however,
enables also partial satisfaction of their defining conditions.
In the following, we therefore give several fuzzy conditions
on truth-value operators and use them in theorems as graded
preconditions that need not be satisfied to the full degree. This
yields a completely new graded theory of truth-value operators
and allows non-trivial generalizations of well-known theorems
on such operators, including their consequences for properties
of fuzzy relations.

Even though we do not have any particular application
in mind, the theory developed here can be useful in many
situations: whenever, e.g., a t-norm is slightly distorted, for
instance by noise or just by rounding, it is actually no longer
a t-norm and theorems on t-norms say nothing about the
function. For example, a function resulting from the product
t-norm by adding a random noise with the maximal amplitude
0.001 need not be commutative nor associative, so the well-
known theorems on t-norms are not applicable. Nevertheless,
it is obvious that the function approximates the product t-norm
very closely, and that many (though not all) of its properties
will be very close to the properties of the product t-norm itself.
However, unless we can (i) measure the degree of corruption of
its commutativity, associativity, etc., and (ii) derive theorems
on how these degrees propagate to other properties, we possess
no information on which properties of t-norms almost apply
to the distorted function (and to what degrees). The formalism
of FCT developed in this paper will allow us to make such
estimates: with a suitable specification of parameters (namely
taking the standard Łukasiewicz logic for the ground logical
apparatus), we are able to capture the intuition that the above



function is commutative at least to degree 0.999, and to
estimate the degrees to which it shares other properties with
t-norms—e.g., that it dominates the minimum t-norm at least
to degree 0.997 (by Theorem 5.2 (D2) below).

We aim this paper at researchers in the theory and ap-
plications of fuzzy connectives and fuzzy relations to attract
their interest to their graded properties. In this paper we focus
on basic graded properties of binary fuzzy connectives (see
Section II), namely the graded notions of commutativity, asso-
ciativity, idempotence, unit and null elements, monotony, and
a generalized Lipschitz property (Section III–IV). Moreover
we study a graded notion of dominance (Section V) and
apply it to transmission of graded properties of fuzzy relations
(Section VI), generalizing the results of [10], [11]. Due to
space restrictions, we omit all proofs; they can be found in
the paper under preparation [12].

The definitions and results presented here are formulated
in the framework of Fuzzy Class Theory, for which see the
original paper [7] or the freely available primer [13]. The
definitions of FCT notions used in this paper are given in
the Appendix.

Even though the theorems of FCT are sound to a broader
class of models, readers unfamiliar with the logic MTL4
can always translate our results into the intended [0, 1]-valued
semantics via the following table, of an arbitrary universe
of discourse U and a left-continuous t-norm ∗ (with the
residuum ⇒∗):

FCT Fuzzy relations
object variable x element x ∈ U
(fuzzy) class A fuzzy set A ∈ F(U)
unary predicate fuzzy subset of U , F(U), etc.
binary predicate binary f. rel. on U2, (F(U))2, etc.
strong conjunction & left-continuous t-norm ∗
implication → residual implication ⇒∗
weak conjunction ∧ minimum
weak disjunction ∨ maximum
negation ¬ the function ¬x = (x ⇒∗ 0)
equivalence ↔ bi-residuum: min(x ⇒∗ y, y ⇒∗ x)
universal quantifier ∀ infimum
existential quantifier ∃ supremum
predicate = crisp identity
predicate ∈ evaluation of membership function
class term {x | ϕ(x)} f. set def. as Ax = ϕ(x), for x ∈ U

The particular choice of a left-continuous t-norm in the
above table should reflect the intended ‘distance’ of degrees
in [0, 1], by which the defects of properties are measured.
For example, the choice of the Łukasiewicz t-norm for the
interpretation of & corresponds to the Euclidean distance of
degrees (since the equivalence connective, which fuzzifies the
equality of degrees in our formulae, comes out as one minus
the Euclidean distance in standard Łukasiewicz logic). Other
choices of the background fuzzy logic put different stress on
different degrees: e.g., standard product logic is stricter on
small degrees.

II. BINARY FUZZY CONNECTIVES

An important feature of FCT is the absence of variables for
truth degrees: in FCT, truth degrees are the semantic values

of formulae rather than objects of the theory (see [8] for an
explanation of methodological advantages of this approach).
However, many theorems of traditional fuzzy mathematics do
speak about truth values or quantify over operators on truth
values like aggregation operators, copulas, t-norms, etc. In
order to be able to speak of truth values within FCT, truth
values need be internalized in the theory. This is done in [14]
by a rather standard technique, by representing truth values by
subclasses of a crisp singleton.

