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ABSTRACT: There is a programme in the formal founda-
tions of fuzzy mathematics proposed by the authors, the goal
of which is to encompass a large part of existing fuzzy mathe-
matics within a general logical formalism. This paper presents
the methodology behind this programme and reviews the tech-
nical aspects of a particular apparatus for this enterprise.
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1 INTRODUCTION

Classical mathematics and logic can model the concept of
vagueness only indirectly. Even though many-valued logics
were developed (for other purposes) already during the first
half of the XX century, a systematic study of vagueness by
means of the many-valued approach began only after L.A.
Zadeh [16] proposed to investigate fuzzy sets in 1965. Since
then, the notion of fuzziness spread to nearly all mathemat-
ical disciplines: fuzzy arithmetic, fuzzy logic, fuzzy proba-
bility, fuzzy relations, fuzzy topology, etc. For a long time,
however, fuzzy logic and fuzzy mathematics were engineering
tools rather than well-designed mathematical theories. Driven
mainly by applications, they lacked (meta)theoretical ground-
ing and general results; developed mostly by engineers for
particular purposes, they suffered from arbitrariness in defi-
nitions and often even mathematical imprecision. Moreover,
it has been objected that it was just a theory of [0,1]-valued
functions and thus a part of real analysis. On the other hand,
fuzzy logic describes the laws of truth preservation in reason-
ing under (a certain form of) vagueness, and its interpretation
in terms of truth degrees is only amodel—a classical (i.e.,
crisp) rendering of vague phenomena. If one wants to reason
about fuzzy predicates in adirectway, not mediated by a crisp
model, one should do so according to the logical laws that hold
for fuzzy predicates, i.e., in fuzzy logic.

The need for axiomatization of fuzzy mathematics is be-
yond doubt—axiomatization has always aided the develop-
ment of mathematical theories. There have been many (more
or less successful) attempts to formalize or even axiomatize
some areas of fuzzy mathematics. However, these axiomatic
systems are usually designed ad hoc. The authors select some
concepts in their area of interest and change them into vague
ones. This selection is usually based mainly on intuition or on
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the desired application. Another problem with these axiomatic
attempts lies in their fragmentation; it is nearly impossible to
combine two of them into one theory. It would certainly be
better if fuzzy mathematics as a whole could employ a uni-
fied methodology in building its axiomatic theories, because it
would facilitate the exchange of results between its branches.
We propose such a unified methodology for the axiomatiza-
tion of fuzzy mathematics.

Our work, in this paper, has two levels. First, we sketch a
proposal for this unified methodology (the full text of this pro-
posal is found in our paper [1]) and then we sketch a proposal
for particular logical systemfollowing these methodological
guidelines (this part is based on our paper [2]). The present pa-
per is preceded by the paper [3] (in this volume), which gives
an introductory overview of concepts of the presented theory
and concentrates on informal proof methods for doing fuzzy
mathematics within its framework.1

2 METHODOLOGICAL PROGRAMME

In the axiomatic construction of classical mathematics, a
three-layer architecture proved worthy, with the layers of
logic, foundations, and only then individual mathematical dis-
ciplines. Individual disciplines are thus developed within the
framework of a unifying formal theory, be it some variant of
set theory, type theory, category theory, or another sufficiently
rich and general kind of theory.

In fuzzy mathematics, the level oflogic seems to be ad-
vanced far enough so as to support sufficiently strong formal
theories (by the works of Gottwald [7], H́ajek [8], Nov́ak et
al. [12], Mundici et al. [4], and others). There are many ex-
isting formal systems of fuzzy logic, and thus we first need to
make some design choices. We—following Hájek—believe
a certain style of logical systems to be a most suitable for-
malism for representing fuzzy inference. For brevity’s sake,
in what follows we shall call themHájek-style fuzzy logics.
Put in a nutshell, they are fuzzy logics retaining the syntax of
classical logic (preferably without truth constants), defined as
axiomatic systems (rather than non-axiomatizable sets of tau-
tologies). A prototypical example is H́ajek’s Basic Logic BL,
propositional or predicate.

