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ABSTRACT: LI, is a deductive first-order theory over thesequently, not only the membership predicate, but most of the
fuzzy logic £I1, which axiomatically captures Zadeh'’s notionlefined notions are naturally graded. In such formal systems,
of fuzzy set and aims at giving a unified formal framewonnembership degrees are not mentioned explicitly as objects of
for a large part of fuzzy mathematics. An overview of thiéne theory, but rather are ‘hidden’ in the semantical metalevel
concepts expressible in the theory is given and informal prasf the meanings of atomic formulae. There are several reasons
methods for doing fuzzy mathematics ifl, are sketched. for this approach, both of philosophical and technical nature;

Keywords: Axiomatic fuzzy set theory, fuzzy logicl, for its advantages over more traditional methods see [2] or [3].

fuzzy mathematics, proof methods in fuzzy logic. It turns out that if the background fuzzy logic and the ax-
ioms for the fuzzy membership predicate are appropriately
1 INTRODUCTION chosen, the resulting theory can serve as a unified framework

for a large part of fuzzy mathematics. The requirements on

This paper explains a new unified formalism for fuzzy stiie background fuzzy logic seem to be best satisfied by the
theory that emerged during last years in the Prague workiﬁgic £ M, as it contains definable logical connectives of a wide
group in fuzzy logic. It follows the methodology described ifl@ss of t-norm fuzzy logics. The theory of fuzzy member-
[1] and employs the apparatus introduced in [2]. In this pap‘"é?ipv on the other hand,.need not be a fuII—erdggd set theory
we focus on explanations of how to actualiprk in the pro- like tho.se of [12] or [9]; it must however be sufficiently rich
posed framework, and the way it can help in the developmé@nadm't usual operations on fuzzy sets. A fuzzy analogue of
of fuzzy mathematics. In consequence, we proceed ratheriyssell and Whitehead's simple type theory of [14], rendered
formally; the relevant technical details can be found in tif a first-order theory over fuzzy logic, is sufficient for almost
follow-up paper [3]. all practical needs. In what follows, the theory will be denoted

Traditionally, fuzzy set theory is a generalization of the coRY £, as it is in fact the Henkin-style logicl of orderc.
cept ofcharacteristic functionfuzzy sets are identified with The axiomatic system seems to be equivalent (maybe up to
their membership functions; operations on fuzzy sets (uni§@Me minor details) to \im Nowak's fuzzy type theory of
intersection, etc.) are defined by means of some operationdleil. if the latter is defined over the logidt.
membership functions, which yield other membership func-The models of 1, are systems (closed under definable op-
tions; relations between fuzzy sets (equality, inclusion, et€!tions) of fuzzy subsets (of all orders) of some crisp universe
are defined as relations between their membership functidhsWhere the membership functions take values in soffie £
Thus, traditional fuzzy set theory captures the notion of fuz{gebra.intended modelare those in which thef-algebra is
set only indirectly, by means of the classical (crisp) notion &fandard (i.e., the intervéd, 1] with the usual operations for
[0, 1]-valued (or lattice-valued) function, and can therefore §@nnectives), and the system contaatisfuzzy subsets ot
viewed as part of real analysis with a specific motivation. (of all orders). These models correspond exactly to Zadeh’s

The new formalism described in this paper, on the otHd®] original notion of fuzzy set (we call the@adeh mode}s
hand, tries to capture fuzzy sets axiomatically, as a primi-The theory 1, is sound w.r.t. Zadeh models, thus what-
tive notion. Since the axiomatic method is very fruitful igver we prove in £, is true about the “flesh and blood” fuzzy
many parts of mathematics, there had been various atteng§ts- Although the full theory of Zadeh models is not axiom-
at axiomatization of the notion of fuzzy set already in 1970'8tizable, the axiomatic system ofk, approximates it very
These early attempts (most notably [4]) use@marymem- Well: the comprehension axioms secure the existence of ev-
bership predicate, in which the third argument represented & fuzzy set which is definable by a formula dflt;, and the
membership degree. The theorems of such formal theog&tensionality axioms insure that identical membership func-
expressed the laws valid for fuzzy sets and could formally B@ns represent the same fuzzy set. (For the axiomsitf t
derived by the rules oflassicallogic from a set of suitably see [2] or [3].)
chosen axioms.

