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ABSTRACT: ŁΠω is a deductive first-order theory over the
fuzzy logic ŁΠ, which axiomatically captures Zadeh’s notion
of fuzzy set and aims at giving a unified formal framework
for a large part of fuzzy mathematics. An overview of the
concepts expressible in the theory is given and informal proof
methods for doing fuzzy mathematics in ŁΠω are sketched.
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1 INTRODUCTION

This paper explains a new unified formalism for fuzzy set
theory that emerged during last years in the Prague working
group in fuzzy logic. It follows the methodology described in
[1] and employs the apparatus introduced in [2]. In this paper
we focus on explanations of how to actuallywork in the pro-
posed framework, and the way it can help in the development
of fuzzy mathematics. In consequence, we proceed rather in-
formally; the relevant technical details can be found in the
follow-up paper [3].

Traditionally, fuzzy set theory is a generalization of the con-
cept ofcharacteristic function:fuzzy sets are identified with
their membership functions; operations on fuzzy sets (union,
intersection, etc.) are defined by means of some operations on
membership functions, which yield other membership func-
tions; relations between fuzzy sets (equality, inclusion, etc.)
are defined as relations between their membership functions.
Thus, traditional fuzzy set theory captures the notion of fuzzy
set only indirectly, by means of the classical (crisp) notion of
[0,1]-valued (or lattice-valued) function, and can therefore be
viewed as part of real analysis with a specific motivation.

The new formalism described in this paper, on the other
hand, tries to capture fuzzy sets axiomatically, as a primi-
tive notion. Since the axiomatic method is very fruitful in
many parts of mathematics, there had been various attempts
at axiomatization of the notion of fuzzy set already in 1970’s.
These early attempts (most notably [4]) used aternarymem-
bership predicate, in which the third argument represented the
membership degree. The theorems of such formal theories
expressed the laws valid for fuzzy sets and could formally be
derived by the rules ofclassicallogic from a set of suitably
chosen axioms.

Our approach, on the other hand, follows more recent at-
tempts ([13], [12], or [9]), which instead take abinary mem-
bership predicate and construct a theory overfuzzylogic; con-
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sequently, not only the membership predicate, but most of the
defined notions are naturally graded. In such formal systems,
membership degrees are not mentioned explicitly as objects of
the theory, but rather are ‘hidden’ in the semantical metalevel
as the meanings of atomic formulae. There are several reasons
for this approach, both of philosophical and technical nature;
for its advantages over more traditional methods see [2] or [3].

It turns out that if the background fuzzy logic and the ax-
ioms for the fuzzy membership predicate are appropriately
chosen, the resulting theory can serve as a unified framework
for a large part of fuzzy mathematics. The requirements on
the background fuzzy logic seem to be best satisfied by the
logic ŁΠ, as it contains definable logical connectives of a wide
class of t-norm fuzzy logics. The theory of fuzzy member-
ship, on the other hand, need not be a full-fledged set theory
like those of [12] or [9]; it must however be sufficiently rich
to admit usual operations on fuzzy sets. A fuzzy analogue of
Russell and Whitehead’s simple type theory of [14], rendered
as a first-order theory over fuzzy logic, is sufficient for almost
all practical needs. In what follows, the theory will be denoted
by ŁΠω, as it is in fact the Henkin-style logic ŁΠ of orderω.
The axiomatic system seems to be equivalent (maybe up to
some minor details) to Vilém Nov́ak’s fuzzy type theory of
[11], if the latter is defined over the logic ŁΠ.

The models of ŁΠω are systems (closed under definable op-
erations) of fuzzy subsets (of all orders) of some crisp universe
U , where the membership functions take values in some ŁΠ-
algebra.Intended modelsare those in which the ŁΠ-algebra is
standard (i.e., the interval[0,1] with the usual operations for
connectives), and the system containsall fuzzy subsets ofU
(of all orders). These models correspond exactly to Zadeh’s
[15] original notion of fuzzy set (we call themZadeh models).

