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ABSTRACT: There is a programme in the formal foundahe desired application. Another problem with these axiomatic
tions of fuzzy mathematics proposed by the authors, the gatiempts lies in their fragmentation; it is nearly impossible to
of which is to encompass a large part of existing fuzzy mathembine two of them into one theory. It would certainly be
matics within a general logical formalism. This paper presetustter if fuzzy mathematics as a whole could employ a uni-
the methodology behind this programme and reviews the tefibd methodology in building its axiomatic theories, because it
nical aspects of a particular apparatus for this enterprise. would facilitate the exchange of results between its branches.

Keywords: Fuzzy logic, fuzzy mathematics, axiomatizawe propose such a unified methodology for the axiomatiza-

tion, formalization, higher-order logic,-logic. tion of fuzzy mathematics.
Our work, in this paper, has two levels. First, we sketch a
1  INTRODUCTION proposal for this unified methodology (the full text of this pro-

posal is found in our paper [1]) and then we sketch a proposal

Classical h i d loai del th tfor particular logical systenfollowing these methodological
assical mathematics and Jogic can model the concept ﬂgdelines (this part is based on our paper [2]). The present pa-
vagueness only indirectly. Even though many-valued Iog|§

. aris preceded by the paper [3] (in this volume), which gives
were developed (for other purpose_s) already during the f %tintroductory overview of concepts of the presented theory
half of the XX century, a systematic study of vagueness

£ th lued h b Vv after L d concentrates on informal proof methods for doing fuzzy
means of Ihe many-valued approach began only atter Lyinematics within its framework.

Zadeh [16] proposed to investigate fuzzy sets in 1965. Since

then, the notion of fuzziness spread to nearly all mathemat-

ical disciplines: fuzzy arithmetic, fuzzy logic, fuzzy proba2 METHODOLOGICAL PROGRAMME

bility, fuzzy relations, fuzzy topology, etc. For a long time,

however, fuzzy |ogic and fuzzy mathematics were engineerih‘b the axiomatic construction of classical mathematics, a

tools rather than well-designed mathematical theories. Drivéfee-layer architecture proved worthy, with the layers of

main'y by app"cationS, they lacked (meta)theoretica' groudegic, foundations, and Only then individual mathematical dis-

ing and general results; developed mostly by engineers §lines. Individual disciplines are thus developed within the

particular purposes, they suffered from arbitrariness in défamework of a unifying formal theory, be it some variant of

nitions and often even mathematical imprecision. Moreovégt theory, type theory, category theory, or another sufficiently

it has been objected that it was just a theory of [0,1]-valuéigh and general kind of theory.

functions and thus a part of real analysis. On the other handln fuzzy mathematics, the level dbgic seems to be ad-

fuzzy logic describes the laws of truth preservation in reasof@nced far enough so as to support sufficiently strong formal

ing under (a certain form of) vagueness, and its interpretati®gories (by the works of Gottwald [7], &k [8], Nowak et

in terms of truth degrees is only model—a classical (i.e., @l [12], Mundici et al. [4], and others). There are many ex-

crisp) rendering of vague phenomena. If one wants to rea¢®ing formal systems of fuzzy logic, and thus we first need to

about fuzzy predicates indirectway, not mediated by a crispmake some design choices. We—followingjek—believe

model, one should do so according to the logical laws that h@dFertain style of logical systems to be a most suitable for-

for fuzzy predicates, i.e., in fuzzy logic. malism for representing fuzzy inference. For brevity’s sake,
The need for axiomatization of fuzzy mathematics is bl What follows we shall call thenajek-style fuzzy logics.

yond doubt—axiomatization has always aided the develdpt in a nutshell, they are fuzzy logics retaining the syntax of

ment of mathematical theories. There have been many (m@assical logic (preferably without truth constants), defined as

or less successful) attempts to formalize or even axiomatfdomatic systems (rather than non-axiomatizable sets of tau-

some areas of fuzzy mathematics. However, these axiom£@legies). A prototypical example isdjek’s Basic Logic BL,

systems are usually designed ad hoc. The authors select sBfBositional or predicate.