There is a pragmatic motive for retaining as much of clas-
sical syntax as possible. The way of working in theories over
Hájek-style fuzzy logics resembles closely the way of work-
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ing in classical logic: H́ajek-style fuzzy logics are often just
weaker variants of Boolean logic—syntactically fully analo-
gous, just lacking some of its laws. Therefore, many theoreti-
cal and metatheoretical methods developed for classical logic
can be mimicked and employed, resulting in a quick and sound
development of the theory. This feature has already been uti-
lized in metamathematics of fuzzy logic—the proofs of the
completeness, deduction, and other metatheorems have often
been obtained by adjustments of classical proofs. For more
reasons for this restriction see [1].

The search for a suitablefoundational theoryis the task of
the day. The close analogy between Hájek-style fuzzy logics
and classical logic gives rise to a hope that fuzzy analogues of
classical foundational theories will be able to harbour all (or
at least nearly all) parts of existing fuzzy mathematics.

As conceivable candidates for a foundational theory, sev-
eral ZF-style fuzzy set theories has already arisen ([9], [13]).
Many of them are certainly capable of doing the job. Nev-
ertheless, the axiomatics of most ZF-style fuzzy set theories
savour of a similar ad hoc axiom choices as other hitherto at-
tempts at axiomatization of fuzzy mathematics. By large this
is induced by the fact that such theories have to deal with a
specific set-theoretical agenda and take into the account the
structure of the whole set universe (expressed, e.g., by the ax-
iom of well-foundedness). Moreover, for many of them it is
not clear whether they can straightforwardly be generalized to
other fuzzy logics than the one in which they were developed;
thus they are only capable of providing the foundation for a
limited part of fuzzy mathematics.

After a universal foundational theory is successfully found,
the development ofindividual concepts of fuzzy mathematics
has to proceed in a systematic way, taking into the account
the dependencies between them as in classical mathematics.
For example, the notion of cardinality should only be defined
after the introduction and investigation of the notion of func-
tion, upon which it is based (and which in turn is based upon
the concept of fuzzy equality, i.e., similarity). The coherence
of defined notion from the point of view of category theory
should also be checked. Only this kind of systematic approach
can avoid giving ad hoc definitions of fuzzy concepts, which
often suffer from arbitrariness and hidden crispness. Further-
more, if the background logic is sufficiently strong, there is
a general method (to be described later) of embedding any
classical theory, and even of its natural fuzzification (as well
as conscious and controlled ‘defuzzification’ of its concepts
if some of their features are to be left crisp). The method
has already been foreshadowed in U. Höhle’s 1987 paper [10,
Section 5]:

“It is the opinion of the author that from a math-
ematical viewpoint the important feature of fuzzy
set theory is the replacement of the two-valued logic
by a multiple-valued logic. [. . . I]t is now clear how
we can find for every mathematical notion its ‘fuzzy
counterpart’. Since every mathematical notion can
be written as a formula in a formal language, we
have only to internalize, i.e. to interpret these ex-
pressions by the given multiple-valued logic.”

As a concrete implementation of the general programme
sketched above we propose a specific foundational theory de-
scribed below. We do not claim it to be the only possible way

neither of doing the foundations of fuzzy mathematics, nor of
fulfilling our foundational programme; nevertheless, it seems
to be a viable foundation for fuzzy mathematics of the present
day.

By inspecting the existing approaches and having in mind
the need for generality and simplicity, it becomes obvious that
a full-fledged set theory is not necessary for the foundations
of fuzzy mathematics. What is necessary is only the ability
to perform within the theory the basic constructions of fuzzy
mathematics. On the other hand, a great variability of the
background fuzzy logic is required in order to encompass the
whole of fuzzy mathematics.

