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Abstract. A genuine fuzzy approach to fuzzy mathematics consists in
constructing axiomatic theories over suitable systems of formal fuzzy
logic. The features of formal fuzzy logics (esp. the invalidity of the law of
contraction) entail certain differences in form between theories axioma-
tized in fuzzy logic and usual theories known from classical mathemat-
ics. This paper summarizes the most important differences and presents
guidelines for constructing new theories, defining new notions, and prov-
ing new theorems in formal fuzzy mathematics.
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1 Introduction

As argued in [1], a genuine fuzzy approach to fuzzy mathematics consists in
constructing axiomatic theories over suitable systems of formal fuzzy logic. There
are numerous reasons supporting this thesis, let us name just a few: under this
approach, there is a strong analogy with classical mathematics; most notions
are naturally graded; the connection with real-valued analysis is loosened; a
consistent methodology for introducing fuzzy counterparts of crisp notions is
provided; hidden crispness can easily be avoided; etc.

The features of formal fuzzy logics (esp. the invalidity in general of the con-
traction law, see Sect. 2) enforce a specific approach to building axiomatic theo-
ries over such logics. Some of the usual practices of classical as well as traditional
fuzzy mathematics cease to be useful and need to be adjusted when working in
formal fuzzy logic. Examples of such traditional practices are the placement of
preconditions in definitions rather than theorems, defining compound notions as
conjunctions of several conditions, etc. Furthermore, the properties of the under-
lying logic entail certain differences in the form as well as strength of theorems
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that can be proved in theories over formal fuzzy logic as compared to theorems
of traditional fuzzy mathematics. In particular, they allow studying graded no-
tions and properties, mostly overlooked by traditional fuzzy mathematics (where
usually just the predicate ∈ is fuzzified).

This paper summarizes the most important differences between theories of
classical mathematics or traditional fuzzy mathematics (e.g., [2–4]) on the one
hand and those axiomatized in formal fuzzy logic (e.g., [5–7]) on the other hand,
and presents guidelines for introducing new defined notions and formulating
meaningful theorems in formal fuzzy mathematics.

2 Features of Formal Fuzzy Logics

Many systems of formal fuzzy logic emerged in the last decades. Here we survey
their common features relevant to our needs.

Let us start at the propositional level. Formal fuzzy logics share the syntax
of classical Boolean logic, only there are usually two different conjunctions—the
residuated (strong) one & and the minimum (weak) one ∧. Although there is
a bunch of formal fuzzy logics described in the literature, the deductively well-
behaved ones [9] contain some common basic propositional laws (axioms). The
shared axioms form the logic MTL [10], the logic of left-continuous t-norms (i.e.,
the set of truth values is the interval [0, 1], a left-continuous t-norm interprets
&, and its residuum interprets implication). In order to enhance its expressive
power, one usually adds one more propositional unary connective 4 with the
standard semantics 4x = 1 if x = 1 and 4x = 0 otherwise. The logic MTL with
the connective 4 will be denoted by MTL4 further on.

It can be argued [9] that formal fuzzy logics suitable for axiomatizing mathe-
matical theories extend the logic MTL4; following [9], we shall call them deduc-
tive fuzzy logics. The most prominent examples of such logics are ÃLukasiewicz
logic, Hájek’s BL, involutive MTL, product logic, the logic ÃLΠ, etc. (all of them
with 4). The main distinction between classical logic and deductive fuzzy logics
is the invalidity in general of the law of contraction (ϕ & ϕ) ↔ ϕ in the latter.
Non-contractivity has a huge impact on the axiomatic mathematical theories
over deductive fuzzy logics: see Sect. 6–8 for details.