concepts in their area of interest and change them into vagu&here is a pragmatic motive for retaining as much of clas-

ones. This selection is usually based mainly on intuition or &i¢al syntax as possible. The way of working in theories over

Hajek-style fuzzy logics resembles closely the way of work-
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ing in classical logic: Hjek-style fuzzy logics are often justneither of doing the foundations of fuzzy mathematics, nor of
weaker variants of Boolean logic—syntactically fully analdulfilling our foundational programme; nevertheless, it seems
gous, just lacking some of its laws. Therefore, many theoret-be a viable foundation for fuzzy mathematics of the present
cal and metatheoretical methods developed for classical logjy.
can be mimicked and employed, resulting in a quick and soundy inspecting the existing approaches and having in mind
development of the theory. This feature has already been thi need for generality and simplicity, it becomes obvious that
lized in metamathematics of fuzzy logic—the proofs of thee full-fledged set theory is not necessary for the foundations
completeness, deduction, and other metatheorems have astefinizzy mathematics. What is necessary is only the ability
been obtained by adjustments of classical proofs. For magerform within the theory the basic constructions of fuzzy
reasons for this restriction see [1]. mathematics. On the other hand, a great variability of the
The search for a suitabfeundational theorys the task of background fuzzy logic is required in order to encompass the
the day. The close analogy betweedjék-style fuzzy logics whole of fuzzy mathematics.
and classical logic gives rise to a hope that fuzzy analogues oflost notions of classical mathematics can be defined within
classical foundational theories will be able to harbour all (thie first few levels of a simple type theory. The similarity
at least nearly all) parts of existing fuzzy mathematics. between classical anddjek-style fuzzy logics hints that this
As conceivable candidates for a foundational theory, s@ould be true for fuzzy concepts defined in a fuzzified sim-
eral ZF-style fuzzy set theories has already arisen ([9], [13))e type theory as well. Indeed, many important notions can
Many of them are certainly capable of doing the job. Newe defined already at the first level, which is in fact second-
ertheless, the axiomatics of most ZF-style fuzzy set theorigsgler fuzzy logic. Most notably, elementary fuzzy set theory,
savour of a similar ad hoc axiom choices as other hitherto at-the axiomatization oFZadeh’s notion of fuzzy sdf con-
tempts at axiomatization of fuzzy mathematics. By large thisined in second-order fuzzy logic (second-order models are
is induced by the fact that such theories have to deal witlesgactly Zadeh’s universes of fuzzy sets). Some theories (e.g.,
specific set-theoretical agenda and take into the accounttthgology), however, need more levels of type hierarchy, thus
structure of the whole set universe (expressed, e.g., by thevag-employ higher-order fuzzy logic.
iom of well-foundedness). Moreover, for many of them it is Unfortunately, fuzzy higher-order logic is not recursively
not clear whether they can straightforwardly be generalizeddgiomatizable. Since we prefer axiomatic deductive theo-
other fuzzy logics than the one in which they were developeflis over non-axiomatizable sets of tautologies, we choose
thus they are only capable of providing the foundation foriig Henkin-style variant, even though it admits non-intended
limited part of fuzzy mathematics. models. We thus get first-order theory,axiomatized very
After a universal foundational theory is successfully foundaturally by the extensionality, comprehension, and tuple-
the development ahdividual concepts of fuzzy mathematidsandling axioms for each order. Moreover, the construction
has to proceed in a systematic way, taking into the accowrks for virtually all imaginable fuzzy logics (and many non-
the dependencies between them as in classical mathemafiiegy logics as well). The bunch of foundational theories we
For example, the notion of cardinality should only be defingglopose thus can be callédenkin-style higher-order fuzzy
after the introduction and investigation of the notion of fungegic (for an individual fuzzy logic of one’s choice; expres-
tion, upon which it is based (and which in turn is based upgfvely rich logics like 1 seem to be sufficient for all practical
the concept of fuzzy equality, i.e., similarity). The coherengirposes). The details of this formalism can be found in the
of defined notion from the point of view of category theorfbllowing sections (or in our paper [2]).
should also be checked. Only this kind of systematic approach
can avoid giving ad hoc definitions of fuzzy concepts, whi
often suffer from arbitrariness and hidden crispness. Further- LOGIC