Most notions of classical mathematics can be defined within
the first few levels of a simple type theory. The similarity
between classical and Hájek-style fuzzy logics hints that this
could be true for fuzzy concepts defined in a fuzzified sim-
ple type theory as well. Indeed, many important notions can
be defined already at the first level, which is in fact second-
order fuzzy logic. Most notably, elementary fuzzy set theory,
or the axiomatization ofZadeh’s notion of fuzzy set,is con-
tained in second-order fuzzy logic (second-order models are
exactly Zadeh’s universes of fuzzy sets). Some theories (e.g.,
topology), however, need more levels of type hierarchy, thus
we employ higher-order fuzzy logic.

Unfortunately, fuzzy higher-order logic is not recursively
axiomatizable. Since we prefer axiomatic deductive theo-
ries over non-axiomatizable sets of tautologies, we choose
its Henkin-style variant, even though it admits non-intended
models. We thus get afirst-order theory,axiomatized very
naturally by the extensionality, comprehension, and tuple-
handling axioms for each order. Moreover, the construction
works for virtually all imaginable fuzzy logics (and many non-
fuzzy logics as well). The bunch of foundational theories we
propose thus can be calledHenkin-style higher-order fuzzy
logic (for an individual fuzzy logic of one’s choice; expres-
sively rich logics like ŁΠ seem to be sufficient for all practical
purposes). The details of this formalism can be found in the
following sections (or in our paper [2]).

3 LOGIC

In what follows, we assume the basic knowledge of Hájek’s
Basic fuzzy logic BL and its three important extensions
(Łukasiewicz, G̈odel, and product logics) or their extensions
by the projector∆ (see [8] for details). We however recall
the definition of the logic ŁΠ and some of its properties.
This logic has some unique features, which seem to be im-
portant to achieve our goal. It is common to use different
(non-corresponding) connectives in existing fuzzy mathemat-
ics; e.g., for some application we need the product t-norm
as conjunction and the Łukasiewicz residuum for implication.
The logic ŁΠ combines all three basic logics into one and thus
it offers huge expressive power (see Theorem 6 for more de-
tails). The definitions and theorems in this section are from
papers [6] and [5].

Definition 1 The logicŁΠ has the followingbasic connec-
tives(they are listed together with their standard semantics in
[0,1]; we use the same symbols for logical connectives and the
corresponding algebraic operations):



0 0 truth constant falsum
ϕ→L ψ x→L y = min(1,1−x+y)Łukasiewicz implication
ϕ→Π ψ x→Π y = min(1, x

y) product implication
ϕ &Π ψ x &Π y = x ·y product conjunction

The logicŁΠ 1
2 has one additional truth constant1

2 with the
standard semantics12. We define the followingderived con-
nectives:

¬Lϕ is ϕ→L 0 ¬Lx = 1−x
¬Πϕ is ϕ→Π 0 ¬Πx = 1 if x = 0, otherwise0

1 is ¬L0 1
∆ϕ is ¬Π¬Lϕ ∆x = 1 if x = 1, otherwise0

ϕ &L ψ is ¬L(ϕ→L ¬Lψ) x &L y = max(0,x+y−1)
ϕ⊕ψ is ¬Lϕ→L ψ x⊕y = min(1,x+y)
ϕªψ is ϕ &L ¬Lψ xªy = max(0,x−y)
ϕ ∧ ψ is ϕ &L (ϕ→L ψ) x∧ y = min(x,y)
ϕ ∨ ψ is ¬L(¬Lϕ ∧ ¬Lψ) x∨ y = max(x,y)

ϕ→G ψ is ∆(ϕ→L ψ) ∨ ψ x→G y = 1 if x≤ y, othw.y
ϕ = ψ is ∆(ϕ ↔L ψ) 1 if x = y, otherwise0
ϕ≤ ψ is ∆(ϕ→L ψ) 1 if x≤ y, otherwise0
ϕ≤ 1

2 is ϕ≤ ¬Lϕ 1 if x≤ 1
2, otherwise0

Occasionally we may write¬G and &G as synonyms for
¬Π and∧, respectively. We further abbreviate(ϕ →∗ ψ) & ∗
(ψ →∗ ϕ) by ϕ ↔∗ ψ for ∗ ∈ {G,L,Π} and ϕ ∨∗ ψ for
¬L(¬Lϕ & ∗ ¬Lψ).