Propositional fuzzy logic is not expressive enough to support mathematical
theories; at least first-order fuzzy logic is needed for fuzzy mathematics. For a
recent survey of first-order fuzzy logics see [11]; for higher-order fuzzy logics see
[12, 13, 8]. Unless stated otherwise, our background fuzzy logic is supposed to be
the first-order logic MTL4.1

1 First-order MTL4 retains the completeness w.r.t. semantics based on left-continuous
t-norms (although this is, in general, not the case of stronger fuzzy logics like BL or
ÃLukasiewicz). This allows us to transfer some results of traditional fuzzy mathematics
proven for all left-continuous t-norms automatically into MTL4. However, these
results are usually much weaker than those achievable directly in the axiomatic
theory (see Sect. 3 and 5 for more details).



Axiomatic mathematical theories are given by a set of formulae, called the
axioms of the theory. The theorems of a theory are proved by formal deductions
from its axioms by the deduction rules of the underlying formal fuzzy logic. For
details on axiomatic theories over fuzzy logics see [14].

Further on, we shall adopt the following useful conventions for formulae of
formal fuzzy logic:

Convention 1. In order to save some parentheses, we assume that→ and↔ have
less priority than other binary connectives, and that unary connectives have the
highest priority. A chain of implications ϕ1 → ϕ2, . . . , ϕn−1 → ϕn will be written
as ϕ1 −→ ϕ2 −→ · · · −→ ϕn, and similarly for the equivalence connective.

3 Graded Notions

Traditional fuzzy set theory fuzzifies (at least) the membership predicate: the
membership degree Ax of an element x in a set A can take intermediate val-
ues between 1 and 0. Fuzzy sets are identified with their membership functions
x 7→ Ax; their properties thus can be studied by means of usual methods of clas-
sical mathematics (which uses the laws of classical Boolean logic for reasoning),
since membership functions are after all crisp objects of real-valued or lattice-
valued analysis. Traditional properties of fuzzy sets are therefore bivalent : they
either hold or not (e.g., a fuzzy relation either is or is not reflexive).

Only some properties of fuzzy sets are sometimes considered graded (i.e., with
truth values in [0, 1] or a lattice L) rather than bivalent (i.e., either true or false):
most often the graded inclusion predicate A ⊆gr B defined as infx(Ax ⇒ Bx),
where ⇒ is a suitable fuzzy implication (compare it with the non-graded inclu-
sion of fuzzy sets, defined by the condition Ax ≤ Bx for all x).

Formal fuzzy mathematics, on the other hand, uses formal fuzzy logic rather
than classical Boolean logic for reasoning about fuzzy sets or other fuzzy notions,
and therefore all formulae take truth values in L; thus all defined notions and
all statements in general are graded and can be just partially true (unless they
are defined as provably crisp).

Consequently, even such properties of fuzzy relations as reflexivity, which in
traditional fuzzy mathematics is usually defined as bivalent (by requiring that
Rxx = 1 for all x), are in formal fuzzy logic graded (defined as the truth value
in L of the formula (∀x)Rxx, i.e., infx Rxx). In principle, all properties in formal
fuzzy logic are of a similar kind as the property of height of a fuzzy set, which
even in traditional fuzzy mathematics naturally takes values in L.

Graded properties of fuzzy relations have for the first time been systemat-
ically studied in Gottwald’s monograph [15], and more recently elaborated in
Gottwald’s [16] and Bělohlávek’s [17]. Graded notions also have a long tradition
in fuzzy topology, see e.g. [18]. The graded approach is important for several
reasons. First, graded notions generalize the traditional (non-graded) ones, as
the latter are definable (by means of 4) in terms of the former, but not vice
versa. Second, graded notions are more informative—they allow inferring rele-
vant information even when traditional notions are simply false (see Sect. 5).



Third, graded notions take the idea of fuzziness seriously, as there is no reason
to assume that properties of fuzzy sets should only be crisp. Moreover, graded
notions can easily be handled within the framework of formal fuzzy logic, so
their gradedness does not present too much additional difficulty.