more, if the background logic is sufficiently strong, there is ) e
a general method (to be described later) of embedding dfyvhat follows, we assume the basic knowledge ajek's

classical theory, and even of its natural fuzzification (as wEifSIC fuzzy logic BL and its three important extensions
as conscious and controlled ‘defuzzification’ of its concepsukasiewicz, @del, and product logics) or their extensions
if some of their features are to be left crisp). The meth& the projectord (see [8] for details). We however recall

has already been foreshadowed in BHie’s 1987 paper [10,the_ defir_1ition of the Iogic B and some Qf its properties._
Section 5]: This logic has some unique features, which seem to be im-

portant to achieve our goal. It is common to use different

(non-corresponding) connectives in existing fuzzy mathemat-
ics; e.g., for some application we need the product t-norm
as conjunction and the tukasiewicz residuum for implication.

The logic 1 combines all three basic logics into one and thus

it offers huge expressive power (see Theorem 6 for more de-
tails). The definitions and theorems in this section are from

papers [6] and [5].

“It is the opinion of the author that from a math-

ematical viewpoint the important feature of fuzzy
set theory is the replacement of the two-valued logic
by a multiple-valued logic. [...I]t is now clear how

we can find for every mathematical notion its ‘fuzzy
counterpart’. Since every mathematical notion can
be written as a formula in a formal language, we
have only to internalize, i.e. to interpret these ex-

pressions by the given multiple-valued logic.” Definition 1 The logict.M has the followingbasic connec-

As a concrete implementation of the general programmixees (they are listed together with their standard semantics in
sketched above we propose a specific foundational theory [@e1]; we use the same symbols for logical connectives and the
scribed below. We do not claim it to be the only possible waprresponding algebraic operations):



0 0 truth constant falsum  Definition 5 Let f be a functionf : [0,1]" — [0,1] and
b —L @ Xx—ry=min(1,1-x+y)tukasiewicz implication ¢(vi,...,v,) be a formula. We say that the functidnis
¢ —ny x—ny=min(1,{) product implication represented by the formul (¢ is a representation of) iff
d&MY X&ny=x-y product conjunction e(d) = f(e(v1), &(va), ..., &Vvy)) for each evaluatiore.

. 1 oy .
The logict.MN3 has one additional truth CO_”Staé_tW'th the  Theorem 6 (Functional representation) A function f is an
standard semanticg. We define the followinderived con- integral (rational respectivelyl. M function iff it is represented

nectives: by some formula of.T1 (LI'I% resp.).
—||_¢! is ¢*>|_0 IX=1-X
-nd is & —n0 —nx = Lif x= 0, otherwised The following theorem was proved in [5], but it can be
1is -0 1 viewed as a corollary of the previous theorem.
Ap is —n-Ld Ax = 1if x =1, otherwised

Corollary 7 Let x be a continuous t-norm which is a finite

¢§‘é$ :2 ﬁL((bq):LqJ L) ig;i m?:]?i(?(’::/_)y ) ordinal sum of the three basic ones (i.e.,®&fL andl), and
bou is ¢L&L _‘th XOy = max(d x—y) = be its residuum. Then there are derived conneci&veand

— of thet M3 logic such that their standarf®, 1]-semantics
arex and=- respectively. The logic P@) of the t-norm« (see
[8]) is contained inLI'I% if & and— of PC(x) are interpreted
as&, and —.. Furthermore, if¢ is provable in PG«) (and

a fortiori, if it is provable in Hajek’s logicBLA, see [8]), then
is &< Lo 1ifx < % otherwised the formula¢, obtained fromp by replacing the connectives

Occasionally we may write.g and &g as synonyms for & alnd of PC(x) (or BLA) by &, and —, is provable in
—n and A, respectively. We further abbreviat¢ —. @) &, 2

