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Pod Vodárenskou věž́ı 2, 182 07 Prague 8, Czech Republic
{behounek, cintula}@cs.cas.cz

Abstract

The paper introduces a simple, yet powerful axiomatization of Zadeh’s notion of
fuzzy set, based on formal fuzzy logic. The presented formalism is strong enough to
serve as foundations of a large part of fuzzy mathematics. Its essence is elementary
fuzzy set theory, cast as two-sorted first-order theory over fuzzy logic, which is
generalized to simple type theory. We show a reduction of the elementary fuzzy
set theory to fuzzy propositional calculus and a general method of fuzzification
of classical mathematical theories within this formalism. In this paper we restrict
ourselves to set relations and operations that are definable without any structure
on the universe of objects presupposed; however, we also demonstrate how to add
structure to the universe of discourse within our framework.
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1 Introduction

Fuzzy sets were introduced approximately 40 years ago by L.A. Zadeh [17].
During these years the notion of fuzziness spread to nearly all aspects of math-
ematics (fuzzy relations, fuzzy topology, fuzzy algebra etc.). There have been
many (more or less successful) attempts to formalize or even axiomatize some
areas of fuzzy mathematics. Very successful results were achieved especially
in the area of fuzzy logic (in narrow sense). The work of Hájek, Gottwald,
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Mundici, and others established fuzzy logic as a formal theory. This success
allows us to move further with the formalization of other parts of fuzzy math-
ematics.

Although fuzzy mathematics is nowadays very broad, the notion of fuzzy set
is still a central concept. There have been several previous attempts at for-
malizing fuzzy sets in an axiomatic way. Early works, most notably [3] and
[4], axiomatized the notion within classical logic by means of a ternary mem-
bership predicate, whose third argument represented the membership degree.
Even though we do not follow this approach here, our motivation for the ax-
iomatic method conforms with that of [3, 623–4]:

“This unified theory in which sets, functions, etc. all are ‘fuzzy’ helps to
obviate some of the [. . . ] difficulties and to clarify the nature of the others.
Further, it eliminates the necessity of having a predetermined theory of
ordinary sets on top of which the ‘fuzzy’ sets are built as a superstructure
by starting out axiomatically ab initio, as it were, assuming only elementary
logic. Further, by developing the theory in a manner parallel to the usual
development of other set theories, comparisons between this new theory and
the more usual ones are facilitated.”

The approach we adopt here consists in ‘hiding’ the third argument in the se-
mantic meta-level of the theory and using formal fuzzy logic instead of classical
logic for the background logic of the theory. The reasons for this design choice
are explained in more detail in [1]. Here it suffices to say that it allows us to
draw on the similarity with classical set theory even more extensively than the
former approach, as the formulae of the theory become virtually the same as
in classical mathematics, only governed by a weaker logic. (See also footnote 8
in Section 7 below.) Axiomatic fuzzy set theories construed in this way have
already been explored by several predecessors; however, their agenda differs
from ours in many respects. The papers [11] and [15] are mainly interested in
metamathematical properties of fuzzified Zermelo-Fraenkel set theory, rather
than developing fuzzy mathematics within its framework. The elegant theory
of [16] is restricted to one particular t-norm logic, and so it cannot capture
the general notion of fuzzy set. Inspecting these approaches we came to two
conclusions: for the axiomatization of Zadeh’s notion of fuzzy set, we do not
need an analogue of full-fledged set theory, though we do need an expressively
rich fuzzy logic as a logical background.

By an analogue of full-fledged set theory we mean a theory over fuzzy logic,
which contains fuzzy counterparts of all concepts of classical set theory. We
observed that real-world applications of fuzzy sets need only a small portion of
set-theoretical concepts. The central notion in fuzzy sets is the membership of
elements (rather than fuzzy sets) into a fuzzy set. In the classical setting, the
theory of the membership of atomic objects into sets is called elementary set
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theory, or class theory. It is a theory with two sorts of individuals—objects and
classes—and one binary predicate—the membership of objects into classes. In
this paper we develop a fuzzy class theory. The classes in our theory correspond
exactly to Zadeh’s fuzzy sets.