The theory ŁΠω is sound w.r.t. Zadeh models, thus what-
ever we prove in ŁΠω is true about the “flesh and blood” fuzzy
sets. Although the full theory of Zadeh models is not axiom-
atizable, the axiomatic system of ŁΠω approximates it very
well: the comprehension axioms secure the existence of ev-
ery fuzzy set which is definable by a formula of ŁΠω, and the
extensionality axioms insure that identical membership func-
tions represent the same fuzzy set. (For the axioms of ŁΠω
see [2] or [3].)

2 FORMAL EXPRESSIONS OF ŁΠω

2.1 Atomic expressions

The language of the theory ŁΠω contains variables for atomic
objects (lowercase lettersx,y, . . .), fuzzy sets of these objects
(uppercase lettersA,B, . . .), fuzzy sets of fuzzy sets of objects
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(calligraphic lettersA ,B, . . .) also called fuzzy sets of the 2nd
order, fuzzy sets of the 3rd order, etc. If necessary, the order
of a variable can be marked by a parenthesized superscript,
e.g. x(0),Y(1),Z(3),W(n). Objects or sets of ordern can be
construed as belonging to all typesm≥ n as well.

There are no variables for truth degrees; the degree in which
x belongs toA is expressed by the atomic formulax∈A (which
can alternatively be written in the more traditional way asAx).
The theory is typed, so only such atomic formulae are well-
formed which express the membership of an object of a lesser
type to an object of a higher type:X(n) ∈A(m) is a well-formed
formula iff n < m.

Crisp identity of objects or fuzzy sets is expressed by the
predicate=. For objects,x = y holds iff x,y are the same
object in the model; for (fuzzy) sets,A= B iff the membership
functions ofA andB are identical. Identical objects or sets
are freely intersubsitutable in formulae. The identity of truth
degrees (e.g.,Ax = Bx) is also expressible in ŁΠω (though
not by means of atomic formulae—see below in Section 2.2).
Many non-crisp equality notions are definable in ŁΠω as well,
as shown in Section 3.

In order to express statements about fuzzy relations, ŁΠω
contains the usual apparatus of tuples of objects or fuzzy sets
(of any order). The type of the tuple〈X1, . . . ,Xn〉 is the maxi-
mal type of allXi ’s it contains. As usual, the identity of tuples
is component-wise.

2.2 Logical connectives

Membership degrees, expressed by atomic formulae, can be
combined by means of definable connectives of ŁΠ. Among
these, the following means for manipulation with truth degrees
can be found (see [6] for details on propositional ŁΠ):

• T-Norms.For any continuous t-normT which is a finite
ordinal sum of the minimum (G), product (Π), and/or
Łukasiewicz (L) t-norms, ŁΠ contains a definable con-
junction&T whose standard semantics isT. (Many other
t-norms, such as the nilpotent minimum or the drastic t-
norm, are also available; for details see [5].) In this paper,
we often use∗ as a sign representing an arbitrary contin-
uous t-norm. The traditional sign∧ can alternatively be
used for the min-conjunction&G; thus, for example, the
minimum of the membership degrees expressed by the
formulaeAxandBx is expressed as usual, by the formula
Ax∧ Bx.

• T-Conorms.For any continuous t-normT representable
in ŁΠ, its dual t-conormS is definable in ŁΠ as a dis-
junction∨T (the maximum∨G can be denoted by∨ as
usual).

• R-Implications. For any left-continuous t-normT rep-
resentable in ŁΠ, its corresponding residuum (R-implic-
ation)~T is definable in ŁΠ; it is denoted by→T . Infix
notation is used for logical connectives, thus instead of

~T(T(Ax,T(Ax,Bx)),T(Ax,Bx)) (1)

we write

Ax& ∗ Ax&∗ Bx →∗ Ax& ∗ Bx (2)

(associativity of& ∗ and the precedence rules are used to
avoid unnecessary brackets); the algebraic-style notation

Ax∗Ax∗Bx ⇒∗ Ax∗Bx (3)

can be used as well. R-equivalence connectives are de-
fined asϕ ↔T ψ ≡df (ϕ →T ψ) &T (ψ →T ϕ), with the
standard semantics of the biresiduaT(~T(ϕ,ψ),~T(ψ,ϕ)).
S-implications are definable in ŁΠ as well, by means of
negations (see below) and t-conorm disjunctions.