(W= 0) by ¢ <, Y forx e {GLM}and ¢V, for comgaryg Letr e [0,1] be a rational number; then there
L & L) is a formula¢ of £M3 such thate(¢p) = r for any [0,1]-

The standardt M-algebra[0,1] has the domai0,1] and €Vvaluatione.
the operations as stated in Definition 1 above (analogously fo{y. 4ssume the reader to be familiar with the notions of

1
the standard B 3-algebra). the multi-sorted predicate language and semantics of predi-

Definition 2 The logict.M is given by the following axiomscate f.uzzy'logics. We only recall the axioms of the predicate
and deduction rules: L with crisp equality.

(L) The axioms of Lukasiewicz logic o , ' .
() The axioms of product logic Definition 9 (First-order £ M) First-ordertI1 logic adds the

®A) AW —L W) —L (0 —n W) deduction rule of generalization and the following axioms for
(NA) A —n W) —1 (& —L W) quantifiers and (crisp) identity:
(Dist) ®&n (XOW) L (0 &nX)© (0 &n W) (V1) (")d(x) — o(t), if t is substitutable fox in Y

V2 VX)(X =L ¢) — (X —L (VX)9), x not free in
The deduction rules are modus ponens @dndecessitation Ezl)) )((:))EX L) = = (X9) X

(from ¢ infer Ad). The IogicLI'I% results fromtI by adding (=2) x=y— ADX) < d(y))
the axiom} < — 1. (3X)9 is defined as (VX)L .

OAW IS &L (O —LW) XAY=min(xy)
OV Y is ~L(-LO A -LY) xVy=maxXxy)
d—cP is A(d—LP) VY x—cy=1if x<y, othw.y
b=y is A(d <L ) 1if x =Yy, otherwised
d<y is Ao —L W) 1if x <y, otherwised
o<3

The notions of proof, derivability-, theorem, and theory
over I and LI'I% are defined as usual. 4 FOUNDATIONAL THEORY

Theorem 3 (Completeness).et$ be a formula oft.I (LI‘I% Now we sketch our foundational theory. Its first step is a fuzzy
respectively). Then the following conditions are equivalent:class theory (FCT, see [2] for details). We formulate this the-
i 1 ory over arbitrary fuzzy logic (stronger than B). However,
* ¢ is atheorem ok (L5 resp.) keep in mind that the logic M is the intended background
e ¢ is a[0,1]-tautology. logic. To put our theory into the context we notice that the
FCT is nothing else than a Henkin-style second-order fuzzy
The following definitions and theorems demonstrate the dagic.
pressive power of B and LI‘I%. In particular, Corollary 7 o ] )
shows that each propositional logic based on an arbitrary cBigfinition 10 (Henkin-style second-order fuzzy logic)

tinuous t-norm of a certain simple form is contained M}. Lt be a fuzzy logic which exten@.A. The Henkin-style
second-order fuzzy logi€ is a theory over multi-sorted first-

Definition 4 A functionf : [0,1]" — [0,1] is called arational order ¥ with sorts for objects (lowercase variables) and fuzzy
EN-function iff there is a finite partition of[0,1]" such that sets (uppercase variables). Both of the sorts subsume subsorts
each block of the partition is a semi-algebraic set ahde- for n-tuples, for alln > 1. Apart from the obvious necessary
stricted to each block is a fraction of two polynomials witfunction symbols and axioms for tuples (tuples equal iff their
rational coefficients. respective constituents equal), the only primitive symbol is the

Furthermore, a rationah-ary £ M-function f is integraliff membership predicate between objects and (fuzzy) sets. The
all the coefficients are integer arfd{0,1}") C {0,1}. axioms fore are the following:



