Topology in Fuzzy Class Theory: Basic Notions
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Abstract. In the formal and fully graded setting of Fuzzy Class Theory
(or higher-order fuzzy logic) we make an initial investigation into basic
notions of fuzzy topology. In particular we study graded notions of fuzzy
topology regarded as a fuzzy system of open or closed fuzzy sets and
as a fuzzy system of fuzzy neighborhoods. We show their basic graded
properties and mutual relationships provable in Fuzzy Class Theory and
give some links to the traditional notions of fuzzy topology.

1 Introduction

Fuzzy topology is among the fundamental disciplines of fuzzy mathematics whose
development was stimulated from the very beginning of the invention of fuzzy
sets [1]. Following the role of topology in classical mathematics, fuzzy topology
should capture the notions of openness, neighborhood, closure, etc., within the
setting of fuzzy set theory. The paper [2] by Hohle and Sostak, which is contained
in the special issue of Fuzzy Sets and Systems (1995) on fuzzy topology, mentions
and classifies a number of conceptual frameworks (lattice-, model-, and category-
theoretical) that have arisen during past decades. A detailed and up-to-date
exposition of many-valued and fuzzy topologies, mostly based on a categorical
viewpoint, is contained in the monograph [3] by Hohle.

This paper follows the footsteps of Ying’s attempt [4] to establish fuzzy topol-
ogy as a non-elementary theory over many-valued logic. We make initial steps
towards understanding fuzzy topology as an axiomatic higher-order theory over
Héjek-style [5] formal fuzzy logic, following the methodology for formal fuzzy
mathematics described in [6]. According to the classification proposed in [2],
the models of our theory are closest to “L-fuzzy topologies as characteristic
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morphisms”. However, the apparatus of Fuzzy Class Theory, employed in this
paper, makes our notions and the way in which they can be studied quite dis-
tinct from (and in some aspects more general than) other approaches to fuzzy
topology.

The paper is organized as follows: Section 2 gives a brief exposition of Fuzzy
Class Theory and the definitions needed in the paper. Section 3 studies the
graded notion of fuzzy topology regarded as a fuzzy system of open (or closed)
fuzzy sets. Section 4 then studies graded fuzzy topologies regarded as fuzzy
systems of fuzzy neighborhoods.

2 Preliminaries

Fuzzy Class Theory FCT, introduced in [7], is an axiomatization of Zadeh’s
notion of fuzzy set in formal fuzzy logic. Here we use its variant defined over
IMTLA [8], the logic of all left-continuous t-norms whose residual negation is
involutive (we shall call them IMTL t-norms; the most important example is
the Lukasiewicz t-norm z % y =qf max(0,z +y — 1)).

Remark 2.1. We have the following reasons for choosing IMTL A for the ground
logic: the logic MTL A [8] of all left-continuous t-norms is arguably [9] the weakest
fuzzy logic with good inferential properties for fully graded fuzzy mathematics in
the framework of formal fuzzy logic [6]. IMTLA extends it with the law of double
negation, which is in fuzzy topology needed for the correspondence between open
and closed fuzzy sets. A generalization of fuzzy topology to the logic MTL A (with
independent systems of open and closed fuzzy sets) will be the subject of some
future paper.

We assume the reader’s familiarity with IMTLA; for details on this logic
see [8]. Here we only recapitulate its standard [0, 1] semantics:

& a left-continuous t-norm * with involutive residual negation
— the residuum = of x, defined as x = y =q4¢ sup{z | z xx < y}
A,V min, max
- x = 0; in IMTLA it is involutive, due to the axiom ——¢ — ¢
Vv the t-conorm dual to * (since ¢ V 9 is defined as —(—¢ & —)))
— the bi-residuum: min(z = y,y = )
A Az =1-sgn(l —x)
Vv, 3 ... inf, sup; by involutiveness, (Jz)—p < —(Vz)p

Definition 2.1. Fuzzy Class Theory FCT is a formal theory over multi-sorted
first-order fuzzy logic (in this paper, IMTLA ), with the sorts of variables for

— atomic objects (lowercase letters x,y, ... )

— fuzzy classes of atomic objects (uppercase letters A, B,...)

— fuzzy classes of fuzzy classes of atomic objects (Greek letters T,0,...)
— fuzzy classes of the third order (calligraphic letters A, B, ... )

— etc., in general for fuzzy classes of the n-th order (X("), Yy .)