The details of the representation are not important in the
present paper; we refer the interested readers to [14, Sect. 3].
For our present purposes it is fully sufficient to assume that
we do have variables α, β, . . . for truth values in FCT, and
that the ordering of truth values and the usual propositional
connectives and the quantifiers ∀,∃ are definable in FCT. The
class of the internal truth values will denoted by L.

Binary operators on truth values (including propositional
connectives &,∧,∨, . . . ) can be regarded as functions c : L×
L → L or, equivalently, as fuzzy relations c v L × L.
Consequently, graded class relations can be applied to such
operators, e.g., fuzzy inclusion c ⊆ d ≡ (∀αβ)(αcβ → αdβ),
which means

∧
α,β(α c β ⇒∗ α d β) in models.

Convention 2.1: We shall always use Greek letters for truth
values, and the letters a,b, c, . . . for binary connectives. In
formulae, internal binary connectives will by convention have
the same priority as &: thus, e.g., ¬α c β → γ means
((¬α) c β)→ γ. (See Convention A.2 below in Appendix A
for further abbreviations used in formulae, esp. ⇒, −→, ←→,
and ϕn.)

Graded properties of connectives assign each connective
a truth value indicating the degree to which the connective
possesses the graded property. A graded property can thus be
regarded as a crisp function from connectives to truth values,
or equivalently as a fuzzy class of connectives.

III. BASIC GRADED PROPERTIES OF BINARY CONNECTIVES

Now we turn our attention to graded properties of binary
connectives. We start with the simplest case, graded gener-
alizations of unit and null elements. Following our general
methodology, they are obtained by replacing = in classical
definitions by ↔.

Definition 3.1: In FCT, we define the following graded
properties of a binary connective c:

Unit(c, η) ≡df (∀α)((η c α↔ α) & (α c η ↔ α))
Null(c, η) ≡df (∀α)((η c α↔ η) & (α c η ↔ η))

Furthermore, we define the single-sided variants:

LUnit(c, η) ≡df (∀α)(η c α↔ α) Left-unit element
LNull(c, η) ≡df (∀α)(η c α↔ η) Left-null element
RUnit(c, η) ≡df (∀α)(α c η ↔ α) Right-unit element
RNull(c, η) ≡df (∀α)(α c η ↔ η) Right-null element

When fully true, the properties yield the traditional non-
graded properties. Unlike in classical case, the both-sided



notions cannot be defined as the conjunction of both single-
sided variants. Only the following estimates hold generally:

Theorem 3.2: FCT proves:
(B1) LUnit(c, η) & RUnit(c, η) −→ Unit(c, η) −→

LUnit(c, η) ∧ RUnit(c, η)
and analogously for Null.

The following theorem shows a graded uniqueness of unit
and null elements and a graded incompatibility of the proper-
ties of being both a unit and a null of the same connective.

Theorem 3.3: FCT proves:
(B2) LNull(c, η),RNull(c, ζ) ⇒ η ↔ ζ
(B3) LUnit(c, η),RUnit(c, ζ) ⇒ η ↔ ζ
(B4) LNull(c, η),LUnit(c, η) ⇒ η∧¬η, and analogously

for RNull and RUnit
The following theorem indicates the degrees of null and unit

elements of logical connectives:
Theorem 3.4: FCT proves:

(B5) LUnit(∧, η)←→ η ←→ LNull(∨, η)
(B6) LNull(∧, η)←→ ¬η ←→ LUnit(∨, η)
(B7) η −→ LUnit(&, η) −→ (¬η → η)
(B8) LNull(&, η)↔ ¬η
(B9) η −→ LUnit(→, η) −→ ¬¬η
(B10) RUnit(→, η)↔ 0
(B11) RNull(→, η)↔ η

Now we turn to the properties of congruence and monotony,
whose both-sided variants (unlike their classical counterparts
and unlike the previous case of unit and null elements) cannot
in fuzzy logic be reduced to the component-wise ones. These
properties will be crucial in further sections and are defined
as follows:

Definition 3.5: In FCT, we define the following graded
properties of binary connectives (see Convention A.2 below
in Appendix A for the meaning of ≤ in formulae):

Cng(c) ≡df (∀αβγδ)((α↔γ)&(β↔δ)→ (α c β ↔ γ c δ))
Mon(c) ≡df (∀αβγδ)((α≤γ)&(β≤δ)→ (α c β → γ c δ))

LMon(c) ≡df (∀αβγ)((α ≤ β)→ (γ c α→ γ c β))
RMon(c) ≡df (∀αβγ)((α ≤ β)→ (α c γ → β c γ))

Notice that replacing both ≤’s by → in the definition
of LMon (analogously in others) would not yield graded
generalizations of monotony, as the resulting notion

(∀αβγ)((α→ β)→ (γ c α→ γ c β))

do not coincide with crisp left monotony when fully true and
constitute a stronger property (see [12] for more details).