4 Natural Fuzzification of Classical Notions

One of the main motivations of formal fuzzy logic is the generalization of classical
logic to non-crisp predicates: thus it is natural to fuzzify classical mathemati-
cal notions just by re-interpreting them in a suitable formal fuzzy logic. This
methodology has been foreshadowed already in Höhle’s 1987 paper [19, §5]:

“It is the opinion of the author that from a mathematical viewpoint
the important feature of fuzzy set theory is the replacement of the two-
valued logic by a multiple-valued logic. [. . . I]t is now clear how we can
find for every mathematical notion its ‘fuzzy counterpart’. Since every
mathematical notion can be written as a formula in a formal language,
we have only to internalize, i.e. to interpret these expressions by the
given multiple-valued logic.”

Much later the principle was formalized in [12, §7], and proposed as an important
guideline for formal fuzzy mathematics in [1].

Nevertheless, although an important guideline, the method cannot be ap-
plied mechanically, as some classically equivalent definitions may no longer be
equivalent in the (weaker than classical) fuzzy logic. In some cases, one can se-
lect the most suitable version of the definition, by the criteria of fruitfulness,
applicability, and the practice of traditional fuzzy mathematics. In other cases,
a notion of classical mathematics splits into several meaningful fuzzy notions.
This can be exemplified by the notion of equality of fuzzy sets. Besides the crisp
identity = of fuzzy sets, at least two graded notions of natural fuzzy equality
are defined and used in the literature (e.g., the first one is used in [17] and the
second one in [16]):

A ≈ B ≡df (∀x)[(Ax → Bx) & (Bx → Ax)] (1)
A u B ≡df (∀x)(Ax → Bx) & (∀x)(Bx → Ax) (2)

These notions are not equivalent (even in rather strong fuzzy logics, e.g., ÃLuka-
siewicz), as shown by the following counter-example:

Example 1. Let A,B be interpreted in a model over the standard MV-algebra
(see [14]) by the following assignment of truth values: Aa = Bb = 1 and Ab =
Ba = 0.5 for some individuals a and b, and Ax = Bx = 0 otherwise. Then the
truth value of A ≈ B is 0.5, while the truth value of A u B is 0.

Notice that in traditional fuzzy mathematics these two notions of graded equality
coincide, since 4(A ≈ B) ←→4(A u B) ←→ A = B (see Prop. 2 in Sect. 8).



5 Theorems in the Form of Provable Implications

The general gradedness of all notions in formal fuzzy logic allows proving more
general theorems that are not available for non-graded notions in traditional
fuzzy mathematics. A typical non-graded theorem of traditional fuzzy mathe-
matics has the following form:

If some (non-graded) assumption is true (i.e., fully true),
then some (non-graded) conclusion is (fully) true.

With graded notions we can formulate and prove much stronger theorems of the
following form:

The more some (graded) assumption is true (even if partially),
the more some (graded) conclusion is true (i.e., at least as true as the
assumption).

The latter can be expressed in formal fuzzy logic by means of implication ϕ → ψ,
where ϕ is the formula which expresses the assumption and ψ is the formula
which expresses the conclusion. In deductive fuzzy logics, if ϕ → ψ is provable,
then the truth value of ψ is at least as large as the truth value of ϕ in any
model. Provable implications thus express exactly the graded theorems of the
above form. Since the full truth of χ is expressed by 4χ, the former non-graded
theorem of traditional fuzzy mathematics is expressed by the formula4ϕ →4ψ.
The graded theorem ϕ → ψ is generally stronger than the non-graded theorem
4ϕ →4ψ, since the latter is an immediate consequence of the former in MTL4,
but not vice versa.

Example 2. If we set Ixy =

{
1 if x = y

0 otherwise, then:

– Traditional fuzzy mathematics proves that if a fuzzy relation R is reflexive
(in the traditional sense), then I is a fuzzy subset of R; i.e., if Rxx = 1 for
each x, then Ixy ≤ Rxy for each x, y.