Our approach, on the Oth?r h-and, follows more recent g- FORMAL EXPRESSIONS OF an
tempts ([13], [12], or [9]), which instead takebénary mem-
bership predicate and construct a theory duerylogic; con- 2 1 Atomic expressions
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(calligraphic letters?, B, ...) also called fuzzy sets of the 2nd
order, fuzzy sets of the 3rd order, etc. If necessary, the order
of a variable can be marked by a parenthesized superscript,
e.g.x9 YD z3 w  Objects or sets of order can be
construed as belonging to all types> n as well.

There are no variables for truth degrees; the degree in which
x belongs tAA is expressed by the atomic formuia A (which
can alternatively be written in the more traditional way*&s
The theory is typed, so only such atomic formulae are well-
formed which express the membership of an object of a lesser
type to an object of a higher typX:{" € A(™ is a well-formed
formula iff n < m.

Crisp identity of objects or fuzzy sets is expressed by the
predicate=. For objectsx =y holds iff x,y are the same
object in the model; for (fuzzy) setd,= B iff the membership
functions of A and B are identical. Identical objects or sets o
are freely intersubsitutable in formulae. The identity of truth
degrees (e.gAx = BX) is also expressible in M, (though
not by means of atomic formulae—see below in Section 2.2).
Many non-crisp equality notions are definable ifi.as well,
as shown in Section 3.

In order to express statements about fuzzy relatiofnk, £
contains the usual apparatus of tuples of objects or fuzzy set®
(of any order). The type of the tuply, ..., X,) is the maxi-
mal type of allX’s it contains. As usual, the identity of tuples
is component-wise.

2.2 Logical connectives

Membership degrees, expressed by atomic formulae, can be
combined by means of definable connectives [df tAmong
these, the following means for manipulation with truth degrees
can be found (see [6] for details on propositional)t

e T-Norms.For any continuous t-norfi which is a finite
ordinal sum of the minimum (G), producll}, and/or
Lukasiewicz (L) t-norms, £l contains a definable con-
junction&t whose standard semanticslis(Many other
t-norms, such as the nilpotent minimum or the drastic t-
norm, are also available; for details see [5].) In this paper,
we often usex as a sign representing an arbitrary contin-
uous t-norm. The traditional sigh can alternatively be
used for the min-conjunctio& g; thus, for example, the
minimum of the membership degrees expressed by the
formulaeAxandBxis expressed as usual, by the formula
AXA Bx

T-Conorms.For any continuous t-norm representable
in £, its dual t-conornSis definable in £1 as a dis-
junction Vv (the maximumy g can be denoted by as

usual).

2.3

R-Implications. For any left-continuous t-norri rep-
resentable in H, its corresponding residuum (R-implic-
ation) T is definable in 1; it is denoted by—T. Infix

notation is used for logical connectives, thus instead o

(associativity of& . and the precedence rules are used to
avoid unnecessary brackets); the algebraic-style notation

3)

can be used as well. R-equivalence connectives are de-
fined asp 1 Y =gt (¢ —7 ¥) &7 (U —7 ¢), with the
standard semantics of the biresidu@ (¢, ), T (W, $)).
S-implications are definable inft as well, by means of
negations (see below) and t-conorm disjunctions.

Axx AXx BXx =, AXxxBX

e Truth constants.Propositional truth constant and 1

are definable in H. If an axiom postulating is added
to My, all rational truth constant% become definable
(see [6], [2], or [3]).

Arithmetical operations. There are definable connec-
tives of £M which in the standard semantics real-
ize arithmetical operations on the truth values of their
operands. Available arithmetical operations include, i.a.,
the bounded surm, the difference—, the product, the
bounded ratio—p, etc.