By an expressively rich logic (which we need) we mean a logic of great ex-
pressive power, yet with a simple axiomatic system and good logical proper-
ties (deduction theorem, Skolem function introduction and eliminability, etc.).
�LΠ∀ seems to be the most suitable logic for our needs. In this paper we devel-
oped fuzzy class theory over the first-order logic �LΠ, however if you examine
the definitions and theorems you notice that nearly all of them will work in
other fuzzy logics as well. We think that fixing the underlying logic will make
important class-theoretical concepts clearer. Fuzzy class theory for a wider
class of fuzzy logics can be a topic of some upcoming paper.

We show that the proposed theory is a simple, yet powerful formalism for
working with elementary relations and operations on fuzzy sets (normality,
equality, subsethood, union, intersection, kernel, support, etc.). By a small
enhancement of our theory (adding tools to manage tuples of objects) we ob-
tain a formalism powerful enough to capture the notion of fuzzy relation. Thus
we can formally introduce the notions of T -transitivity, T -similarity, fuzzy or-
dering, and many other concepts defined in the literature. Finally, we extend
our formalism to something which can be viewed as simple fuzzy type theory.
Basically, we introduce individuals for classes of classes, classes of classes of
classes etc. This allows us to formalize other parts of fuzzy mathematics (e.g.,
fuzzy topology). Our theory thus aspires to the status of foundations of fuzzy
mathematics and a uniform formalism that can make interaction of various
disciplines of fuzzy mathematics possible.

Of course, this paper cannot cover all the topics mentioned above. For the
majority of them we only give the very basic definitions, and there is a lot of
work to be done to show that the proposed formalism is suitable for them. We
concentrate on the development of basic properties of fuzzy sets. In this area
our formalism proved itself worthy, as it allows us to state several very general
metatheorems that effectively reduce a wide range of theorems on fuzzy sets to
fuzzy propositional calculus. This success is a promising sign for our formalism
to be suitable for other parts of fuzzy mathematics as well.

As mentioned above, in this paper we restrict ourselves to notions that can be
defined without adding a structure (similarity, metrics, etc.) to the universe of
objects. Nevertheless, our formalism possesses means for adding a structure to
the universe (usually by fixing a suitable class which satisfies certain axioms),
which is necessary for the development of more advanced parts of fuzzy set
theory. Such extensions of our theory will be elaborated in subsequent papers,
for some hints see Section 6.
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The proposed methodology of formal fuzzy mathematics is described in more
details in our paper [1], in which we also make further references to related
results. Let us just mention here that some of the roots of our approach (as well
as some of the concepts we employ, like graded properties of fuzzy relations)
can already be found in Gottwald’s monograph [9]. The systematic way of
defining fuzzy notions (see Section 7) is hinted at already in Höhle’s 1987
paper [12].

2 Preliminaries

This section contains formal tools necessary for developing a theory over the
multi-sorted first-order logic �LΠ. Readers acquainted with classical multi-
sorted calculi can go through this section quickly.

2.1 Propositional logic �LΠ

Here we recall the definitions of the logic �LΠ and some of its properties (the
definition and theorems in this section are from [8] and [6]).

Definition 1 The logic �LΠ has the following basic connectives (they are listed
together with their standard semantics in [0, 1]; we use the same symbols for
logical connectives and the corresponding algebraic operations):

0 0 truth constant falsum

ϕ→L ψ x→L y = min(1, 1 − x+ y) �Lukasiewicz implication

ϕ→Π ψ x→Π y = min(1, x
y
) product implication

ϕ &Π ψ x &Π y = x · y product conjunction

The logic �LΠ1
2

has one additional truth constant 1
2

with the standard semantics
1
2
. We define the following derived connectives:
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¬Lϕ is ϕ→L 0 ¬Lx = 1 − x

¬Πϕ ϕ→Π 0 ¬Πx = 1 if x = 0, otherwise 0

1 ¬L0 1

∆ϕ ¬Π¬Lϕ ∆x = 1 if x = 1, otherwise 0

ϕ &L ψ ¬L(ϕ→L ¬Lψ) x &L y = max(0, x+ y − 1)

ϕ⊕ ψ ¬Lϕ→L ψ x⊕ y = min(1, x+ y)