– In formal fuzzy logic we can easily prove that the more a fuzzy relation R is
reflexive (in the graded sense), the more I is a fuzzy subset of R; in symbols,
(∀x)Rxx → (∀xy)(Ixy → Rxy). Thus for any left-continuous t-norm T we
get infx Rxx ≤ infx,y

−→
T (Ixy, Rxy).

Notice that the latter result is indeed more general than the former one: if R is
0.999-reflexive, the traditional theorem asserts nothing (as R is not reflexive in
the traditional sense), while the graded theorem ensures that I is a fuzzy subset
of R at least to degree 0.999. (Much more complex examples of this kind can be
found in [5].)

By the above considerations, it is preferable to prove theorems in the form
of implication ϕ → ψ, rather than traditional non-graded theorems, which in
formal fuzzy logic can be formalized as 4ϕ →4ψ.



6 Exponents

As stressed in Sect. 2, the law of contraction (ϕ & ϕ) ↔ ϕ is not generally valid
in deductive fuzzy logics. Therefore, repeated occurrences of a premise ϕi in a
theorem of the form

ϕ1 & . . . & ϕn → ψ (3)

cannot be contracted into a single occurrence, as usual in classical mathematics.
For convenience, the k occurrences of ϕi in (3) can be written as ϕk

i . Thus a
typical form of a graded theorem is actually

ϕk1
1 & . . . & ϕkn

n → ψ (4)

Semantically, since the truth value of ϕ & ϕ is in general smaller than ϕ in
usual fuzzy logics, the larger the exponent ki in (4) is, the truer ϕi must be to
ensure a large truth degree of the conclusion ψ. In other words, the conclusion
of a theorem depends more on the truth degree of the premises with larger
exponents than on those with smaller exponents.

Syntactically, the exponent ki in a theorem of the form (4) expresses how
many times the premise ϕi was used in an MTL-proof of ψ. This can be seen
from the proof of the Local Deduction Theorem for propositional MTL (see [20]),
or from the following proposition which justifies proving a conjunction by proving
the conjuncts separately:

Proposition 1. Propositional fuzzy logic MTL proves (see [10]):

[(ϕ1 → ψ1) & (ϕ2 → ψ2)] → [(ϕ1 & ϕ2) → (ψ1 & ψ2)] (5)
[(ϕ → ψ1) & (ϕ → ψ2)] → [ϕ → (ψ1 ∧ ψ2)] (6)

Thus if we can prove

ϕk1
1 & . . . & ϕkn

n → ψ1 and ϕl1
1 & . . . & ϕln

n → ψ2 (7)

then we also have

ϕk1+l1
1 & . . . & ϕkn+ln

n → ψ1 & ψ2 (8)

ϕ
max(k1,l1)
1 & . . . & ϕmax(kn,ln)

n → ψ1 ∧ ψ2 (9)

Notice two different ways of “counting the premises” based on whether we prove
conjunction or min-conjunction of conclusions.

Since ϕk → ψ is weaker for larger k, one should actually find a counter-
example against ϕk−1 → ψ whenever one proves a theorem of the form ϕk → ψ,
to show that it cannot be strengthened. This may, however, be quite difficult for
more complex theorems. Also if the exponents in a theorem grow too large, it
may in some cases be preferable to weaken the theorem and use 4ϕ as a premise
instead of ϕk (for k À 0).



7 Preconditions and Compound Notions

The fact that assumptions get variable exponents in theorems leads to two im-
portant guidelines for defining new notions in formal fuzzy mathematics.

In classical mathematics, definitions often have preconditions under which the
defined notions are meaningful (e.g., “let R be an ordering”). In formal fuzzy
mathematics, such preconditions are in general fuzzy (the notion of ordering is
graded). In proofs of graded theorems, such preconditions will be used various
numbers of times, and so they will get various exponents.