Comparison of truth degree3he logic 1 contains de-
finable connectivess, <, =, #, >, > whose standard
semantics is that of (crisp) comparison of truth degrees.
Thus, for exampleix < Bzis evaluated td iff the mem-
bership degree of in A is strictly less than that af in

B. Similarly, the formulaAx = Bx expresses the fact that
the membership degrees »fin A andB are the same
(in which case it has the truth value 1, otherwise 0). It
is important to understand that here is a defined logi-
cal connectivgoining two formulae(and yielding a truth
valueO or 1), while inx =y or A= B it is the identity
predicatebetweenterms. The comparison with rational
truth constants (e.gAx < %) is also available, even in
the absence of rational truth constants (thgn%‘" must

be regarded as a unary defined connective [@j.t By
means of arithmetical connectives, the comparison with
arithmetically definable irrationals is also definable (for
exampleAx< L asAx-Ax< ).

V2

Negations.Both strict negation and standard involutive
negation are available infL, respectively asg (or —n)
and— . Using the above-mentioned connectives, we can
write - Ax=1— Ax, which is a provable formula off.
Similarly, -.cAx= (Ax# 0). Generally, for any residuum
—, its corresponding negation, is defined as.¢ =4t

¢ —, 0.

Quantifiers

Infima and suprema of truth degrees are symbolized by the
logical symbolsv and3, respectively. Thus, for example, in-
stead ofsug Ax we write (3x)Ax, and instead oinfy(1— Ay)

yve write (Vy) (1 — Ay), or (VX)L A

It should be noticed that unlegsis crisp, the expressions

1) of the form(¥x)¢ should not be read “for al it holds thatp”,
since the meaning of the formula is a (possibly intermediate)
truth degree, rather than a statement which either holds or not.
Similarly, (3x)¢ must be understood dke degrego which

(2) thereis anxsuch thath.

T(T(AX T(Ax BX)), T(Ax BX))
we write

AX & AX&, BX —, AX&, BX



2.4 Set comprehension terms Specifically, the supports, kernels;cuts, anda-levels of
fuzzy sets are defined by the familiar-looking set tefrs
Ax=1}, {x| Ax> 0}, {x| Ax>a}, and{x | Ax=a}, respec-
tively (wherea is aformulaexpressing a truth degree). Since
these fuzzy sets are (in consequence of their definitions) crisp,

. - - they can be (as usual in the traditional fuzzy set theory) iden-
for anyx it holds thatAx= ¢(x). The formulay € {x | $(x)} is tified with the corresponding classical subsets of the universe

thus equivalent simply td(y), and the formulad = {x| ¢(x)} . .
to (¥x)(Ax= ¢(x)). The same notation can be used for fuzzc§/f discourse in the models offt,

sets of higher types; the terdX(" | ...} always denotes a _
fuzzy set of typen+ 1. 3.3 Properties of fuzzy sets

Unless the formulg expresses a crisp condition, the tery,n, syal properties of fuzzy sets are expressible by suit-
{x] $(x)} should not be read “the set of all thaséor which able formulae of Ll,. For example, thenormality of A

¢ holds”, but rather “the (fuzzy) set to which aryelongs in is expressed by the formul@x)(Ax = 1). We can define

In virtue of the comprehension axioms dfl,, fuzzy sets can
be denoted by the comprehension terfrd ¢(x)} (for any
formulad(x)). If Ais defined by the ruldx= ¢(x), then it can
be written aA = {x| §(x)}; vice versa, ifA= {x| ¢(x)}, then

the same degree in whighis true abouk’. that A is crisp iff (VX)[(Ax= 0) V (Ax= 1)], andfuzzyiff
o . (3X)[(Ax#£ 0) & (Ax# 1)]. The usual facts about these prop-
2.5 Abbreviations and conventions erties are easily provable ik, (e.g., that the only crisp sub-

yrmal set isD). It can be noticed that these properties are

Various abbreviations which are common in classical mat 4 . . . .
(2 )emselves crisp: any set either is, or is not normal (crisp,

matics or traditional fuzzy set theory can be used in the f

mulae of 1. This makes many of them look quite similal uzzy),_ as can be Pro"ed 'rn‘?' .
to the usual statements about fuzzy sets. Besides such crisp properties of fuzzy sets, traditional fuzzy

The defined connectives offt are themselves such abS€t theory defines some functions that assign a truth degree

breviations. Besides those mentioned above, the form[ﬂaa fuzzy set. For example thieightof a fuzzy set is the