• Truth constants.Propositional truth constants0 and 1
are definable in ŁΠ. If an axiom postulating1

2 is added
to ŁΠω, all rational truth constantsmn become definable
(see [6], [2], or [3]).

• Arithmetical operations. There are definable connec-
tives of ŁΠ which in the standard semantics real-
ize arithmetical operations on the truth values of their
operands. Available arithmetical operations include, i.a.,
the bounded sum⊕, the difference−, the product·, the
bounded ratio→Π, etc.

• Comparison of truth degrees.The logic ŁΠ contains de-
finable connectives≤, <, =, 6=, ≥, > whose standard
semantics is that of (crisp) comparison of truth degrees.
Thus, for example,Ax< Bzis evaluated to1 iff the mem-
bership degree ofx in A is strictly less than that ofz in
B. Similarly, the formulaAx= Bx expresses the fact that
the membership degrees ofx in A and B are the same
(in which case it has the truth value 1, otherwise 0). It
is important to understand that= here is a defined logi-
calconnectivejoining two formulae(and yielding a truth
value0 or 1), while in x = y or A = B it is the identity
predicatebetweenterms. The comparison with rational
truth constants (e.g.,Ax≤ 1

2) is also available, even in
the absence of rational truth constants (then “≤ 1

2” must
be regarded as a unary defined connective of ŁΠ). By
means of arithmetical connectives, the comparison with
arithmetically definable irrationals is also definable (for
example,Ax< 1√

2
asAx·Ax< 1

2).

• Negations.Both strict negation and standard involutive
negation are available in ŁΠ, respectively as¬G (or ¬Π)
and¬L . Using the above-mentioned connectives, we can
write¬LAx= 1−Ax, which is a provable formula of ŁΠ.
Similarly,¬GAx= (Ax 6= 0). Generally, for any residuum
→∗ its corresponding negation¬∗ is defined as¬∗ϕ ≡df

ϕ→∗ 0.

2.3 Quantifiers

Infima and suprema of truth degrees are symbolized by the
logical symbols∀ and∃, respectively. Thus, for example, in-
stead ofsupx Ax we write(∃x)Ax, and instead ofinfy(1−Ay)
we write(∀y)(1−Ay), or (∀x)¬LAx.

It should be noticed that unlessϕ is crisp, the expressions
of the form(∀x)ϕ should not be read “for allx it holds thatϕ”,
since the meaning of the formula is a (possibly intermediate)
truth degree, rather than a statement which either holds or not.
Similarly, (∃x)ϕ must be understood asthe degreeto which
there is anx such thatϕ.



2.4 Set comprehension terms

In virtue of the comprehension axioms of ŁΠω, fuzzy sets can
be denoted by the comprehension terms{x | ϕ(x)} (for any
formulaϕ(x)). If A is defined by the ruleAx= ϕ(x), then it can
be written asA= {x | ϕ(x)}; vice versa, ifA= {x | ϕ(x)}, then
for anyx it holds thatAx= ϕ(x). The formulay∈ {x | ϕ(x)} is
thus equivalent simply toϕ(y), and the formulaA= {x | ϕ(x)}
to (∀x)(Ax= ϕ(x)). The same notation can be used for fuzzy
sets of higher types; the term{X(n) | . . .} always denotes a
fuzzy set of typen+1.

Unless the formulaϕ expresses a crisp condition, the term
{x | ϕ(x)} should not be read “the set of all thosex for which
ϕ holds”, but rather “the (fuzzy) set to which anyx belongs in
the same degree in whichϕ is true aboutx”.

2.5 Abbreviations and conventions

Various abbreviations which are common in classical mathe-
matics or traditional fuzzy set theory can be used in the for-
mulae of ŁΠω. This makes many of them look quite similar
to the usual statements about fuzzy sets.