A notion defined with a fuzzy precondition is therefore of little interest,
since only such graded properties are provable about the notion that use the
precondition at most once; more complex properties will need the precondition
several times. Thus it is better to state the definition of the notion without
the precondition, and add the precondition with the required multiplicity in a
theorem of the form (4). Only such preconditions ϕ can meaningfully be required
in definitions that provably satisfy (ϕ & ϕ) ↔ ϕ and so they do not acquire
differing exponents in theorems. (In particular, crisp preconditions satisfy the
latter and therefore can meaningfully be used in definitions.)

A similar effect of variable exponents can be seen in notions defined as con-
junctions of two or more conditions. We exemplify the effect on the notions of
fuzzy preordering and similarity.

Example 3. In traditional fuzzy mathematics we say that a fuzzy relation R is a
preordering iff R is reflexive and transitive (where R is transitive iff Rxy∗Ryz ≤
Rxz for all x, y, z and reflexive iff Rxx = 1 for all x); it is a similarity iff it is
reflexive, transitive, and symmetric (where R is symmetric iff Rxy ≤ Ryx for
all x, y). In formal fuzzy logic, graded reflexivity, symmetry, and transitivity are
defined by the following formulae:

Refl R ≡df (∀x)Rxx (10)
Sym R ≡df (∀xy)(Rxy → Ryx) (11)

TransR ≡df (∀xyz)(Rxy & Ryz → Rxz) (12)

The traditional notions of preordering and similarity are then expressed by the
formulae 4Refl R & 4Trans R and 4Refl R & 4Sym R & 4TransR, respec-
tively. The definition of graded preordering or similarity first needs to distinguish
which conjunction is used between the conjuncts Refl R, Sym R, TransR. (Notice
that in the traditional definition it is immaterial which one is used, since both
conjunctions are 1-true under the same conditions.) The default choice is the
strong conjunction &, since it allows using all conjuncts in proofs, while ∧ only
allows using any one of them (see [8]). Nevertheless, the definitions

Preord R ≡df Refl R & TransR (13)
Sim R ≡df Refl R & Sym R & TransR (14)

still allow using each of the conjuncts just once in the proofs. However (cf.
Sect. 6), the assumptions Refl R, SymR, or TransR are needed variable times



in proofs of various theorems, and thus get variable exponents, independent of
each other. Thus, rather than defining preorders and similarities by (13)–(14),
it is more meaningful to define parameterized notions of (r, t)-preorders and
(r, s, t)-similarities as follows:

Preordr,t R ≡df Reflr R & Transt R (15)
Simr,s,t R ≡df Reflr R & Syms R & Transt R (16)

Typical graded theorems on fuzzy preorders or similarities then have the form
Preordr,t R → ϕ resp. Simr,s,t R → ϕ (for some r, s, t), and thus they are actually
theorems on (r, t)-preorders and (r, s, t)-similarities. Recall from Sect. 6 that
the parameters measure the strictness of requiring a large truth value of the
respective conjunct; thus (2, 5)-preorders are more sensitive to imperfections in
transitivity than in reflexivity, while (10, 1)-preorders are much more sensitive
to flaws in reflexivity than transitivity.

8 Equivalences and Bounds

Many theorems of traditional fuzzy logic have the form of equivalence between
two conditions, which in formal fuzzy logic is expressed by a formula of the form
4ϕ ↔4ψ. The graded version of such a theorem, ϕ ↔ ψ, is sometimes provable
in formal fuzzy logic; if so, it expresses the fact that the truth degree of ϕ equals
the truth degree of ψ. (Observe that again the traditional non-graded version of
the theorem, which expresses only the fact that ϕ is 1-true iff ψ is 1-true, follows
immediately from the graded version.)

Often, however, the graded version of a theorem 4ϕ ↔4ψ is more compli-
cated than the simple equivalence ϕ ↔ ψ. It can be exemplified by the relation-
ship between the two notions of graded equality (1)–(2) (for a proof, see [5]):

Proposition 2. The following theorems are provable in first order MTL:

1. A ≈2 B −→ A u B −→ A ≈ B
2. 4(A ≈ B) ←→4(A u B) ←→ A = B

Observe that the first statement says that the truth value of A u B is bounded
by the truth values of A ≈2 B (a lower bound) and A ≈ B (an upper bound). In
traditional non-graded fuzzy mathematics both notions coincide, since they are
1-true under the same conditions, as shown by the second statement of Prop. 2.