1. The comprehension axionf3X)A(Vx)(x € X < ¢), ¢ e The translations of all axiomsp of T
not containingX, which enable the (eliminable) intro- = .
duction of comprehension ternig | ¢} with the axioms ~® Crisp(Q) for each symbol < I (for the definition of
ye {x|d(X)} < d(y) (wheredp may be allowed to con- Crisp, see Table 2)

tain other comprehension terms). o (X, XnY) € Fa (X1, X0y 2) € F — y =z for each

2. The extensionality axiofivx)A(xe X = xeY)—X =Y. n-ary function symbaf € T".

Convention 11 The usual precedence of connectives is ds¢mma 14 LetT be a classical predicate languagé,a T -
sumed. The formulagvx)(x € X — ¢) and (Ix)(x € theory. IfM is a model of 72(T), thenM® = (M, (Quie)qer ),
X & ¢) are abbreviated(vx € X)¢ and (3x € X)d, respec- wher(_aQMc = Qum for eachQ €T, is a model (in the sense of
tively (similar notation can be used for defined binary pre@lassical logic) of the theory .

icates). The formulag) & ... & ¢ (n times) are abbre- Vice versa, for each mod®l of T there is a modeN of
viated ¢". Furthermore, {(xq,...,xc) | ¢} is shorthand for F2(T) such thatN® is isomorphic taM.

(x| (3x)...(3x) (X = (X1,...,%) & )}. An alternative no- ~ Therefore,T - ¢ iff F>(T) - ¢, for anyl-formula¢.

tation forxe Aand(xy,...,X,) € Ris simplyAxandRx .. . Xn,

respectively. Example 15 Let R be a constant for a set of pairs. Then

in each model of the theor@risp(R), ReflR), TrangR),

To get our foundational theory we just iterate the previolgX. Y)(Rxy& Ryx— x=1y), the constanR is represented by

definition to get third-(fourth-go-)order fuzzy logic. a crisp ordering on the universe of objects. (For the definitions
of Refland Trans see Definition 24.)

Definition 12 (Henkin-style higher-order fuzzy logic)

Henkin-style fuzzy logic of higher orders is obtained by rExample 16 If T is a classical theory of the real
peating the previous definition on each level of the type Klosed field, then in each.-model M_of the theory
erarchy. Obviously, defined symbols of any type can thenZ#T), the universe of objects with<m,+m,—m, M,
shifted to all higher types as well. (Consequently, all theorefg. 1v is a real closed field.

are preserved by uniform upward type-shifts.) Types may be ) .
allowed to subsume all lower types. In Lemma 14 we speak of first-order theories only. Never-

Henkin-style fuzzy logi¢ of order n will be denoted by theless, it can be extended to any theory formalizable in clas-

7., the whole hierarchy by, The types of terms are eitheiC@l type theory. Here we present only one example.
denoted by a superscripted parenthesized type (¢(8)), or

understood from the context. Example 17 Let T be a constant for a (fuzzy) set of (fuzzy)

sets andr the theory with the following axioms:

It should be stressed that despite the name, Henkin-stylg Crisp()
higher-order fuzzy logics artheoriesover first-order fuzzy .
logics (see [8]). Observe that Henkin-stydeorder fuzzy  ° (VX)(X € 1 — Crisp(X))
logic can also be viewed as a fuzzy type theory (recall thate (V.X)(Crisp(X) & X C1— {X| (IX € X)xe X} € 1)

a fuzzy type theory for the logic IMTA was introduced by (VX1) ... (V) (KL ET& ... & Xg €T— XgN...NXn €T)

Novak in [11]). foreachne N
Now we present a uniform way for fuzzifying crisp theo-

ries. Since our theory contains classical type theory, we carf hen in each model of the thedFy the constant is repre-
introduce arbitrary relations and functions on the universe¥inted by a classical topology on the universe of objects.
objects which are definable in classical type theory. As they

can be described by formulae, their existence is guaranteedy ELEMENTARY FUZZY SET THEORY

the comprehension axiom. So the only thing we need to add

is a constant of the appropriate sort and the instance of K@wv we demonstrate the power of our theory by showing how
comprehension axiom. The following definition is the formait can handle the elementary fuzzy set-theoretic operation and
ization of this approach for the first-order theories. relations. Due to the restricted length of this paper we present

only very basic notion, the details can be found in [2].
Definition 13 Let " be a classical one-sorted predicate lan-