The defined connectives of ŁΠ are themselves such ab-
breviations. Besides those mentioned above, the formula
ϕ = 1 is often abbreviated as∆ϕ (the connective is known as
Baaz delta). Further we can abbreviate(∃x)(x ∈ A & ∗ ϕ(x))
and(∀x)(x ∈ A→∗ ϕ(x)) respectively by(∃x∈ A)∗ϕ(x) and
(∀x∈ A)∗ϕ(x), etc.

By convention, we discard t-norm indices whenever they
do not matter. Most often this is when they are applied to
crisp subformulae, for instance¬[(Ax= 0)→ (Bx= 1

2)]. The
indices can also be omitted in the principal connectives of the-
orems of ŁΠω, since all their∗-variants are equiprovable.

3 DEFINED NOTIONS OF ŁΠω

It could be seen in the previous section that the apparatus of
ŁΠω is rich enough to express many concepts of the usual
fuzzy set theory. Further notions can be introduced by means
of defined constants, predicates, and functors.

3.1 Set constants

We introduce the constant/0 to denote theempty set{x | 0}.
Similarly, theuniverse of discourseV is defined as{x | 1}.
ThusA is empty iffAx= 0 for anyx, and(∀x)(Vx= 1).

3.2 Elementary set operations

The usual fuzzy set operations like unions and intersections
can be defined in ŁΠω by means of simple comprehension
terms, like in classical mathematics. For instance, we define
the∗-intersection of two fuzzy sets as

A∩∗B =df {x | x∈ A &∗ x∈ B} (4)

It can be seen that ifC = A∩∗B, thenCx= Ax∗Bx as usual.
Similarly we can define a variety of other operations like the

∗-unions,∗-complements, etc.: any operation on fuzzy sets
given by an arithmetically definable operation can be defined
by the comprehension term with the corresponding arithmeti-
cal connectives.

Specifically, the supports, kernels,α-cuts, andα-levels of
fuzzy sets are defined by the familiar-looking set terms{x |
Ax= 1}, {x | Ax> 0}, {x | Ax≥ α}, and{x | Ax= α}, respec-
tively (whereα is a formulaexpressing a truth degree). Since
these fuzzy sets are (in consequence of their definitions) crisp,
they can be (as usual in the traditional fuzzy set theory) iden-
tified with the corresponding classical subsets of the universe
of discourse in the models of ŁΠω.

3.3 Properties of fuzzy sets

Many usual properties of fuzzy sets are expressible by suit-
able formulae of ŁΠω. For example, thenormality of A
is expressed by the formula(∃x)(Ax = 1). We can define
that A is crisp iff (∀x)[(Ax = 0) ∨ (Ax = 1)], and fuzzyiff
(∃x)[(Ax 6= 0) & (Ax 6= 1)]. The usual facts about these prop-
erties are easily provable in ŁΠω (e.g., that the only crisp sub-
normal set is/0). It can be noticed that these properties are
themselves crisp: any set either is, or is not normal (crisp,
fuzzy), as can be proved in ŁΠω.

Besides such crisp properties of fuzzy sets, traditional fuzzy
set theory defines some functions that assign a truth degree
to a fuzzy set. For example theheight of a fuzzy set is the
supremum of the membership degrees it hits. In ŁΠω, these
notions are expressed byfuzzy propertiesof fuzzy sets. Thus
the height of a fuzzy setA is defined by the formula(∃x)(x∈
A), or its notational variant(∃x)Ax. Again this is not to be read
“there is anx in A”, but interpreted as thedegreeto which there
is anx in A.

One can notice that in ŁΠω, any property of fuzzy sets is
itself an individual of the theory, viz. a fuzzy (or crisp) set
of the 2nd order (a fuzzy set of fuzzy sets). For instance
the property of normality delimits the (crisp) 2nd-order set
Norm= {X | (∃x)(Ax = 1)}, and the property of height de-
limits the (fuzzy) 2nd-order setHeight= {X | (∃x)(x ∈ A)}
(to which a fuzzy set belongs to the degree of its height).