ϕ� ψ ϕ &L ¬Lψ x� y = max(0, x− y)

ϕ ∧ ψ ϕ &L (ϕ→L ψ) x ∧ y = min(x, y)

ϕ ∨ ψ (ϕ→L ψ) →L ψ x ∨ y = max(x, y)

ϕ→G ψ ∆(ϕ→L ψ) ∨ ψ x→G y = 1 if x ≤ y, otherwise y

We assume the usual precedence of connectives. Occasionally we may write
¬G and &G as synonyms for ¬Π and ∧, respectively. We further abbreviate
(ϕ→∗ ψ) &∗ (ψ →∗ ϕ) by ϕ ↔∗ ψ for ∗ ∈ {G,L,Π}.

Definition 2 An �LΠ-algebra is a structure L = (L,⊕,¬L,→Π,&Π, 0, 1) such
that:

• (L,⊕,¬L, 0) is an MV-algebra
• (L,∨,∧,→Π,&Π, 0, 1) is a Π-algebra,
• x &Π (y � z) = (x &Π y) � (x &Π z).

Furthermore, a structure L = (L,⊕,¬L,→Π,&Π, 0, 1,
1
2
) where the reduct L′ =

(L,⊕,¬L,→Π,&Π, 0, 1) is an �LΠ-algebra and the identity 1
2

= ¬L
1
2

holds is
called an �LΠ1

2
-algebra.

The standard �LΠ-algebra [0, 1] has the domain [0, 1] and the operations as
stated in Definition 1 above (analogously for the standard �LΠ1

2
-algebra).

The two-valued �LΠ algebra is denoted by {0, 1}.

Definition 3 The logic �LΠ is given by the following axioms and deduction
rules:
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(�L) The axioms of �Lukasiewicz logic

(Π) The axioms of product logic

(�L∆) ∆(ϕ→L ψ) →L (ϕ→Π ψ)

(Π∆) ∆(ϕ→Π ψ) →L (ϕ→L ψ)

(Dist) ϕ &Π (χ� ψ) ↔L (ϕ &Π χ) � (ϕ &Π ψ)

The deduction rules are modus ponens and ∆-necessitation (from ϕ infer ∆ϕ).

The logic �LΠ 1
2

results from �LΠ by adding the axiom 1
2
↔ ¬L

1
2
.

The notions of proof, derivability �, theorem, and theory over �LΠ and �LΠ1
2

are defined as usual.

Theorem 4 (Completeness) Let ϕ be a formula of �LΠ (�LΠ1
2

respectively).
Then the following conditions are equivalent:

• ϕ is a theorem of �LΠ(�LΠ1
2

resp.)
• ϕ is an L-tautology w.r.t. each �LΠ-algebra(�LΠ1

2
-algebra resp.) L

• ϕ is a [0, 1]-tautology.

The following definitions and theorems demonstrate the expressive power of
�LΠ and �LΠ1

2
. Particularly, Corollary 8 shows that each propositional logic

based on an arbitrary t-norm of a certain simple form is contained in �LΠ1
2
.

Definition 5 A function f : [0, 1]n → [0, 1] is called a rational �LΠ-function
iff there is a finite partition of [0, 1]n such that each block of the partition
is a semi-algebraic set and f restricted to each block is a fraction of two
polynomials with rational coefficients.

Furthermore, a rational �LΠ-function f is integral iff all the coefficients are
integer and f({0, 1}n) ⊆ {0, 1}.

Definition 6 Let f be a function f : [0, 1]n → [0, 1] and ϕ(v1, . . . , vn) be a
formula. We say that the function f is represented by the formula ϕ (ϕ is
a representation of f) iff e(ϕ) = f(e(v1), e(v2), . . . , e(vm)) for each evalua-
tion e.

The following theorem was proved in [13]:

Theorem 7 (Functional representation) A function f is an integral (ra-
tional respectively) �LΠ function iff it is represented by some formula of �LΠ
( �LΠ1

2
resp.).
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The following theorem was proved in [5], but it can be viewed as a corollary
of the previous theorem.