The situation that a theorem 4ϕ ↔ 4ψ has a graded version of the form
ϕn −→ ψm −→ ϕk for some n ≥ m ≥ k occurs regularly under some conditions:

Theorem 1. Let ϕ and ψ be formulae of the first-order logic MTL (i.e., they
contain no 4) such that 4ϕ ↔4ψ is provable in a theory T over (first-order)
MTL4. Then there exist n, m such that ϕn → ψ and ψm → ϕ are provable in T .

Proof. Follows directly from the 4–Deduction Theorem and Local Deduction
Theorem for the first-order logic MTL4 resp. MTL (see [11]). If ϕ,ψ are not
closed formulae (to which the Deduction Theorems apply), first replace free
variables by new constant symbols, which is harmless for provability in T . ut



Corollary 1. Under the conditions of Th. 1, we get the following mutual esti-
mates for the truth degrees of ϕ and ψ (for m,n from Th. 1):

ϕm·n −→ ψm −→ ϕ (17)
ψm·n −→ ϕn −→ ψ (18)

It is worth noting that graded theorems of this form have occurred in the tradi-
tional fuzzy literature, see e.g. [21, L.16].

We conclude this section by an illustrative example which can be viewed
as a graded generalization of (a certain variant of) the well-known Valverde
representation theorem for preorders (see [22] for its non-graded version).
Proposition 3. [23] The following graded characterizations are provable in first-
order MTL:

Refl R ↔ (∀xy)[(∀z)(Rzx → Rzy) → Rxy] (19)
TransR ↔ (∀xy)[Rxy → (∀z)(Rzx → Rzy)] (20)

Recall from [10] that the following implications are provable in first-order MTL:

((∀u)(ψ & χ))2 −→ (∀u)ψ & (∀u)χ −→ (∀u)(ψ & χ), (21)

and it cannot be improved as the converse implication (∀u)(ψ & χ) → (∀u)ψ &
(∀u)χ does not generally hold in fuzzy logics. As Preordr,t R ≡df Reflr R &
Transt R, we obtain just the following graded variant of Valverde representation:

Corollary 2. [5] Define ϕ(R) as (∀xy)[Rxy ↔ (∀z)(Rzx → Rzy)]. Then

ϕ2(R) −→ Preord1,1 R −→ ϕ(R), (22)

i.e., ϕ2(R) and ϕ(R) give respectively the lower and upper bounds for the truth
value of Preord1,1 R. Considering only 1-truth of both conditions, we get a non-
graded characterization 4Preord R ↔4ϕ(R).

9 Conclusion

As can be seen from the previous sections, in that part of fuzzy mathematics
that can be formalized in formal fuzzy logic the apparatus of the latter allows
deriving more general (graded) theorems than traditional methods. In order to
utilize the strength of the apparatus to the full extent, however, the guidelines
sketched in this paper have to be observed, namely:
– Defining new notions graded (§3), by formulae analogical to definitions in

classical mathematics (§4); parameterizing definitions of compound notions
by (variable) exponents and giving preconditions with variable exponents in
theorems rather than definitions (§7)

– Proving theorems in the form of fuzzy implication (§5) rather than crisp
consequence of fully true premises, using the laws of formal fuzzy logic (§2)
and counting the exponents of premises properly (§6)

This leads to stronger, even though sometimes more complicated (§8) theorems
than traditional methods. Failing to respect these unusual features when building
graded fuzzy theories would unnecessarily weaken the theorems obtained.
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7. Běhounek, L.: Extensionality in graded properties of fuzzy relations. In: Proceed-

ings of 11th IPMU Conference, Paris, Edition EDK (2006) 1604–1611
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