The graded property Cng(c) gives, roughly speaking, the
degree to which c yields close values for close arguments,
where closeness is evaluated in the sense of↔. In particular, in
standard Łukasiewicz models of FCT, where ↔ corresponds
to the Euclidean distance, the property 4Cng(c) expresses
the 1-Lipschitz property of c. If c is regarded as a fuzzy class
c v L rather than a crisp unary operation c : L → L, then
Cng(c) expresses extensionality of c w.r.t. ↔. The property
will play an important role in many graded theorems on fuzzy

connectives, as it denotes the largest guaranteed degree of
intersubstitutivity of α c β and γ c δ for close (in the sense
of ↔) arguments α, γ and β, δ.

Finally we turn our attention to the graded versions of the
properties of idempotence, commutativity, and associativity of
binary connectives.

Definition 3.6: In FCT, we define the following graded
properties for a binary connective c v L× L:

Idem(c) ≡df (∀α)(α c α↔ α)
Com(c) ≡df (∀αβ)(α c β ↔ β c α)
Ass(c) ≡df (∀αβγ)((α c β) c γ)↔ (α c (β c α))

Notice that by (B12) of Theorem 3.7, it is immaterial
whether we define graded commutativity with implication or
equivalence. Theorems (B13) and (B14) furthermore show
that all connectives with less than full “difference” (in the
sense of →) between their height and plinth are at least
partially commutative and associative: thus, e.g., all subnormal
connectives in Łukasiewicz models have non-zero degrees of
commutativity and associativity.

Theorem 3.7: FCT proves:
(B12) Com(c)←→ (∀αβ)(α c β → β c α)
(B13) Hgt(c)→ Plt(c) ⇒ Com(c)
(B14) Hgt(c)→ Plt(c) ⇒ Ass(c)

IV. GRADED T-NORMS AND OTHER CLASSES OF
CONNECTIVES

It can be observed that the traditional non-graded classes
of truth-value operators can be defined by requiring the full
satisfaction of some of the properties defined in Definition 3.6
and 3.1. In particular, a connective c is a (non-graded) t-norm,
uninorm, or binary aggregation operator respectively iff it
satisfies:

1) 4Com(c),4Ass(c),4LMon(c),4LUnit(c, 1)
2) 4Com(c),4Ass(c),4LMon(c), (∃η)4LUnit(c, η)
3) 4Mon(c),4(1 c 1),4¬(0 c 0)

Furthermore, in standard Łukasiewicz logic, c is a (non-
graded) quasicopula iff

4Unit(c, 1), 4Null(c, 0),4Mon(c),4Cng(c).

Idempotent binary aggregation operators are those which also
satisfy 4 Idem(c), commutative quasicopulas those also sat-
isfying 4Com(c); etc. The conditions 4(1c1),4¬(0c0) in
the definition of aggregation operators are shorter equivalents
of the usual conditions 1 c 1 = 1 and 0 c 0 = 0, respectively.
Quasicopulas can in our setting not only be generalized in a
graded manner, but also to analogous operators that satisfy
Cng w.r.t. an equivalence ↔ other than standard Łukasiewicz
as a measure of distance.

There are countless possibilities as to how the properties
of being a t-norm, uninorm, etc. can be defined, which are
all equivalent in the non-graded case: e.g., c is a t-norm
also iff 4Com(c),4Ass(c),4Mon(c),4RUnit(c, 1). In
the graded case, however, these definitions are no longer
equivalent, since, e.g., the commutativity of c, on which the



equivalence of the latter two definitions depends, need not
be satisfied to degree 1. Defining all of the countless notions
of graded t-norm(ness) or uninorm(ness) would clearly be
unmanageable: therefore we shall rather study the graded
constituent properties of Com, Ass, LUnit, RUnit, etc. in-
dependent of each other, combining them freely as premises
of theorems and not insisting on any particular predefined
combinations thereof. Notice (cf. [15]) that this is just another
feature of graded fuzzy mathematics which appears regularly
when dealing with compound notions (i.e., those defined in the
non-graded case as a conjunction of some conditions). Further
we shall see that most of our theorems indeed require various
combinations of the constituent properties, while still express-
ing the crisp properties of t-norms (or uninorms, quasicopulas,
etc.) when the premises are fully true.