Table 1. Abbreviations used in the formulae of FCT

Az =4 z€A
T1...x% =ar (T1,...,Tk)
z¢ A =qr —(x € A), and similarly for other predicates

Ve Ay =a Vz)(zrecA—p)
Fx e Ay =4 (Bx)(z e A& p)
(Vz,y € A)p =ar (Vz € A)(Vy € A)p, similarly for 3

{reAlp} =a {v]|zecA&yp}
{txr,.ome) [0} =ar {z]z=t(z1,...,7) & ¢}
" =4t p&... & ¢ (n times)

Besides the crisp identity predicate =, the language of FCT contains:

— the membership predicate € between objects of successive sorts
— class terms {x | ¢}, for any formula ¢ and any variable x of any order
— symbols (x1,...,xx) for k-tuples of individuals x1, ...,z of any order

FCT has the following axioms (for all formulae ¢ and variables of all orders):

— the logical axioms of multi-sorted first-order logic IMTL A

the axioms of crisp identity: (i) x = x, (ii) x =y — (e(x) — ¢(y)),
(iii) (x1, ..., x5) = (Y1, yp) 21 =1 & ... & 2 = yi

— the comprehension azioms: y € {x | p(x)} < ¢(y)

— the extensionality axioms: (Vx)AN(x € A—x € B) — A=DB

Remark 2.2. Notice that in FCT, fuzzy sets are rendered as a primitive notion
rather than modeled by membership functions. In order to capture this distinc-
tion, fuzzy sets are in FCT called fuzzy classes; the name fuzzy set is reserved
for membership functions in the models of the theory.

The models of FCT are systems of fuzzy sets of all orders over a fixed crisp
universe of discourse, with truth degrees taking values in an IMTLa-chain (e.g.,
the interval [0, 1] equipped with an IMTL t-norm). Thus all theorems on fuzzy
classes provable in FCT are true statements about L-valued fuzzy sets, for any
IMTLA-chain L. Notice however that the theorems of FCT have to be derived
from its axioms by the rules of the fuzzy logic IMTLA rather than classical
Boolean logic. For details on proving theorems of FCT see [10] or [11].

Convention 2.1 In formulae of FCT, we employ usual abbreviations known
from classical mathematics, including those listed in Table 1. Usual rules of
precedence apply to the connectives of IMTL . Furthermore we define standard
defined notions of FCT, summarized in Table 2, for all orders of fuzzy classes.

Remark 2.3. Notice that in FCT, not only the membership predicate €, but
all defined notions are in general fuzzy (unless they are defined as provably
crisp). FCT thus presents a fully graded approach to fuzzy mathematics. The



Table 2. Defined notions of FCT

0 =ar {z]0} empty class
V =a {z|1} universal class
KerA =4 {z|AAz} kernel
aA =qr {z]|a& Ax} a-resize
—A =g {x|-Az} complement

ANB =4 {z| Az & Bz}

AUB =4 {z|AzV Bz}

Ax B =qt {zy| Az & By}
Ut =ar {z|BAen)(ze€ A}
N7 =ar {z|(VAeT)(ze A}

(strong) intersection
(strong) union
Cartesian product
class union

class intersection

Pow(A) =ar {X| X C A} power class
Crisp(A) =ar (Vx)A(Az V —Ax) crispness
Extg A =4t (Vz,y)(Exy & Az — Ay) E-extensionality
inclusion

(
ACB =4 (Vx)(Az — Bx)
(

A= B =4 (ACB)& (BCA) (strong) bi-inclusion

importance of full gradedness in fuzzy mathematics is explained in [10, 12, 13]:
its main merit lies in that it allows inferring relevant information even when a
property of fuzzy sets is not fully satisfied. Fuzzy topology has a long tradition
of attempting full gradedness, cf. graded definitions and theorems e.g. in [3,4].