The standardŁΠ-algebra [0,1] has the domain[0,1] and
the operations as stated in Definition 1 above (analogously for
the standard ŁΠ 1

2-algebra).

Definition 2 The logicŁΠ is given by the following axioms
and deduction rules:

(Ł) The axioms of Łukasiewicz logic
(Π) The axioms of product logic
(Ł∆) ∆(ϕ→L ψ)→L (ϕ→Π ψ)
(Π∆) ∆(ϕ→Π ψ)→L (ϕ→L ψ)
(Dist) ϕ &Π (χªψ) ↔L (ϕ &Π χ)ª (ϕ &Π ψ)

The deduction rules are modus ponens and∆-necessitation
(from ϕ infer ∆ϕ). The logicŁΠ 1

2 results fromŁΠ by adding
the axiom1

2 ↔ ¬L
1
2.

The notions of proof, derivabilitỳ , theorem, and theory
over ŁΠ and ŁΠ 1

2 are defined as usual.

Theorem 3 (Completeness)Let ϕ be a formula ofŁΠ (ŁΠ 1
2

respectively). Then the following conditions are equivalent:

• ϕ is a theorem ofŁΠ (ŁΠ 1
2 resp.)

• ϕ is a [0,1]-tautology.

The following definitions and theorems demonstrate the ex-
pressive power of ŁΠ and ŁΠ 1

2. In particular, Corollary 7
shows that each propositional logic based on an arbitrary con-
tinuous t-norm of a certain simple form is contained in ŁΠ 1

2.

Definition 4 A function f : [0,1]n → [0,1] is called arational
ŁΠ-function iff there is a finite partition of[0,1]n such that
each block of the partition is a semi-algebraic set andf re-
stricted to each block is a fraction of two polynomials with
rational coefficients.

Furthermore, a rationaln-ary ŁΠ-function f is integraliff
all the coefficients are integer andf ({0,1}n)⊆ {0,1}.

Definition 5 Let f be a function f : [0,1]n → [0,1] and
ϕ(v1, . . . ,vn) be a formula. We say that the functionf is
represented by the formulaϕ (ϕ is a representation off ) iff
e(ϕ) = f (e(v1), e(v2), . . . , e(vm)) for each evaluatione.

Theorem 6 (Functional representation) A function f is an
integral (rational respectively)ŁΠ function iff it is represented
by some formula ofŁΠ (ŁΠ 1

2 resp.).

The following theorem was proved in [5], but it can be
viewed as a corollary of the previous theorem.

Corollary 7 Let ∗ be a continuous t-norm which is a finite
ordinal sum of the three basic ones (i.e., ofG, L andΠ), and
⇒ be its residuum. Then there are derived connectives&∗ and
→∗ of theŁΠ 1

2 logic such that their standard[0,1]-semantics
are∗ and⇒ respectively. The logic PC(∗) of the t-norm∗ (see
[8]) is contained inŁΠ 1

2 if & and→ of PC(∗) are interpreted
as& ∗ and→∗. Furthermore, ifϕ is provable in PC(∗) (and
a fortiori, if it is provable in H́ajek’s logicBL∆, see [8]), then
the formulaϕ∗ obtained fromϕ by replacing the connectives
& and→ of PC(∗) (or BL∆) by &∗ and→∗ is provable in
ŁΠ 1

2.

Corollary 8 Let r ∈ [0,1] be a rational number; then there
is a formula ϕ of ŁΠ 1

2 such thate(ϕ) = r for any [0,1]-
evaluatione.

We assume the reader to be familiar with the notions of
the multi-sorted predicate language and semantics of predi-
cate fuzzy logics. We only recall the axioms of the predicate
ŁΠ with crisp equality.