Corollary 8 Let ∗ be a continuous t-norm which is a finite ordinal sum of
the three basic ones (i.e., of G, L, and Π), and ⇒ be its residuum. Then there
are derived connectives &∗ and →∗ of the �LΠ1

2
logic such that their standard

[0, 1]-semantics are ∗ and ⇒ respectively. The logic PC (∗) of the t-norm ∗ (see
[10]) is contained in �LΠ1

2
if & and → of PC (∗) are interpreted as &∗ and

→∗. Furthermore, if ϕ is provable in PC (∗) (and a fortiori, if it is provable in
Hájek’s logic BL∆, see [10]), then the formula ϕ∗ obtained from ϕ by replacing
the connectives & and → of PC (∗) (or BL∆) by &∗ and →∗ is provable in
�LΠ1

2
.

Convention 9 Further on, the signs ∗ and � will be reserved for t-norms
definable in �LΠ1

2
(incl. G, �L and Π), and the indexed connectives will always

have the meaning introduced in the previous Corollary. However, we omit the
indices of connectives whenever they are irrelevant, i.e., whenever all formulae
obtained by subscripting any ∗ to such a connective are provably equivalent (for
example, ¬¬Gϕ, ∆(ϕ→ ψ), etc.), or equivalently provable (e.g., the principal
implication in axioms and theorems).

Corollary 10 Let r ∈ [0, 1] be a rational number; then there is a formula ϕ
of �LΠ1

2
such that e(ϕ) = r for any [0, 1]-evaluation e.

This corollary tells us that in �LΠ1
2

we have a truth constant r̄ for each ratio-
nal number r ∈ [0, 1]. Using the completeness theorem we get the following
corollary.

Corollary 11 The following are theorems of the �LΠ1
2

logic:

r &Π s = r &Π s
r →Π s = r →Π s
r →L s = r →L s

where the symbols &Π,→Π,→L on the left-hand side are operations in [0, 1]
and on the right-hand side they are logical connectives.

2.2 Multi-sorted first-order logic �LΠ∀

In this section we deal with first-order versions of the logics �LΠ and �LΠ1
2
.

Since the difference between �LΠ∀ and �LΠ1
2
∀ is purely “propositional”, we

focus on the logic �LΠ∀; the definitions and theorems for the logic �LΠ1
2
∀ are

analogous, for details see [5]. (For general first-order fuzzy logics see [10] and
for multi-sorted first order fuzzy logic see [7].)
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Definition 12 A multi-sorted predicate language Γ for the logic �LΠ∀ is a
quintuple (S, �, P, F, A), where S is a non-empty set of sorts, � is an
ordering on S (indicating the subsumption of sorts), P is a non-empty set of
predicate symbols, F is a set of function symbols, and A is a function assigning
to each predicate and function symbol a finite sequence of elements of S.

Let |A(P )| denote the length of the sequence A(P ). The number |A(P )| is
called the arity of the predicate symbol P . The number |A(f)| − 1 is called
the arity of the function symbol f . The functions f for which A(f) = <s>
are called the individual constants of sort s. If s1 � s2 holds for sorts s1, s2

we say that s2 subsumes s1.

The logical symbols of �LΠ∀ are individual variables xs, ys, . . . for each sort s,
the logical connectives of �LΠ, the quantifier ∀ and the identity sign =. For any
variable xs, we abbreviate ¬L(∀xs)¬L as (∃xs).

Definition 13 Let Γ = (S, �, P, F, A) be a multisorted predicate language.
The notion of Γ-term is defined inductively as follows:

• Each individual variable of sort s ∈ S is a Γ-term of sort s.
• Let t1, . . . , tn be Γ-terms of respective sorts s1, . . . , sn ∈ S, and f be a func-

tion symbol of Γ such that A(f) = <w1, . . . , wn, wn+1>, where si � wi for
i ≤ n. Then f(t1, . . . , tn) is a Γ-term of sort wn+1.

• Nothing else is a Γ-term.

Definition 14 Let Γ = (S, �, P, F, A) be a multisorted predicate language.
Let t1, . . . , tn be Γ-terms of respective sorts s1, . . . , sn ∈ S, and P be a predicate
symbol of Γ such that A(P ) = <w1, . . . , wn> and si � wi for i ≤ n. Then
P (t1, . . . , tn) is an atomic Γ-formula. If t1 and t2 are Γ-terms of arbitrary
sorts, then t1 = t2 is also an atomic Γ-formula.