Remark 2.4. Tt should be noted that fully graded theories have some peculiar
features in which they differ from both classical mathematics and traditional
fuzzy mathematics. A detailed account of the unusual features of fully graded
theories is given in [14]; some of them can also be found in [10] (available online).
Here we only briefly stress the main features of graded mathematics:

— Since ¢ — ¢ & ¢ is not a generally valid law of fuzzy logic, premises may
occur several times in theorems. A typical graded theorem has the form
<p]f1 & ... & pkn — oh, where ©F abbreviates p & ... & ¢ (k times, where ("
is 1). The multiplicity k; of the premise ¢; shows how strongly it influences
(the lower bound for) the truth of ¢ (when only partially true), and depends
on how many times the premise is used in the derivation of ¥ from 1, . .., @k.
The exponent k in ¢* can also take the conventional value “A”, where ¢*
is understood as Ay (recall that > — @™ for all n).

— If a complex notion @ is defined as a conjunction 1 & . . .& ¢y, then the con-
juncts p; will get different multiplicities in different theorems. It is therefore
appropriate to parameterize ¢ by the multiplicities of the components ¢;
and define it as @F1Fn =g, cp]fl &...&@Fn. (All graded topological notions
in the following sections will be defined in this way.) We can write just ®*
instead of @F1Fn if k; = k for all 4, and just & if k; = 1 for all i.

The following defined predicates will be employed in the next sections.



Definition 2.2. We define the following (graded) unary predicates:

U-closedness: uc(t) =4r (VA,BeT)(AUB € T)

N-closedness: ic(1) =ar (VA,BeT)(ANBeT)
U -closedness: Uc(r) =4t (W C7)(Ur er)
N -closedness: Ie(7) =a¢ (Vv C 1) (v ET)

C-upperness: Upper(r) =4t (VA,B)(ACB& AeT—Ber)

being a filter: Filter” " (1) =qr (V € 7)" & (0 ¢ 7)¢ & Upper"(7) & ic'(1)

3 Topology as a System of Open (Closed) Fuzzy Classes

In classical mathematics, topology can be introduced in several equivalent ways—
by open sets, closed sets, neighborhoods, closure, etc. In FCT, however, these
approaches yield different concepts. In this paper, we make an initial investi-
gation into two of them, namely the system of open (or closed) classes (in this
section) and the system of neighborhoods (in Sect. 4). Due to the limited size of
this paper we present only some of the initial results and have to omit all proofs.

The fuzzification of the concept of open (closed) fuzzy topology presented in
Def. 3.1 follows the methodology sketched in [15, §5] and formally elaborated in
[7, §7], i.e., reinterpreting the formulae of the classical definition in fuzzy logic.!

Definition 3.1. We define an (open) (e,v,i,u)—fuzzy topology and a closed
(e, v, u,i)—fuzzy topology respectively by the predicates
OTope’”’i’"(T)
CTope’”’"’i(o)

aDern)&(Vern)& iCi(T) & Uc*(1)
at (0 € 0)° & (V € 0)? & uc(o) & Ic' (o)

(see Remark 2.4 for the meaning of the parameters e,v,u,1).

Note that this concept of topology is graded, i.e., the predicate OTop®”""* de-
termines the degree to which 7 is an open (e, v, i, u)—fuzzy topology.

Ezample 3.1. Let * be an IMTL t-norm and = its residuum. The *-based Zadeh
models of open (1,1, A, A)—fuzzy topology, i.e., of the predicate

OTop" 22 (1) =0 e & V e T & Alde(r) & A Uc(r)

are functions 7: [0,1]V — [0, 1] satisfying the following conditions:

(i) 7(A) *7(B) < 7(AN B) for every A, B € [0,1]V
(i) Ae[/o\l]V(V(A) = 7(A)) <7 (Uv) for every v: [0,1]Y — [0,1]

! The requirement that both ) and the ground set be open can meaningfully be rein-
terpreted in fuzzy logic in several ways; here we restrict ourselves to the weakest one,
requiring openness just for the two classes ) and V. Stronger notions of topology
(e.g., stratified topology [3] with the condition aV € 7 for all truth degrees a) will
be studied in subsequent papers.



where (AN B)(z) = A(z) * B(z) and (Jv)(z) = V (v(4) x A(z)). Since
Ae€[0,1]V

both (i) and (ii) are crisp, the degree to which 7 is a (1,1, A, A)-fuzzy topology

equals 7(0) x 7(V). These models cover fuzzy topologies studied under the name

“L-fuzzy topologies of Hohle type” [2].

In IMTLA, open and closed topologies are interdefinable:
Definition 3.2. Let 7, =q; {A| —A € 7}.