3.4 Relations between fuzzy sets

The usual relations between fuzzy sets (like inclusion, dis-
jointness, etc.) can be defined by formulae of ŁΠω as well. An
important feature of ŁΠω, however, is that not only member-
ship, but many defined predicates can naturally be introduced
asgraded.Unlike traditional fuzzy mathematics, this does not
complicate things too much; very often it evensimplifiesthe
definitions and proofs.

To demonstrate this point, let us consider the notion ofin-
clusion. In traditional fuzzy mathematics, a fuzzy setA is of-
ten said to be a subset of a fuzzy setB iff for all x, the member-
ship degree ofx in A does not exceed that ofx in B. The cor-
responding ŁΠω formula has the familiar look(∀x)(Ax≤Bx).
Both in traditional fuzzy set theory and ŁΠω, this is a crisp
notion of inclusion: a fuzzy setA either is, or is not a subset of
B. Nevertheless, in ŁΠω the subsethood can be more naturally
be defined with→∗ instead of≤:

A⊆∗ B ≡df (∀x)(Ax→∗ Bx) (5)

Both notions are true in degree1 iff the membership function
of A is majorized by that ofB. The latter, however, has a high
degree of truth also wheneverA does not exceedB too much



(where the exact meaning of “too much” depends on the t-
norm used). This definition has been proposed in traditional
fuzzy mathematics as well (though somewhat later). The point
is that in ŁΠω it is a natural fuzzy counterpart of classical
inclusion, which ismore general,but easy to handle.It is
natural, since the definition is the exact copy of the classical
definition of inclusion, rewritten in ŁΠ (cf. [10, Sect. 5]). It is
more general, since the former subsethood relation can easily
be recovered from it (by∆), but not vice versa. And it is easy
to handle, because its form admits directly to translate many
proofs that work for subsethood of crisp sets (more on this
in Section 4). Similarly we can introduce a variety of fuzzy
equalities≈∗, defined by the formula(∀x)(Ax↔∗ Bx).

Still, the search for fuzzy counterparts of classical notions
should not blindly follow the forms of classical formulae. Of-
ten a (classically equivalent) reformulation of the classical no-
tion gives better results. One can, for example, observe that
≈G is highly true only if the membership functions are iden-
tical on low truth values; product equality≈Π is also more
restrictive on lower truth values. Since intuitively the dif-
ference in thehigh degrees of membership (on the “proto-
types”) should matter more, equality of involutive comple-
ments,−LX ≈∗ −LY may give a better measure of the sim-
ilarity of fuzzy sets thanX ≈∗ Y.

3.5 Properties of fuzzy relations

ŁΠω naturally accommodatesgradedproperties of fuzzy re-
lations, as studied in [7]. To get the graded notion of, for
instance,reflexivity,one defines it simply as(∀x)Rxx instead
of (∀x)(Rxx= 1). The graded notion then arises in the same
manner as in Section 3.3.

The formalism of ŁΠω can furthermore help us to spot and
eliminate various sources of hidden crispness in definitions;
surprisingly, this usually does not complicate the proofs too
much. For example, antisymmetry and other properties that
classically refer to identity are better defined w.r.t. some fuzzy
equality relationE so as to avoid the crispness of=. Thus we
can define∗-antisymmetry w.r.t.E as

(∀x)(∀y)(∀z)(Rxy& ∗ Rxz→∗ Eyz) (6)

instead of

(∀x)(∀y)(∀z)(Rxy&∗ Rxz→∗ y = z) (7)

(which is a∗-antisymmetry w.r.t.=). Proofs which work for∗-
antisymmetry w.r.t.= do often work for∗-antisymmetry w.r.t.
E as well, since they usually employ only those properties of
= which hold of all fuzzy equalities. The generalization is
thus obtained at low cost.

Thus by usual definitions, the graded notions of fuzzy
equivalence (better known as similarity), fuzzy ordering,
fuzzy function, etc., are obtained, and can be studied in our
formal theory. For functions (w.r.t.= and in degree1) we can
use the functional notationy = F(x) instead ofFxy.