guage and' be al -theory. For each n-ary predicate symidl Convention 18 Let¢(pa,..., pn) be a propositional formula
of I' let us introduce a new constaRfor a set of n-tuples, andand Y, ..., ), be any formulae. Bg(Ys,...,Pn) we denote
for each n-ary function symbé&l we take a new constaRtfor the formulad in which all occurrences gf; are replaced byy;
a fuzzy set of (n+1)-tuples. We define the languéglé’) as (for all i < n).
the language off, extended by the symbd)sor each symbol
Qer. Thetranslatiord of al'-formulad to %, (") is obtained Definition 19 Let ¢(ps,...,pn) be a propositional formula.
as the result of replacing all occurrences of 8isymbolsQ We define the-ary set operation induced lgyas
in ¢ by Q.

We define the theor§(T) in the languagefz () as the Opy (X, -, Xn) =df {X[ (X E Xq,....XE Xn)}.

theory with the following axioms: ] ] i S
We give examples of operations defined in this way litpt.

e The axioms off> in Table 1.



Theorem 21 Letd, s, ...,P, be propositional formulae.

Table 1: Elementary set operations Then - (Wi, .., Un)
b Opy (%1, %) | Name iff 72+ Rely (Opy, (X11,--- X1k, ) - -- OBy, (Xn 1, - - X))
0 0 empty set iff 72+ Refy(Opy, (X1.1,-- - X1ky)» - -- Oy, (X1, - - Xnky)
1 V universal set .
A(a — p) Xq a-cut Corollary 22 Letd andy be propositional formulae.
A(a < p) X g a-level If ¢ — thent Opy (X1, ..., Xn) € Opy(X1,--.,%n).
—p \X strict complement If ¢ < Ythenk Op¢(x1,...,xn) = Opw(xl,...,xn).
p % involutive compl. If - ¢ V ¢ then- Crisp(Opy (X1, ..., Xn)).
~6LP (0T Ap) Ker(X) kernel By virtue of Theorem 21, the properties of propositional
~cp(0r~A=Lp) SuppX) support connectives directly translate to the properties of relations and
P&.q Xn.Y *-Intersection operations. For example:
pVv.q XUY *x-union
p&-¢q X\Y strict difference FAp—p proves + Ker(X) C X
p&.—Lq X—=Y involutive x-diff. Fp—pVva " FXCXuUY
F0—p » FOC X
Fp&q—pAQ K FXN,Y CXNgY

Table 2: Set properties and relations FoepV moep = Crisp(\X)

_ _ We can prove more complicated general theorems (for de-
Relation Notation | Name tails see [2]) which give us proofs of more complicated facts.
Rely(X) Hot(X) | height Here we present only some of their consequencesis
Rehp(X) Norm(X) | normality
ReIX(pvﬁm(X) Crisp(X) | crispness XE Y = XM 26, YN, 2

(XC,Y &, YT, X) = X~ Y

ReEA(pvﬁp)(X) FuzzyX) | fuzziness (XC.Z &, YC.Z) - XUYC,Z

Regﬁ*q(X,Y) XC,Y *-inclus_ion AXCY)— Xq CYq
RGEH*q(X,Y) X~ Y | x-equality transitivity of ., ~,
Rehg ,q(X,Y) X|I.Y x-compatibility Hgt(X) &, (XC,Y) — Hgt(Y)
Norm(XUY) — Norm(X) v Norm(Y)
XC,Z & X|,Y = Y|.Z
Definition 20 (Uniform and supremal relations) Definition 23 The union and intersection of a (fuzzy) set of

Let¢(py,...,pn) be a propositional formula. The-ary uni-  (fzzy) sets are the functionf™? andN(™3, respectively,
form relationbetweerXy, ..., X, induced by} is defined as assigning a se™Y to a set of sets1(™2, where:

Rel) (X1, ..., %) =ar (WO(XE Xq,...,XE Xn). Ua =a {x|GAcA)(xeA)}
Then-ary supremal relatiometweenXs, ..., X, induced byp ﬂ“q —g x| (VA€ A)(xe A)}
is defined as

Rely (X1,..., %) =ar (IX)O(XE X1,...,.XE Xp).