Theorem 3.1. FCT proves: OTop(7) < CTop(7.), CTop(c) < OTop(o,).

Definition 3.3. Given a class of classes T, we define the interior and closure
n T as follows:

Int(A) =q¢ | J{BET|BC A}
Cl(A) =as [|{B €™ | AC B}

Theorem 3.2. [t is provable in FCT:

i) Int,(A) C A
(11) A C B — Int.(A) C Int,(B)
ii) Aer —Int, (A) = A
iv) Int. (AN B)NInt, (AN B) C Int,(A4) NInt,(B)

Theorem 3.3 (OTop and the interior operator). It is provable in FCT:

i) OTopg 2 g 1(7’ — Int, (A) er
ii) OTop™ (r (
(iii) OTopO 0’1’0(7' — Int-(A) NInt.(B) C Int. (AN B)
(iv) OTop”t% O(T V)=V

Since Cl,(A) = —Int,(—A) is provable in FCT, the next two theorems are just
dual counterparts of Th. 3.2 and 3.3.

Theorem 3.4. It is provable in FCT:

(i) ACCl(A)

(il) AC B — Cl.(A4) C Cl.(B)

(iii) AGTC—>C1 (A)= A

(iv) Cl;(A)UCl(B) CCl.(AUB)UCl.(AUB)

Theorem 3.5 (OTop and the closure operator). It is provable in FCT:

(i) OTop”®%!(7) — Cl,(A) € 7,

(ii) OTopg’g’(l)’;(T) — CL(CL.(A)) = CL.(A)
(iii) OTop®®9(7) — Cl, (AU B) C Cl,(4) U Cl,(B)
(iv) OTop”!*0(r) — CL,(0) = 0



Definition 3.4. A predicate expressing that A is a neighborhood of x in 7 is
defined as
Nb,(z,A) =4t (3B € 7)(BC A& z € B)

The system of all neighborhoods of x will be denoted by v, =4¢ {A | Nb,(x, A)}.
Theorem 3.6 (OTop and neighborhoods). It is provable in FCT:

(i) x € (Ve
(ii) Nb,(z,A) < = € Int.(A)
(iii) OTop(r) — Filter(vy) & (VA € v,)(3B € v,)(B C A & (Vy € B)Nb,(y, B))

In general, the system of all open fuzzy topologies is not closed under arbi-
trary intersections. Nevertheless, the system of all open A—fuzzy topologies is
at least closed under crisp intersections, which allows introducing the notion of
open fuzzy topology generated by a subbase of fuzzy classes:

Theorem 3.7. Let X be a fuzzy class of the third order. Then FCT proves:
Crisp(X) & (V7 € X)(A OTop(7)) — A OTop(ﬂ X)
Definition 3.5. Let o be a fuzzy class of fuzzy classes. Then we define
7o =at [ J{7' | A(OTop(r') & o C 7)}

By Th. 3.7, FCT proves that A OTop(7,), and obviously also that 7, is the least
open A—fuzzy topology containing o.

Ezample 3.2. Interval open fuzzy topology. Let < be a crisp dense ordering (e.g.,
of real or rational numbers). The fuzzy properties of being an upper resp. lower
class in < are defined by the predicates

Upper<(A) =4t (Vp,q)(p < q & Ap — Aq)
Lower<(A) =ar (Vp,q)(p > ¢ & Bp — Bq)

Fuzzy intervals [A, B] in < can be defined [16] as intersections AN B of two fuzzy
classes A, B, where A Upper.(4) & A Lower<(B). An open fuzzy interval can
be defined by the following fuzzy predicate:?

Op([A, B]) =ar A(Upper<(A)) & (Vp)(Ap — (3¢ < p)Aq) &
A(Lower<(B)) & (Vp)(Bp — (3¢ > p)Bq)
By Th. 3.7, the fuzzy system o = {[A4, B] | Op([4, B])} of open fuzzy intervals
generates an open fuzzy topology 7,—the interval open fuzzy topology of <. It

can be shown that o itself is N-closed; since furthermore N distributes over | J,
FCT proves that 7, = {Jv | ¥ C o} (just like in the crisp interval topology).

2 Observe that it generalizes the notion of crisp open interval, by the requirement of
the appropriate left- or right- continuity of the characteristic function of the interval.