Definition 9 (First-order ŁΠ) First-orderŁΠ logic adds the
deduction rule of generalization and the following axioms for
quantifiers and (crisp) identity:

(∀1) (∀x)ϕ(x)→ ϕ(t), if t is substitutable forx in ψ
(∀2) (∀x)(χ→L ϕ)→ (χ→L (∀x)ϕ), x not free inχ
(=1) x = x
(=2) x = y→ ∆(ϕ(x) ↔ ϕ(y))

(∃x)ϕ is defined as¬L(∀x)¬Lϕ.

4 FOUNDATIONAL THEORY

Now we sketch our foundational theory. Its first step is a fuzzy
class theory (FCT, see [2] for details). We formulate this the-
ory over arbitrary fuzzy logic (stronger than BL∆). However,
keep in mind that the logic ŁΠ is the intended background
logic. To put our theory into the context we notice that the
FCT is nothing else than a Henkin-style second-order fuzzy
logic.

Definition 10 (Henkin-style second-order fuzzy logic)
Let F be a fuzzy logic which extendsBL∆. The Henkin-style
second-order fuzzy logicF is a theory over multi-sorted first-
orderF with sorts for objects (lowercase variables) and fuzzy
sets (uppercase variables). Both of the sorts subsume subsorts
for n-tuples, for alln≥ 1. Apart from the obvious necessary
function symbols and axioms for tuples (tuples equal iff their
respective constituents equal), the only primitive symbol is the
membership predicate∈ between objects and (fuzzy) sets. The
axioms for∈ are the following:



1. The comprehension axioms(∃X)∆(∀x)(x ∈ X ↔ ϕ), ϕ
not containingX, which enable the (eliminable) intro-
duction of comprehension terms{x | ϕ} with the axioms
y∈ {x | ϕ(x)} ↔ ϕ(y) (whereϕ may be allowed to con-
tain other comprehension terms).

2. The extensionality axiom(∀x)∆(x∈X↔ x∈Y)→X =Y.

Convention 11 The usual precedence of connectives is as-
sumed. The formulae(∀x)(x ∈ X → ϕ) and (∃x)(x ∈
X & ϕ) are abbreviated(∀x∈ X)ϕ and (∃x∈ X)ϕ, respec-
tively (similar notation can be used for defined binary pred-
icates). The formulaeϕ & . . . & ϕ (n times) are abbre-
viated ϕn. Furthermore,{〈x1, . . . ,xk〉 | ϕ} is shorthand for
{x | (∃x1) . . .(∃xk)(x = 〈x1, . . . ,xk〉 & ϕ)}. An alternative no-
tation forx∈A and〈x1, . . . ,xn〉 ∈Ris simplyAxandRx1 . . .xn,
respectively.

To get our foundational theory we just iterate the previous
definition to get third-(fourth-,ω-)order fuzzy logic.

Definition 12 (Henkin-style higher-order fuzzy logic)
Henkin-style fuzzy logic of higher orders is obtained by re-
peating the previous definition on each level of the type hi-
erarchy. Obviously, defined symbols of any type can then be
shifted to all higher types as well. (Consequently, all theorems
are preserved by uniform upward type-shifts.) Types may be
allowed to subsume all lower types.

Henkin-style fuzzy logicF of order n will be denoted by
Fn, the whole hierarchy byFω. The types of terms are either
denoted by a superscripted parenthesized type (e.g.,X(3)), or
understood from the context.

It should be stressed that despite the name, Henkin-style
higher-order fuzzy logics aretheoriesover first-order fuzzy
logics (see [8]). Observe that Henkin-styleω-order fuzzy
logic can also be viewed as a fuzzy type theory (recall that
a fuzzy type theory for the logic IMTL∆ was introduced by
Novák in [11]).

Now we present a uniform way for fuzzifying crisp theo-
ries. Since our theory contains classical type theory, we can
introduce arbitrary relations and functions on the universe of
objects which are definable in classical type theory. As they
can be described by formulae, their existence is guaranteed by
the comprehension axiom. So the only thing we need to add
is a constant of the appropriate sort and the instance of the
comprehension axiom. The following definition is the formal-
ization of this approach for the first-order theories.