The following theorem provides us with samples of basic
graded results generalizing the well-known basic properties of
t-norms.

Theorem 4.1: FCT proves the following graded properties
of truth-value operators:
(T1) RMon(c),RUnit(c, 1) ⇒ LNull(c, 0)
(T2) (LMon(c)&LUnit(c, 1)) ∧ (RMon(c)&RUnit(c, 1))

⇒ c ⊆ ∧
(T3) Mon2(c),Unit2(c, 1) ⇒ c ⊆ ∧
(T4) Idem(c),LMon(c) ∧ RMon(c) ⇒ ∧ ⊆ c
(T5) (LMon(c)&LUnit(c, 1)) ∧ (RMon(c)&RUnit(c, 1))

⇒ (α c α↔ α)↔ (∀β)((α c β)↔ (α ∧ β))
(T6) Mon2(c),Unit2(c, 1) ⇒

(α c α↔ α)↔ (∀β)((α c β)↔ (α ∧ β))
Theorem (T1) generalizes the well-known fact that in t-

norms, the nullness of 0 follows from the unitness of 1.
Theorems (T2) and (T3) correspond to the fact that the
minimum is the greatest (so-called strongest) t-norm. The-
orem (T4) generalizes the basic fact that the minimum is
the only idempotent t-norm, while (T5) and (T6) a graded
characterization of the idempotents of c [16].

V. GRADED DOMINANCE

Applying the definition of dominance between binary aggre-
gation operators and making it graded by replacing crisp ≤ by
→, we obtain the following notion of graded dominance. As
usually, the traditional notion of dominance is expressible as
the graded notion satisfied to degree 1, i.e., prepended by 4.

Definition 5.1: The graded relation � of dominance be-
tween binary connectives is defined as follows:

c� d ≡df (∀αβγδ)((α d γ) c (β d δ)→ (α c β) d (γ c δ))

The following theorem shows how graded dominance is
transmitted to ≈-close connectives:

Theorem 5.2: FCT proves:
(D1) c� d, c ≈3 c′,Cng(d) ⇒ c′ � d
(D2) c� d,d ≈3 d′,Cng(c) ⇒ c� d′

Theorem 5.3: FCT proves, for any i ∈ {1, 2}:
(D3) 4Com(c),4Ass(c) ⇒ c� c
(D4) Com(c),Ass4(c),Cng(c) ⇒ c� c

(D5) 4Com(ci),4Ass(ci),Mon(ci), c1 ⊆ c2, c2 v c1

⇒ c1 � c2

(D6) Com(ci),Ass4(ci),Cng(ci),Mon(ci), c1⊆c2, c1v c2

⇒ c1 � c2

Theorem (D3) is just a basic fact, that every t-norm domi-
nates itself and (D4) is it graded generalization, which can be
informally explained as saying that self-domination (or Aczél’s
property of bisymmetry), holds not only for t-norms, but to a
fair degree also for connectives which are very associative and
fairly commutative and monotone.

Theorems (D5)–(D6) have no correspondences among
known results; they provide us with bounds for the degree
to which (c � d) holds, where the assumption (d v c) &
(c ⊆ d) would be obviously useless in the crisp non-graded
framework (as it necessitates that c and d coincide anyway).
Notice that relaxing the assumption of full commutativity
(associativity) from (D3) and (D5) necessitates the presence
of congruence property in (D4) and (D6).

The following theorem is a graded version of another
classical results (that dominance implies inclusion / pointwise
order). Read contrapositively, it provides a bound to the degree
of dominance from the (usually known or at least more easily
calculable) degrees of subsethood of the connectives.

Theorem 5.4: FCT proves the following graded properties
of dominance:
(D7) 4LUnit(c, η),4RUnit(d, η)), c� d ⇒ c ⊆ d

The following theorem shows preservation of dominance
under compositions and is a generalization of non-graded
theorems of [11].

Theorem 5.5: Let (∀αβ)(e(α, β) = (α a β) c (α b β)) or
(∀αβ)(e(α, β) = (α a α) c (β b β)). Then FCT proves:
(D8) d� c,4(d� a),4(d� b),Mon(c) ⇒ d� e

The following two theorems study graded properties of
dominance w.r.t. both ‘logical’ conjunctions present in our
language.