4 Topology Given by a Neighborhood Relation

The following definition of fuzzy topology is an internalization in fuzzy logic of
the conditions required from the system of neighborhoods.?

Definition 4.1. We define a neighborhood (i, j, k, [)—fuzzy topology by the pred-
icate
NTop"¥!(Nb) =4¢ A(Nb C V x Ker Pow(V)) &
((Vz, A)(Nb(z, A) — x € A))" &
((Vz, A, B)(Nb(z, A) & A C B — Nb(z, B))) &
((Va, A, B)(Nb(z, A) & Nb(x, B) — Nb(z, AN B)))* &
((Vz, A)(Nb(z, A) — (3B C A)(Nb(z, B) & (Vy € B)Nb(y, B)))!

Definition 4.2. Let A(Nb C V x Ker Pow(V)). Then we define (as usual) the
system of Nb-open classes:

TNb =df {A ‘ (VCL‘ S A) Nb(l‘,A)}

It can be shown that even if Nb is a neighborhood fuzzy topology to degree one,
7np still need not be an open fuzzy topology (in particular, it need not be closed
under arbitrary unions). Only the following holds:

Theorem 4.1. FCT proves: ANTop(Nb) — (Vo C ) (U(e N o) € ).
This motivates a modified notion of open fuzzy topology:

Definition 4.3. We define the following predicates:

Usc(7) =qr (Vo C 1) (U(U No)er)
02 Top® ""(1) =qr (I € 7)¢ & (V € 7)? & ic' (1) & Ugc®(7)

Theorem 4.2. FCT proves:
(3, A) Nb(z, 4) & NTop!#11(Nb) — 0,Top(rs) & (Nb(z, 4) = Nbr, (z, 4)

Thus, a “sufficiently monotone” non-empty neighborhood topology determines
a corresponding open “topology” which is closed under the operation | J(o N o)
rather than under usual unions | Jo. Such systems are met quite often in fully
graded fuzzy topology:

Ezample 4.1. Tt is well-known from traditional fuzzy mathematics that the sys-
tem of fuzzy sets fully extensional w.r.t. a fuzzy relation R is closed under unions
of arbitrary crisp systems of fuzzy sets and under min-intersections of crisp pairs
of fuzzy sets (i.e., it forms a fuzzy topology in the traditional, non-graded sense

3 The first condition only determines the type of the neighborhood predicate (i.e., that
it is a relation between points and classes), therefore its full validity is required.



of [17]). In the graded framework of FCT it can be proved that the fuzzy system
of R-extensional classes {A | Extr A} is closed under | J(o N o) (but not under
arbitrary fuzzy unions), and provided R C RN R (which holds e.g. if R is crisp),
it satisfies O, Top.

Both OTop and O, Top topologies are closed under crisp unions, which leads
to a further generalization of the notion of open fuzzy topology:

Definition 4.4. We define the following predicates:

Upc(r) =4¢ (Vo C 7)(Crisp(o) — U ceET)

OaTop® (1) =¢5 (D € 7)¢ & (V € 7)° & ic' (1) & Unac¥(7)
The models of OaTop are among frequently studied fuzzy topological struc-
tures called “L-fuzzy topologies of Sostak-type” according to the classification
proposed in [2].
The definition of the interior operator needs to be modified to have good

properties in neighborhood fuzzy topologies:

Int, . (A) =ar (B | AB € & BC A)}

TNb

Theorem 4.3. [t is provable in FCT:

(i) NTop®"%%(Nb) — A(Int)._ (A) € Tnp)
(i) AC B—Int, (A) CInt_ (B)
(iii) A(A € mnp) — Intl (A) = A

Theorem 4.4 (NTop and interior operator). It is provable in FCT:
(1) A(V € TNb) — Int/ (V) =V

(i) Int, (A)cA

(iii) NTop”"%(Nb) — Int!_ (Int.  (A)) =Int._ (A)

(iv) NT/opO’O’l’O(Nb) — I/nt’TNb (A) N Int’TNl? (B) C Int’TN/b(A N B)
(v) Int; (AN B)NInt (AN B) CInt. (A)NInt, (B)

The following theorem guarantees that neighborhoods defined from a (suffi-
ciently union-closed) open fuzzy topology are exactly the neighborhoods in the
sense of predicate NTop.