Definition 13 Let Γ be a classical one-sorted predicate lan-
guage andT be aΓ-theory. For each n-ary predicate symbolP
of Γ let us introduce a new constant̄P for a set of n-tuples, and
for each n-ary function symbolF we take a new constant̄F for
a fuzzy set of (n+1)-tuples. We define the languageF2(Γ) as
the language ofF2 extended by the symbols̄Q for each symbol
Q∈Γ. The translation̄ϕ of aΓ-formulaϕ to F2(Γ) is obtained
as the result of replacing all occurrences of allΓ-symbolsQ
in ϕ by Q̄.

We define the theoryF2(T) in the languageF2(Γ) as the
theory with the following axioms:

• The axioms ofF2

• The translations̄ϕ of all axiomsϕ of T

• Crisp(Q̄) for each symbolQ ∈ Γ (for the definition of
Crisp, see Table 2)

• 〈x1, . . .xn,y〉 ∈ F̄ & 〈x1, . . .xn,z〉 ∈ F̄ → y = z for each
n-ary function symbolF ∈ Γ.

Lemma 14 Let Γ be a classical predicate language,T a Γ-
theory. If M is a model ofF2(T), thenMc = (M,(QMc)Q∈Γ),
whereQMc = Q̄M for eachQ∈ Γ, is a model (in the sense of
classical logic) of the theoryT.

Vice versa, for each modelM of T there is a modelN of
F2(T) such thatNc is isomorphic toM .

Therefore,T ` ϕ iff F2(T) ` ϕ̄, for anyΓ-formulaϕ.

Example 15 Let R be a constant for a set of pairs. Then
in each model of the theoryCrisp(R), Refl(R), Trans(R),
(∀x,y)(Rxy& Ryx→ x = y), the constantR is represented by
a crisp ordering on the universe of objects. (For the definitions
of ReflandTrans, see Definition 24.)

Example 16 If T is a classical theory of the real
closed field, then in eachL -model M of the theory
F2(T), the universe of objects with≤̄M ,+̄M ,−̄M , ·̄M ,
0̄M , 1̄M is a real closed field.

In Lemma 14 we speak of first-order theories only. Never-
theless, it can be extended to any theory formalizable in clas-
sical type theory. Here we present only one example.

Example 17 Let τ be a constant for a (fuzzy) set of (fuzzy)
sets andT the theory with the following axioms:

• Crisp(τ)
• (∀X)(X ∈ τ→ Crisp(X))

• (∀X )(Crisp(X ) & X ⊆ τ→ {x | (∃X ∈ X )x∈ X} ∈ τ)
• (∀X1) . . .(∀Xn)(X1∈ τ & . . . & Xn∈ τ→ X1∩ . . .∩Xn∈ τ)

for eachn∈ N

Then in each model of the theoryT, the constantτ is repre-
sented by a classical topology on the universe of objects.

5 ELEMENTARY FUZZY SET THEORY

Now we demonstrate the power of our theory by showing how
it can handle the elementary fuzzy set-theoretic operation and
relations. Due to the restricted length of this paper we present
only very basic notion, the details can be found in [2].

Convention 18 Let ϕ(p1, . . . , pn) be a propositional formula
andψ1, . . . ,ψn be any formulae. Byϕ(ψ1, . . . ,ψn) we denote
the formulaϕ in which all occurrences ofpi are replaced byψi

(for all i ≤ n).

Definition 19 Let ϕ(p1, . . . , pn) be a propositional formula.
We define then-ary set operation induced byϕ as

Opϕ(X1, . . . ,Xn) =df {x | ϕ(x∈ X1, . . . ,x∈ Xn)} .

We give examples of operations defined in this way in ŁΠ2

in Table 1.



Table 1: Elementary set operations

ϕ Opϕ(X1, . . . ,Xn) Name
0 /0 empty set
1 V universal set

∆(α→ p) Xα α-cut
∆(α ↔ p) X=α α-level
¬Gp \X strict complement
¬L p −X involutive compl.