Theorem 5.6: FCT proves the following graded properties
of dominance w.r.t. &:
(D9) &� c,Mon(c) ⇒ (α→β)c(γ→δ)→ (αcγ→β cδ)
(D10) &� c,Mon(c) ⇒ (α↔β)c(γ↔δ)→ (αcγ↔β cδ)
(D11) &� c,Mon(c),RUnit(c, 1) ⇒ LMon(c)
(D12) &� c,Mon(c),& ⊆ c ⇒ Cng(c)

Theorem 5.7: FCT proves the following graded properties
of dominance w.r.t. ∧:
(D13) Mon(c) ⇒ c� ∧
(D14) 4Unit(c, 1) ⇒ (∧ � c) ≤ (∧ ⊆ c)
(D15) Unit(c, 1),Cng(c),∧ � c ⇒ ∧ ⊆ c
(D16) 4Mon(c),4Unit(c, 1) ⇒ (∧ ⊆ c) = (∧ � c)
(D17) LMon(c) ∧ RMon(c),∧ � c ⇒

(α c 1) ∧ (1 c β)↔ α c β
Theorem (D13) is a graded generalization of the well-

known fact that the minimum dominates any aggregation
operator [11]. Theorem (D16) demonstrates a rather surprising
fact: that the degree to which a monotonic binary operation
with neutral element 1 dominates the minimum is nothing else



but the degree to which it is larger. Theorem (D17) is (a part
of) an alternative characterization of operators dominating the
minimum; for its non-graded version see [11, Prop. 5.1].

Example 5.8: Theorem (D16) can easily be utilized to
compute degrees to which standard t-norms on the unit interval
dominate the minimum. It can be shown easily that

(∧ ⊆ c) = inf
x∈[0,1]

(x⇒ c(x, x))

holds, i.e. the largest “difference” of a t-norm c from the
minimum can always be found on the diagonal. In standard
Łukasiewicz logic, this is, for instance, 0.75 for the product
t-norm and 0.5 for the Łukasiewicz t-norm itself. So we can
infer that the product t-norm dominates the minimum with a
degree of 0.75 (assuming that the underlying logic is standard
Łukasiewicz!); with the same assumption, the Łukasiewicz t-
norm dominates the minimum to a degree of 0.5.

VI. APPLICATIONS TO FUZZY RELATIONS

In this section we shall apply graded dominance to graded
properties of c-transitivity and c-extensionality of fuzzy rela-
tions.

Definition 6.1: In FCT, we define the following graded
properties of binary fuzzy relations:

Transc(R) ≡df (∀xyz)(Rxy cRyz → Rxz)
Extc(A,R) ≡df (∀xy)(Ax cRxy → Ay)

Furthermore we define the class operation c given by the
connective c as follows:

P cQ =df {~x | P~x cQ~x},

for tuples ~x of an arbitrary arity. (Thus, e.g., c is strong
intersection if c = &, weak union if c = ∨, etc., of fuzzy
classes or fuzzy relations.)

The following theorems show the importance of graded
dominance for graded properties of fuzzy relations. Theo-
rem 6.2 is a graded generalization of the well-known theorem
by De Baets and Mesiar that uses dominance to characterize
preservation of transitivity by aggregation [10, Th. 2]. By (R4),
in monotone operators with the null element 0 (e.g., t-norms),
the degree of graded dominance c� d is exactly the degree
to which c-transitivity is preserved by d-intersections.

Theorem 6.2: FCT proves:
(R1) c� d,Mon(d),4Transc(R),4Transc(S) ⇒

Transc(R d S)
(R2) c� d,Mon(d)∧Cng(d),Transc(R),Transc(S) ⇒

Transc(R d S)
(R3) (∀RS)(4(Transc(R) & Transc(S))

→ Transc(R d S)),4Null(c, 0) ⇒ c� d
(R4) Mon(d),4Null(c, 0) ⇒ (c� d)↔

(∀RS)(4(Transc(R) & Transc(S))
→ Transc(R d S))

The similitude between the defining formulae of Transc(R)
and Extc(A,R) makes it possible to transfer the results of
Theorem 6.2 to graded extensionality:

Theorem 6.3: FCT proves:
(R5) c� d,Mon(d),4Extc(A,R),4Extc(B,S)

⇒ Extc(A dB,R d S)
(R6) c� d,Mon(d) ∧ Cng(d),Extc(A,R),Extc(B,S)

⇒ Extc(A dB,R d S)
(R7) 4Null(c, 0),

(∀ABRS)(4Extc(A,R) & 4Extc(B,S)
→ Extc(A dB,R d S)) ⇒ c� d

(R8) Mon(d),4Null(c, 0) ⇒ (c� d)↔
(∀ABRS)(4Extc(A,R) & 4Extc(B,S)

→ Extc(A dB,R d S))

APPENDIX

In this section, we present a self-contained list of definitions
related to Fuzzy Class Theory (FCT). For a complete and
detailed introduction to FCT, the reader is referred to the
freely available primer [13]. Preprints of many papers on FCT,
including most of those cited in the present paper, are (as
of 2009) also available at the website of the FCT project,
www.cs.cas.cz/hp.