Theorem 4.5 (OTop and NTop). It is provable in FCT:
OTop"'"M?(7) — NTop(Nb,) & (A € 7 — (V& € A) Nb,(z, A))

Ezample 4.2. Interval neighborhood fuzzy topology. The (fuzzy) system of open
fuzzy intervals of Example 3.2 allows introducing the interval neighborhood fuzzy
topology w.r.t. a crisp dense ordering <, by taking

Nb(z, X) =ar (34, B) A (Op([A, B]) & [A,B] C X & = € [A, B))

Then it can be shown that FCT proves A NTop(Nb), and in virtue of Th. 4.2,
A Oy Top(mnpb) and Nb = Nb., . Notice, however, that the interval open topology
of Example 3.2 differs from the interval neighborhood topology introduced here,
since in the latter all classes open to degree 1 are crisp.



5 Conclusions

We have introduced two notions of fuzzy topology in the graded framework of
Fuzzy Class Theory and investigated their basic properties; where appropriate,
we gave links to similar notions of fuzzy topology studied previously in tradi-
tional fuzzy mathematics. Most of our notions generalize usual concepts of fuzzy
topology by allowing full gradedness of all defined predicates and functions.
Proofs of the graded theorems, though omitted here due to the limited space,
are rather simple and show the strength of the apparatus of higher-order fuzzy
logic in fuzzy topology. The results open a wide area of fully graded topological
theory and show the possibility of the investigation of more advanced graded
topological notions by means of Fuzzy Class Theory.

References

1. Chang, C.: Fuzzy topological spaces. Journal of Mathematical Analysis and Ap-
plications 24 (1968) 182-190

2. Hohle, U., Sostak, A.: A general theory of fuzzy topological spaces. Fuzzy Sets
and Systems 73 (1995) 131-149

3. Hohle, U.: Many Valued Topology and Its Applications. Kluwer, Boston (2001)

4. Ying, M.: Fuzzy topology based on residuated lattice-valued logic. Acta Mathe-
matica Sinica (English Series) 17 (2001) 89-102

5. Hajek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordercht (1998)

6. Béhounek, L., Cintula, P.: From fuzzy logic to fuzzy mathematics: A methodolog-
ical manifesto. Fuzzy Sets and Systems 157(5) (2006) 642-646

7. Béhounek, L., Cintula, P.: Fuzzy class theory. Fuzzy Sets and Systems 154(1)
(2005) 34-55

8. Esteva, F., Godo, L.: Monoidal t-norm based logic: Towards a logic for left-
continuous t-norms. Fuzzy Sets and Systems 124(3) (2001) 271-288

9. Béhounek, L.: On the difference between traditional and formal fuzzy logic. Sub-
mitted, available at www.cs.cas.cz/hp (2007)

10. Béhounek, L., Cintula, P.: Fuzzy Class Theory: A primer v1.0. Technical Report
V-939, Institute of Computer Science, Academy of Sciences of the Czech Republic,
Prague (2006) Available at www.cs.cas.cz/research/library/reports_900.shtml.

11. Béhounek, L., Cintula, P.: Fuzzy class theory as foundations for fuzzy mathematics.
In: Fuzzy Logic, Soft Computing and Computational Intelligence: 11th IFSA World
Congress. Volume 2., Beijing, Tsinghua UP /Springer (2005) 1233-1238

12. Béhounek, L., Bodenhofer, U., Cintula, P.: Relations in Fuzzy Class Theory: Initial
steps. Submitted to Fuzzy Sets and Systems (2006)

13. Béhounek, L.: Extensionality in graded properties of fuzzy relations. In: Proceed-
ings of 11th IPMU Conference, Paris, Edition EDK (2006) 1604-1611

14. Béhounek, L., Cintula, P.: Features of mathematical theories in formal fuzzy logic.
Submitted to IFSA 2007, available at www.cs.cas.cz/hp (2007)

15. Hohle, U.: Fuzzy real numbers as Dedekind cuts with respect to a multiple-valued
logic. Fuzzy Sets and Systems 24(3) (1987) 263-278

16. Béhounek, L.: Towards a formal theory of fuzzy Dedekind reals. In: Proceedings
of Joint EUSFLAT-LFA Conference, Barcelona (2005) 946-954

17. Lowen, R.: Fuzzy topological spaces and fuzzy compactness. Journal of Mathe-
matical Analysis and Applications 56 (1976) 623-633