The notion of Γ-formula is defined inductively as follows:

• Each atomic Γ-formula is a Γ-formula.
• If ϕ1, . . . , ϕn are Γ-formulae and c is an n-ary propositional connective of

�LΠ, then c(ϕ1, . . . , ϕn) is also a Γ-formula.
• Let ϕ be a Γ-formula and xs a variable of sort s. Then (∀xs)ϕ is also a

Γ-formula.
• Nothing else is a Γ-formula.

Bounded and free variables in a formula are defined as usual. A formula is
called a sentence iff it contains no free variables. A set of Γ-formulae is called
a Γ-theory.

Convention 15 Instead of ξ1, . . . , ξn (where ξi’s are terms or formulae and

n is arbitrary or fixed by the context) we shall sometimes write just �ξ.
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Unless stated otherwise, the expression ϕ(x1, . . . , xn) means that all free vari-
ables of ϕ are among x1, . . . , xn. Similarly, in propositional logic the expres-
sion ϕ(p1, . . . , pn) will mean that all propositional variables occurring in ϕ are
among p1, . . . , pn.

If ϕ(x1, . . . , xn, �z ) is a formula and we substitute terms ti for all xi’s in ϕ, we
denote the resulting formula in the context simply by ϕ(t1, . . . , tn, �z ).

The expression (∃!x)∗ϕ(x, �z ) abbreviates the formula

(∃x, �z )[ϕ(x, �z ) &∗ (∀y)(ϕ(y, �z ) →∗ y = x)]

Definition 16 A term t of sort w is substitutable for the individual vari-
able xs in a formula ϕ(xs, �z ) iff w � s and no occurrence of any variable y
occurring in t is bounded in ϕ(t, �z ).

Definition 17 Let L be a linearly ordered �LΠ-algebra. An L-structure M for
Γ has the following form: M = ((Ms)s∈S, (PM)P∈P, (fM)f∈F), where Ms is a
non-empty domain for each s ∈ S and Ms ⊆ Mw iff s � w; PM is an n-
ary fuzzy relation

∏n
i=1Msi

→ L for each predicate symbol P ∈ P such that
A(P ) = <s1, . . . , sn>; fM is a function

∏n
i=1Msi

→ Msn+1 for each function
symbol f ∈ F such that A(f) = <s1, . . . , sn, sn+1>, and an element of Ms if
f is a constant of sort s.

Definition 18 Let L be a linearly ordered �LΠ-algebra and M be an L-structure
for Γ. An M-evaluation is a mapping e which assigns to each variable of sort
s an element from Ms (for all sorts s ∈ S).

Let e be an M-evaluation, x a variable of sort s, and a ∈Ms. Then e[x → a]
is an M-evaluation such that e[x → a](x) = a and e[x → a](y) = e(y) for
each individual variable y different from x.

Definition 19 Let L be a linearly ordered �LΠ-algebra. The value of a term
and the truth value of a Γ-formula in an L-structure M for Γ and an M-
evaluation e are defined as follows:

‖x‖L
M,e = e(x)

‖f(t1, t2, . . . , tn)‖L
M,e = fM(‖t1‖L

M,e, ‖t2‖L
M,e, . . . , ‖tn‖L

M,e)

‖P (t1, t2, . . . , tn)‖L
M,e = PM(‖t1‖L

M,e, ‖t2‖L
M,e, . . . , ‖tn‖L

M,e)

‖t1 = t2‖L
M,e = 1 if ‖t1‖L

M,e = ‖t2‖L
M,e and 0 otherwise

‖0‖L
M,e = 0

‖ϕ1 ◦ ϕ2‖L
M,e = ‖ϕ1‖L

M,e ◦ ‖ϕ2‖L
M,e for ◦ ∈ {→L,→Π,&Π}

‖(∀xs)ϕ‖L
M,e = inf

a∈Ms

‖ϕ‖L
M,e[xs→a]
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If the infimum does not exist, we take its value as undefined. We say that an
L-structure M for Γ is safe iff ‖ϕ‖L

M,e is defined for each Γ-formula ϕ and
each M-evaluation e.