3.6 Structure on the universe of discourse

In traditional fuzzy set theory, the universe of discourse is of-
ten equipped with some crisp structure, for instance an order-
ing, metric, or measure. It has been shown in [2] that such

crisp structures can be introduced by additional axioms about
set constants in ŁΠω. Since this exceeds the scope of this
introductory paper, the reader is referred to [2] and [3] for de-
tails.

4 PROOF METHODS IN ŁΠω

We have seen in Sections 2 and 3 that many concepts of tradi-
tional fuzzy mathematics are expressible as formulae of ŁΠω.
Many of these formulae look very similar to those of classi-
cal set theory. This was made possible by the design of the
theory which hid the references to the truth degrees into the
atomic formulaex∈ A and their combinations. It is themean-
ing of the formulae in which ŁΠω differs from classical set
theory: they need not have only the truth values0 and1, but
also the values between these two. As such, the formulae are
not subject to the laws of classical two-valued logic, but those
of fuzzy logic,namely the logic ŁΠ. Thus the formulae which
express the laws valid for fuzzy sets can be formally deduced
from the axioms of ŁΠω, but the derivation must use the logic
ŁΠ instead of classical Boolean logic.

Making formal derivations according to the formal laws of
ŁΠ is of course quite cumbersome. We will hint here, how-
ever, that it is possible to make informal proofs in ŁΠω in
a similar manner an Intuitionist makes informal constructive
proofs which are governed by intuitionistic logic (and which,
if it were necessary, could be translated into formal proofs).
In what follows, we give some examples of correct informal
proof methods in ŁΠω; all of them are based on provable theo-
rems of ŁΠω (or the fuzzy logic ŁΠ itself) and its metatheory.

• Elementary fuzzy set theory.In [2], elementary fuzzy set
theory has been effectively reduced to the propositional
logic ŁΠ. The theorems on fuzzy set operations and re-
lations of certain simple forms thus can be proved (or
disproved) by simple propositional calculations. For ex-
ample,X∩∗Y ⊆ X follows directly from the validity of
the propositional formulap &∗ q → p, while the con-
verse∗-inclusion is disproved by any counterexample to
the converse implication. Although the form of propo-
sitionally derivable theorems is restricted, it covers most
of the mathematically interesting properties of fuzzy set
operations and relations (in fact, virtually any theorem
on the first couple of dozens pages of any textbook on
fuzzy sets can be proved in this simple way). The meth-
ods described further are only needed for more complex
theorems, e.g. on fuzzy relations.

• ŁΠ-valid equivalences. In classical mathematics, we
usually prove theorems not by applying the rules of some
logical calculus for Boolean logic (e.g., modus ponens),
but by transforming the statements according to equiva-
lences which are known to be valid. Thus, e.g., we use
de Morgan laws, the rules for the negation of quantifiers,
etc.Most of these rules are valid inŁΠ as well.One must
only be careful not to use a rule which does not hold gen-
erally for fuzzy sets. However, such rules are few and
one can easily learn to eschew them in proofs: one of
such forbidden rules is the transformation of(∀x)¬∗ϕ to
¬∗(∃x)ϕ (though it can be used if∗= L or if ϕ is known
to be crisp).



• Substitution of provably equivalent subformulae.The
previous method is applicable to transformations of sub-
formulae as well, as the following metatheorem holds:

If ϕ↔ ψ is provable in a theory over the first-
order logic ŁΠ, then so isχ[ϕ/ψ]↔ χ (where
χ[ϕ/ψ] is the result of replacing an occurrence
of the subformulaϕ by ψ).

• Using Boolean logic for crisp subformulae.If a subfor-
mula is provably crisp, then the rules of classical logic
can be applied for its transformation.

• Using a fragment ofŁΠ. When working with a formula
in which every connective is indexed by∗, G, Π, or Ł,
the rules of the respective logics BL, G,Π, or Ł (possibly
with ∆) are applicable. A comprehensive list of valid and
invalid laws for these fuzzy logics is found in [8]. Further
derivative laws can be verified by means of these, e.g. the
commutativity of restricted quantifiers:

(∀x∈ A)∗(∀y∈ B)∗ϕ ↔ (∀y∈ B)∗(∀x∈ A)∗ϕ (8)

and the analogous law for∃.