¢ = 1is often abbreviated as$ (the connective is known as>upPremum of the membership degrees it hits. T4 these

Baaz delta). Further we can abbrevi&®x)(x ¢ A &. d(x)) notions are expressed fiyzzy propertiesf fuzzy sets. Thus

. the height of a fuzzy sei is defined by the formul&dx)(x €
and (¥x)(x € A —, ¢(x)) respectively by(Ix € A).$(x) and _ i _ S
(VXéA))((I)(X) etc. b(x)) resp Yy by )¢ () A), or its notational variantax)Ax. Again this is not to be read

By convention, we discard t-norm indices whenever th(:%fr:i :f] aArxlnA , butinterpreted as theegreeto which there

do not matter. Most often this is when they are applied ) ) .
crisp subformulae, for instancel(Ax= 0) — (Bx= 1)]. The One can notice that inM, any property of fuzzy sets is

indices can also be omitted in the principal connectives of tlgelf an individual of the theory, viz. a fuzzy (or cri_sp) set
orems of 1, since all their-variants are equiprovable, ~ ©f the 2nd order (a fuzzy set of fuzzy sets). For instance
the property of normality delimits the (crisp) 2nd-order set

Norm= {X | (3x)(Ax= 1)}, and the property of height de-
3 DEFINED NOTIONS OF ., limits the (fuzzy) 2nd-order setleight= {X | (3x)(x € A)}

to which a fuzzy set belongs to the degree of its height).
It could be seen in the previous section that the apparatus( of y g g ght)

LM, is rich enough to express many concepts of the usual .
fuzzy set theory. Further notions can be introduced by me & Relations between fuzzy sets

of defined constants, predicates, and functors. The usual relations between fuzzy sets (like inclusion, dis-

jointness, etc.) can be defined by formulae Bfgas well. An
3.1 Setconstants important feature of H, however, is that not only member-
ship, but many defined predicates can naturally be introduced
asgraded.Unlike traditional fuzzy mathematics, this does not
complicate things too much; very often it eveimplifiesthe
definitions and proofs.

To demonstrate this point, let us consider the notiomef
clusion In traditional fuzzy mathematics, a fuzzy gets of-
The usual fuzzy set operations like unions and intersectidfg said to be a subset of a fuzzy Beff for all x, the member-
can be defined in B, by means of simple comprehensiofhip degree okin A does not exceed that afin B. The cor-
terms, like in classical mathematics. For instance, we deffiggponding L, formula has the familiar lookvx) (Ax < BXx).

We introduce the consta@tto denote theempty sef{x | 0}.
Similarly, theuniverse of discours¥ is defined agx | 1}.
ThusAis empty iff Ax= 0 for anyx, and(vx)(Vx=1).

3.2 Elementary set operations

the x-intersection of two fuzzy sets as Both in traditional fuzzy set theory and'k,, this is a crisp
notion of inclusion: a fuzzy sét either is, or is not a subset of
AN.B =g {x|x€A&,xe B} (4) B. Nevertheless, inH, the subsethood can be more naturally

be defined with—., instead of<:
It can be seen that & = AN, B, thenCx = Axx Bx as usual.

Similarly we can define a variety of other operations like the AC. B =g (VX)(Ax—, BX) (5)
x-Unions, x-complements, etc.: any operation on fuzzy sets
given by an arithmetically definable operation can be definBdth notions are true in degrdsff the membership function
by the comprehension term with the corresponding arithmaetdf-A is majorized by that oB. The latter, however, has a high
cal connectives. degree of truth also whenevArdoes not exceeB too much



(where the exact meaning of “too much” depends on thectisp structures can be introduced by additional axioms about

norm used). This definition has been proposed in traditios&t constants in . Since this exceeds the scope of this

fuzzy mathematics as well (though somewhat later). The paimiroductory paper, the reader is referred to [2] and [3] for de-

is that in £, it is a natural fuzzy counterpart of classicaltails.