The advantage of this general definition of the notion Q

operation and relation is demonstrated by the following thef)ﬁis section shows some very basic facts about fuzzv rela-
rem (and its corollaries), which reduce provability in our the- y y

ory to provability in the background propositional logic. O ons provable in our theory. Recall that we work wfaded

course, the facts we prove this way are known (they can zzy) properties of fuzzy relation, i.e., a relation can be par-

found in any textbook about fuzzy sets), but we can pro.%. ly {(taﬂgxwe, s;t/mxtnc, et_ct;.ﬁgaln,fthe ?r? al of t:"ct‘ ;lectlon
all of them at once (provided we know propositional the21USt todemonstraténe possibiliies ot our theory, detalls are

rems of the background fuzzy logic). In fact we are prO\:?—Ubject of the consequent papers.

ing more: we are provingradedtheorems (which appearechefinition 24 In 7, we define the following operations:
for the first time in Gottwald’s monograph [7]). For exam-
ple theoremX C,Y — XN, ZC,Y N, Z says the thaX in-
tersected withZ is more a subset of intersected withZ XxY =g {{xy)[xeX&yeY}
thanX is a subset of (written in a “traditional fuzzy” way, POM(R) =dar {X|(xy) €R}
inf T (Ax,BX) < inf T (T(Ax Cx), T(Bx Cx)). Results suchas RNIR)  =at  {y[(xy) €R}
tﬁis one can irff Xbe obtained without explicit calculations of R =ar X[ Gy < A& RyX}
e RoS =g {(x¥)[(F)((x2) eR& (zy) €5}
membership functions. 1
: : : R =ar {(xy)[{y,x) R}

Notice that the following theorem and its corollary are for d = {(xy) | X=y}
simplicity written for arbitrary logicF, thus we can avoid the of ’
indexing by:. We can also define the usual properties of relations:

FUZZY PROPERTIES OF FUZZY RELATIONS
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ting and E. Orlowska, 273-285, Physica-Verlag, Hei-

3. TraniR) — RoRCR delberg.

4. Refl(R) — RCRoR [10] U. Hohle (1987) “Fuzzy real numbers as Dedekind cuts

5. TrangR) & Trans(Q) — TrangRN Q) with respect to a multiple-valued logic”, Fuzzy Sets and

Systems, 24:263-278.

6. RCS— (RoTCSoT)A(ToRCToS
B ( B I - ) [11] V. Novak (2004) “On fuzzy type theory”, Fuzzy Sets

Thus every relation 1. is reflexive to the same degree asitcon- and Systems, 149:235-273.

tains identity, 2. is symetric to the same degree as it contains . . .
its own inverse, 4. is contained in the composition with itsefft2] V- Novak, I. Perfilieva and J. Mkor (2000) Mathemat-

at least in the degree of its reflexivity, etc. ical Principles of Fuzzy Logic, Kluwer, Dordrecht.

[13] G. Takeuti and S. Titani (1992) “Fuzzy logic and fuzzy

Theorem 26 For an arbitrary binary relationR and arbitrary set theory”, Arch. Math. Logic. 32:1-32

(fuzzy) seté\, B we have:
[14] R.B. White (1979) “The consistency of the axiom of

comprehension in the infinite-valued predicate logic of
. ReflR) — ACR"A tukasiewicz”, J. Phil. Logic, 8:509-534.

1. ACB—R'ACR'B

. TrangR) — Extr(R"A) [15] A.N. Whitehead and B. Russell (1910, 1911, 1913)
Principia Mathematica, Cambridge UP, Cambridge.

[16] L. Zadeh (1965) “Fuzzy sets”, Information and Control

2
3
4. ACB&Extg(B) —» R"/ACB
5. TrangR) — R"(R"A) CR"A 8:338-353.

6. Refl(R) & Extr(A) — R"A~ A

Theorem271f 4 is a crisp set of sets, then
(VX € 2) Exte(X) — Exte(N4) A Exte(UA).
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