In what follows we shall assume all connectives indexed
by the same∗ (for simplicity and because it is the most
frequent case), thus working in fact in BL∆.

• Generalization.In mathematics (both fuzzy and classi-
cal), one often proves theorems of the form

(∀x1 ∈ A1) . . .(∀xk ∈ Ak)(ϕ1 & . . . & ϕn → ψ) (9)

By the rules of the generalization and the distribution
laws of∀, it is sufficient to prove its instance

x1 ∈ A1 & . . . & xk ∈ Ak & ϕ1 & . . . & ϕn → ψ (10)

• The premises and the conclusion.If there is an existential
quantifier in the prefix of the demonstrandum, e.g.,

(∀x1 ∈ A1)(∀x2 ∈ A2)(∃x3 ∈ A3)(∀x4 ∈ A4)ψ (11)

then anything after the first∃ is the conclusion to be ar-
rived at. Thus to prove (11), we want to establish

x1 ∈ A1 & x2 ∈ A2 → (∃x3 ∈ A3)(∀x4 ∈ A4)ψ (12)

In what follows we call the conjuncts before the principal
implication thepremises.The premises are sometimes
presented in the form of nested implications.

• Proving in steps.By the transitivity of implication, one
can prove in steps. Thus to establishϕ → ψ, it is for
instance possible first to proveϕ → χ, thenχ → ξ, and
finally ξ→ ψ.

• Proving a conjunction.If the conclusion is a conjunction,
it is correct to prove each conjunct separately,but from
disjoint sets of premises.Thus it is correct to prove

ϕ1 & ϕ2 & ϕ3 → ψ1 & ψ2 (13)

by establishingϕ1 & ϕ2 → ψ2 andϕ3 → ψ1, but not by
ϕ1 & ϕ3→ ψ1 andϕ2 & ϕ3→ ψ2 (the latter only proves
ϕ1 & ϕ2 & ϕ3 & ϕ3 → ψ1 & ψ2). Only crisp premises
can be used repeatedly.

• Marking used premises.Thus if any premise is used in
the proof of the conclusion or an intermediary step, it
should be marked and never used again (or the theorem
be weakened to contain it twice). The same holds for
lemmata in the form of implication: they can be applied
if their premises are presupposed or have already been
proved, but then these premises must generally never be
used again in the proof. If any non-crisp premise has
been used more than once in the proof, it must be added
to the premises of the theorem, even if it is already there.

• Proof by cases.The proof can be split to several cases
whose max-disjunction is (already) proved. One must
be, however, careful that for example the disjunction of
ϕ ∨ ¬ϕ is generallynot provable in fuzzy logic, so one
must avoid taking cases on a condition and its negation,
unless the condition is crisp.

• Checking the classical proof against the rules of fuzzy
logic. Fuzzy logic is not much weaker than classical
logic. Since also many formulae of ŁΠω have the same
form as in classical mathematics, classical proofs often
work for them. Sometimes the classical proof has to
be slightly adapted so as to avoid a forbidden rule, or
a premise must be multiplied in the theorem, but in many
cases the classical proofs just work.

• Example of an informal proof.We prove the theorem

Refl(R)→ R⊆ R◦R (14)

which says that any fuzzy relation is a subset of its self-
composition at least to the degree of its reflexivity.

Proof: It is sufficient to prove (by the rules of ŁΠω, for
arbitraryx,y) that〈x,y〉 ∈R◦R from the premises (i) that
R is reflexive, and (ii) that〈x,y〉 ∈ R. The conclusion is
by definition equivalent to(∃z)(Rxz& Rzy). Now x can
be taken for the requiredz, since by (i),Rxx, and by (ii),
Rxy. QED
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[1] L. Běhounek and P. Cintula (2004) “From fuzzy logic to
fuzzy mathematics: A methodological manifesto”, sub-
mitted to Fuzzy Sets and Systems.
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