inclusion, which ismore generalbut easy to handle.lt is

natural, since the definition is the exact copy of the classigdl proOF METHODS IN LM,

definition of inclusion, rewritten in B (cf. [10, Sect. 5]). Itis

more general, since the former subsethood relation can eagjlyhave seen in Sections 2 and 3 that many concepts of tradi-

be recovered from it (b}), but not vice versa. And it is easytional fuzzy mathematics are expressible as formuladaft.

to handle, because its form admits directly to translate mapyny of these formulae look very similar to those of classi-

proofs that work for subsethood of crisp sets (more on thig| set theory. This was made possible by the design of the

in Section 4). Similarly we can introduce a variety of fuzzyheory which hid the references to the truth degrees into the

equalities~,, defined by the formul@vx)(Ax <. BX). atomic formulaex € A and their combinations. It is thaean-
Still, the search for fuzzy counterparts of classical notiofify of the formulae in which £, differs from classical set

should not blindly follow the forms of classical formulae. Oftheory: they need not have only the truth val@esnd 1, but

ten a (classically equivalent) reformulation of the classical nftso the values between these two. As such, the formulae are

tion gives better results. One can, for example, observe that subject to the laws of classical two-valued logic, but those

~¢ is highly true only if the membership functions are idersf fuzzy logicnamely the logic £1. Thus the formulae which

tical onlow truth values; product equalityn is also more express the laws valid for fuzzy sets can be formally deduced

restrictive on lower truth values. Since intuitively the diffrom the axioms of £, but the derivation must use the logic

ference in thehigh degrees of membership (on the “protor M instead of classical Boolean logic.

types”) should matter more, equality of involutive comple- Mmaking formal derivations according to the formal laws of

ments,— X ~. —Y may give a better measure of the sim:-17 is of course quite cumbersome. We will hint here, how-

ilarity of fuzzy sets tharX ~.. Y. ever, that it is possible to make informal proofs ifil in
a similar manner an Intuitionist makes informal constructive
3.5 Properties of fuzzy relations proofs which are governed by intuitionistic logic (and which,

if it were necessary, could be translated into formal proofs).
In what follows, we give some examples of correct informal

!auons, as stu.d!ed in [7]. .TO get .the graded notllon of, f?)rroof methods in £l,; all of them are based on provable theo-
instance reflexivity,one defines it simply aév/x)Rxxinstead rems of 41, (or the fuzzy logic i1 itself) and its metatheory.

of (vX)(Rxx= 1). The graded notion then arises in the same
manner as in Section 3.3. e Elementary fuzzy set theomyn [2], elementary fuzzy set
The formalism of #1, can furthermore help us to spotand  theory has been effectively reduced to the propositional
eliminate various sources of hidden crispness in definitions; logic £M. The theorems on fuzzy set operations and re-
surprisingly, this usually does not complicate the proofs t00  |ations of certain simple forms thus can be proved (or
much. For example, antisymmetry and other properties that gisproved) by simple propositional calculations. For ex-
classically refer to identity are better defined w.r.t. some fuzzy ample,X N, Y C X follows directly from the validity of

£ M, naturally accommodategradedproperties of fuzzy re-

equality relatiorkE so as to avoid the crispness=sf Thus we the propositional formulg &, q — p, while the con-
can definex-antisymmetry w.r.t as verses-inclusion is disproved by any counterexample to
the converse implication. Although the form of propo-
(vX)(7Y)(v2) (Rxy& . Rxz—. Ey2) 6) sitionally derivable theorems is restricted, it covers most
instead of of the mathematically interesting properties of fuzzy set
operations and relations (in fact, virtually any theorem
(VX)(VY)(V2) (RXY&  RXZ—, Yy = 2) (7) on the first couple of dozens pages of any textbook on
fuzzy sets can be proved in this simple way). The meth-
(which is ax-antisymmetry w.r.t=). Proofs which work fok- ods described further are only needed for more complex
antisymmetry w.r.t= do often work forx-antisymmetry w.r.t. theorems, e.g. on fuzzy relations.