Definition A.1: Fuzzy Class Theory (over MTL4) is a
theory over multi-sorted first-order logic MTL4 with crisp
equality. There are sorts for individuals of the zeroth or-
der (i.e., atomic objects), denoted by lowercase variables
a, b, c, x, y, z, . . . ; individuals of the first order (i.e., fuzzy
classes), denoted by uppercase variables A,B,X, Y, . . . ; etc.
Individuals ξ1, . . . , ξk of each order can form k-tuples (for
any k ≥ 0), denoted by 〈ξ1, . . . , ξk〉; tuples are governed by
the usual axioms known from classical mathematics (e.g., that
tuples equal if and only if their respective constituents equal).
Furthermore, for each variable x of any order n and for each
formula ϕ there is a class term {x | ϕ} of order n+ 1.

Besides the logical predicate of identity, the only primitive
predicate is the membership predicate ∈ between successive
sorts (i.e., between individuals of the n-th order and individ-
uals of the (n+ 1)-st order, for any n). The axioms for ∈ are
the following (for variables of all orders and all formulae ϕ):
(∈1) y ∈ {x | ϕ(x)} ↔ ϕ(y), (comprehension axioms)
(∈2) (∀x)4(x ∈ A↔ x ∈ B)→ A = B (extensionality)

Besides the above specific axioms, FCT uses the axioms
and deduction rules of multi-sorted first-order logic MTL4
with crisp identity. Theorems, proofs, etc., are defined com-
pletely analogously as in classical logic.

The models of FCT are systems (closed under definable
operations) of fuzzy sets (and fuzzy relations) of all orders
over some crisp universe U , where the membership functions
of fuzzy subsets take values in some MTL4-chain. Intended
models are those which contain all fuzzy subsets and fuzzy
relations over U (of all orders). Models in which moreover
the MTL4-chain is standard (i.e., given by a left-continuous
t-norm on the unit interval [0, 1]) correspond to Zadeh’s [17]
original notion of fuzzy set, and are called Zadeh models.
FCT is sound with respect to Zadeh models, therefore all
theorems provable in FCT are true statements about fuzzy
sets and relations in the traditional sense.



Convention A.2: For better readability of FCT formulae, we
make the following conventions:

• We use Ax and Rx1 . . . xn as synonyms for x ∈ A and
〈x1, . . . , xn〉 ∈ R, respectively.

• The formulae ϕ & . . . & ϕ (n times) are abbreviated
ϕn; instead of (x ∈ A)n, we can write x ∈n A (and
analogously for other predicates).

• A chain of implications

ϕ1 → ϕ2, ϕ2 → ϕ3, . . . , ϕn−1 → ϕn

is, for short, written as ϕ1 −→ ϕ2 −→ · · · −→ ϕn (and
similarly for the equivalence connective).

• Formulae of the form ϕ1 & . . .&ϕn → ψ can be written
as ϕ1, . . . , ϕn ⇒ ψ.

• Finally, ϕ ≤ ψ abbreviates 4(ϕ→ ψ).
Definition A.3: We define the following elementary rela-

tions between fuzzy sets in FCT:
A ⊆ B ≡df (∀x)(x ∈ A→ x ∈ B)
A v B ≡df (∀x)(x ∈ A ≤ x ∈ B)
A u B ≡df (A ⊆ B) & (B ⊆ A)
A ≈ B ≡df (∀x)(x ∈ A↔ x ∈ B)
Hgt(A) ≡df (∃x)Ax
Plt(A) ≡df (∀x)Ax
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[7] L. Běhounek and P. Cintula, “Fuzzy class theory,” Fuzzy Sets and
Systems, vol. 154, no. 1, pp. 34–55, 2005.

[8] ——, “From fuzzy logic to fuzzy mathematics: A methodological
manifesto,” Fuzzy Sets and Systems, vol. 157, no. 5, pp. 642–646, 2006.
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