¬G¬L p (or ∆p) Ker(X) kernel
¬¬Gp (or¬∆¬L p) Supp(X) support

p & ∗ q X∩∗Y ∗-intersection
p∨∗ q X∪∗Y ∗-union

p &¬G q X \Y strict difference
p & ∗ ¬Lq X−∗Y involutive∗-diff.

Table 2: Set properties and relations

Relation Notation Name
Rel∃p(X) Hgt(X) height
Rel∃∆ p(X) Norm(X) normality
Rel∀∆(p∨¬p)(X) Crisp(X) crispness

Rel∃¬∆(p∨¬p)(X) Fuzzy(X) fuzziness

Rel∀p→∗q(X,Y) X⊆∗Y ∗-inclusion
Rel∀p↔∗ q(X,Y) X ≈∗ Y ∗-equality
Rel∃p&∗q(X,Y) X‖∗Y ∗-compatibility

Definition 20 (Uniform and supremal relations)
Let ϕ(p1, . . . , pn) be a propositional formula. Then-ary uni-
form relationbetweenX1, . . . ,Xn induced byϕ is defined as

Rel∀ϕ(X1, . . . ,Xn) ≡df (∀x)ϕ(x∈ X1, . . . ,x∈ Xn).

Then-ary supremal relationbetweenX1, . . . ,Xn induced byϕ
is defined as

Rel∃ϕ(X1, . . . ,Xn) ≡df (∃x)ϕ(x∈ X1, . . . ,x∈ Xn).

The advantage of this general definition of the notion of
operation and relation is demonstrated by the following theo-
rem (and its corollaries), which reduce provability in our the-
ory to provability in the background propositional logic. Of
course, the facts we prove this way are known (they can be
found in any textbook about fuzzy sets), but we can prove
all of them at once (provided we know propositional theo-
rems of the background fuzzy logic). In fact we are prov-
ing more: we are provinggradedtheorems (which appeared
for the first time in Gottwald’s monograph [7]). For exam-
ple theoremX⊆∗Y → X ∩∗ Z⊆∗Y ∩∗ Z says the thatX in-
tersected withZ is more a subset ofY intersected withZ
thanX is a subset ofY (written in a “traditional fuzzy” way,
inf
x

−→T (Ax,Bx)≤ inf
x

−→T (T(Ax,Cx),T(Bx,Cx)). Results such as

this one can inFω be obtained without explicit calculations of
membership functions.

Notice that the following theorem and its corollary are for
simplicity written for arbitrary logicF , thus we can avoid the
indexing by∗.

Theorem 21 Let ϕ,ψ1, . . . ,ψn be propositional formulae.
ThenF ` ϕ(ψ1, . . . ,ψn)

iff F2 ` Rel∀ϕ(Opψ1
(X1,1, . . .X1,k1), . . .Opψn

(Xn,1, . . .Xn,kn))

iff F2 ` Rel∃ϕ(Opψ1
(X1,1, . . .X1,k1), . . .Opψn

(Xn,1, . . .Xn,kn))

Corollary 22 Let ϕ andψ be propositional formulae.
If ` ϕ→ ψ then`Opϕ(X1, . . . ,Xn)⊆Opψ(X1, . . . ,Xn).
If ` ϕ ↔ ψ then`Opϕ(X1, . . . ,Xn) = Opψ(X1, . . . ,Xn).
If ` ϕ ∨ ¬ϕ then` Crisp(Opϕ(X1, . . . ,Xn)).