E as well, since they usually employ only those properties of

= which hold of all fuzzy equalities. The generalization is ® tM-valid equivalences. In classical mathematics, we

thus obtained at low cost. usually prove theorems not by applying the rules of some
Thus by usual definitions, the graded notions of fuzzy logical calculus for Boolean logic (e.g., modus ponens),

equivalence (better known as similarity), fuzzy ordering, but by transforming the statements according to equiva-

fuzzy function, etc., are obtained, and can be studied in our lences which are known to be valid. Thus, e.g., we use

formal theory. For functions (w.r.t= and in degred) we can de Morgan laws, the rules for the negation of quantifiers,
use the functional notation= F (x) instead ofF xy. etc. Most of these rules are valid 1 as well. One must

only be careful not to use a rule which does not hold gen-
erally for fuzzy sets. However, such rules are few and
one can easily learn to eschew them in proofs: one of
In traditional fuzzy set theory, the universe of discourse is of- such forbidden rules is the transformation(gk)—..¢ to

ten equipped with some crisp structure, for instance an order- —,(3x)¢ (though it can be used #= L or if ¢ is known

ing, metric, or measure. It has been shown in [2] that such to be crisp).

3.6 Structure on the universe of discourse



e Substitution of provably equivalent subformulag&he .
previous method is applicable to transformations of sub-
formulae as well, as the following metatheorem holds:

If § < Qis provable in a theory over the first-
order logic 1, then so ix[¢ /Y] < X (where
X[®/W] is the result of replacing an occurrence
of the subformulap by ).

Using Boolean logic for crisp subformuladf. a subfor-
mula is provably crisp, then the rules of classical logic

can be applied for its transformation. o

Using a fragment ot.I. When working with a formula

in which every connective is indexed by G, I, or t,

the rules of the respective logics BL, @, or £ (possibly

with A) are applicable. A comprehensive list of valid and
invalid laws for these fuzzy logics is found in [8]. Further
derivative laws can be verified by means of these, e.g. thg
commutativity of restricted quantifiers:

(WxeA)(VWeB).p — (YyeB).(VxeA).d (8)

and the analogous law far.

In what follows we shall assume all connectives indexed
by the samex (for simplicity and because it is the most

frequent case), thus working in fact in BL
Generalization.In mathematics (both fuzzy and classi- ®

cal), one often proves theorems of the form

(V1 €A ... ("™ €EAND1& ... & dp— )  (9)

By the rules of the generalization and the distribution
laws ofV, it is sufficient to prove its instance

XIEAE& ... &XEA&I1& ... & 0= U (10)

The premises and the conclusidfthere is an existential
quantifier in the prefix of the demonstrandum, e.g.,

(VX1 € A1) (W%2 € A2)(Ixz € Ag) (Vg € Ag) (11)

Marking used premisesThus if any premise is used in
the proof of the conclusion or an intermediary step, it
should be marked and never used again (or the theorem
be weakened to contain it twice). The same holds for
lemmata in the form of implication: they can be applied

if their premises are presupposed or have already been
proved, but then these premises must generally never be
used again in the proof. If any non-crisp premise has
been used more than once in the proof, it must be added
to the premises of the theorem, even if it is already there.

Proof by cases.The proof can be split to several cases
whose max-disjunction is (already) proved. One must
be, however, careful that for example the disjunction of
¢ v —¢ is generallynot provable in fuzzy logic, so one
must avoid taking cases on a condition and its negation,
unless the condition is crisp.

Checking the classical proof against the rules of fuzzy
logic. Fuzzy logic is not much weaker than classical
logic. Since also many formulae oft, have the same
form as in classical mathematics, classical proofs often
work for them. Sometimes the classical proof has to
be slightly adapted so as to avoid a forbidden rule, or
a premise must be multiplied in the theorem, but in many
cases the classical proofs just work.

Example of an informal proofVe prove the theorem
ReflR) - RCRoR (14)

which says that any fuzzy relation is a subset of its self-
composition at least to the degree of its reflexivity.

Proof: It is sufficient to prove (by the rules offl,, for
arbitraryx, y) that(x,y) € Ro Rfrom the premises (i) that
Ris reflexive, and (ii) thatx,y) € R. The conclusion is
by definition equivalent td3z)(Rxz& Rzy. Now x can
be taken for the requirez since by (i),Rxx and by (ii),
Rxy QED
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