By virtue of Theorem 21, the properties of propositional
connectives directly translate to the properties of relations and
operations. For example:

` ∆p→ p proves ` Ker(X)⊆ X
` p→ p∨ q ” ` X ⊆ X∪Y
` 0→ p ” ` /0⊆ X
` p & q→ p∧ q ” ` X∩∗Y ⊆ X∩GY
` ¬Gp∨ ¬¬Gp ” ` Crisp(\X)

We can prove more complicated general theorems (for de-
tails see [2]) which give us proofs of more complicated facts.
Here we present only some of their consequences in ŁΠ2:

X⊆∗Y→ X∩∗ Z⊆∗Y∩∗ Z
(X⊆∗Y & ∗ Y⊆∗X)→ X ≈∗ Y
(X⊆∗Z & ∗ Y⊆∗Z)→ X∪Y⊆∗Z
∆(X ⊆Y)→ Xα ⊆Yα
transitivity of⊆∗,≈∗
Hgt(X) & ∗ (X⊆∗Y)→ Hgt(Y)
Norm(X∪Y)→ Norm(X) ∨ Norm(Y)
X⊆∗Z & ∗ X‖∗Y→ Y‖∗Z

Definition 23 The union and intersection of a (fuzzy) set of
(fuzzy) sets are the functions

⋃(n+3) and
⋂(n+3), respectively,

assigning a setA(n+1) to a set of setsA(n+2), where:
⋃

A =df {x | (∃A∈ A)(x∈ A)}
⋂

A =df {x | (∀A∈ A)(x∈ A)}

6 FUZZY PROPERTIES OF FUZZY RELATIONS

This section shows some very basic facts about fuzzy rela-
tions provable in our theory. Recall that we work withgraded
(fuzzy) properties of fuzzy relation, i.e., a relation can be par-
tially reflexive, symmetric, etc. Again, the goal of this section
is just todemonstratethe possibilities of our theory, details are
subject of the consequent papers.

Definition 24 In F2, we define the following operations:

X×Y =df {〈x,y〉 | x∈ X & y∈Y}
Dom(R) =df {x | 〈x,y〉 ∈ R}
Rng(R) =df {y | 〈x,y〉 ∈ R}

R′′A ≡df {x | (∃y)(y∈ A & Ryx)}
R◦S =df {〈x,y〉 | (∃z)(〈x,z〉 ∈ R& 〈z,y〉 ∈ S)}
R−1 =df {〈x,y〉 | 〈y,x〉 ∈ R}

Id =df {〈x,y〉 | x = y}
We can also define the usual properties of relations:



ExtE(R) ≡df (∀x,x′,y,y′)(Exx′ & Eyy′ & Rxy→ Rx′y′)
Refl(R) ≡df (∀x)(Rxx)
Sym(R) ≡df (∀x,y)(Rxy→ Ryx)

Trans(R) ≡df (∀x,y,z)(Rxy& Ryz→ Rxz), etc.

There are many theorems on relations easily provable in our
theory (some of them we list below). Recall that the proper-
ties of relations (e.g., reflexivity) are graded. Thus the impli-
cations in the following theorems are generally stronger than
the corresponding statements about entailment.

Theorem 25 The following properties of relations are prov-
able inF2:

1. Refl(R) ↔ Id⊆ R

2. Sym(R) ↔ R−1 ⊆ R

3. Trans(R) ↔ R◦R⊆ R

4. Refl(R)→ R⊆ R◦R

5. Trans(R) & Trans(Q)→ Trans(R∩Q)

6. R⊆ S→ (R◦T ⊆ S◦T) ∧ (T ◦R⊆ T ◦S)

Thus every relation 1. is reflexive to the same degree as it con-
tains identity, 2. is symetric to the same degree as it contains
its own inverse, 4. is contained in the composition with itself
at least in the degree of its reflexivity, etc.

Theorem 26 For an arbitrary binary relationRand arbitrary
(fuzzy) setsA,B we have:

1. A⊆ B→ R′′A⊆ R′′B

2. Refl(R)→ A⊆ R′′A

3. Trans(R)→ ExtR(R′′A)

4. A⊆ B & ExtR(B)→ R′′A⊆ B

5. Trans(R)→ R′′(R′′A)⊆ R′′A

6. Refl(R) & ExtR(A)→ R′′A≈ A

Theorem 27 If A is a crisp set of sets, then
(∀X ∈ A)ExtE(X)→ ExtE(

⋂
A) ∧ ExtE(

⋃
A).
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