Definition 20 Let L be a linearly ordered �LΠ-algebra and ϕ a Γ-formula.
The truth value of the formula ϕ in an L-structure M for Γ is defined as
follows:

‖ϕ‖L
M = inf {‖ϕ‖L

M,e | e is an M-evaluation}

We say that ϕ is an L-tautology iff ‖ϕ‖L
M = 1 for each safe L-structure M

for Γ. We say that an L-structure M for Γ is an L-model of a Γ-theory T iff
‖ϕ‖L

M = 1 for each ϕ ∈ T .

Convention 21 For a fixed L-model M and an M-evaluation e such that
e(xi) = ai (for all i’s), we shall instead of ‖ϕ(x1, . . . , xn)‖L

M,e write simply
‖ϕ(a1, . . . , an)‖ and speak of the truth value of ϕ(a1, . . . , an).

Definition 22 Let ϕ(x1
s1 , . . . , xn

sn) be a formula of �LΠ∀ and M be a safe
structure for the language of ϕ over an �LΠ-algebra L. The function χϕ :∏n
i=1Msi

→ L such that χϕ(a1, . . . , an) = ‖ϕ(a1, . . . , an)‖L
M is called the char-

acteristic function of ϕ(x1, . . . , xn).

Definition 23 The logic �LΠ∀ is given by the following axioms and deduction
rules:

(P) Substitution instances of the axioms of propositional �LΠ

(∀1) (∀x)ϕ(x, �z ) → ϕ(t, �z ), where t is substitutable for x in ϕ

(∀2) (∀x)(χ→L ϕ) → (χ→L (∀x)ϕ), where x is not free in χ

(=1) x = x

(=2) (x = y) → ∆(ϕ(x, �z ) ↔ ϕ(y, �z )).

The deduction rules are modus ponens, ∆-necessitation, and generalization.

The notions of proof, theorem, and derivability � are defined as usual.

Instead of axiom (=2) we may use the usual axioms of congruence of identity
w.r.t. all predicates and functions plus the axiom of crispness of identity, i.e.
(x = y) ∨ ¬(x = y).

Lemma 24 The following are theorems of �LΠ∀:

• (x = y) ∨ ¬(x = y)
• (x = y) → (y = x)
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• (x = y) &∗ (y = z) →∗ (x = z)
• (x1 = y1) &∗ . . . &∗ (xn = yn) →∗ (ϕ(x1, . . . , xn, �z ) ↔∗ ϕ(y1, . . . , yn, �z )).

The theorems of the next lemma will be needed in the following sections.

Lemma 25 All formulae of the following forms are provable in �LΠ∀:

(∀x)(ϕ →∗ ψ) → [(∀x)ϕ→∗ (∀x)ψ] (1)

(∀x)(ϕ →∗ ψ) → [(∃x)ϕ→∗ (∃x)ψ] (2)

(∀x)(ϕ ∧ ψ) → [(∀x)ϕ ∧ (∀x)ψ] (3)

(∃x)(ϕ ∨ ψ) → [(∃x)ϕ ∨ (∃x)ψ] (4)

(∀x)(ϕ1 &∗ . . . &∗ ϕk →∗ χ) →
→ [(∀x)ϕ1 &∗ . . . &∗ (∀x)ϕk →∗ (∀x)χ] (5)

(∀x)(ϕ1 &∗ . . . &∗ ϕk →∗ χ) →
→ [(∀x)ϕ1 &∗ . . . &∗ (∀x)ϕk−1 &∗ (∃x)ϕk →∗ (∃x)χ] (6)

Proof. In the proof we use an easy generalization of Corollary 8 to the pred-
icative case. Parts (1)–(4) are provable in BL∀ (see [10]). Part (5) is proved
by a trivial inductive generalization of the following proof in BL∀:

(∀x)(ϕ & ψ → χ)

↔ (∀x)(ϕ → (ψ → χ))

→ [(∀x)ϕ → (∀x)(ψ → χ)]

→ [(∀x)ϕ → ((∀x)ψ → (∀x)χ)]

↔ [(∀x)ϕ & (∀x)ψ → (∀x)χ].

Finally, part (6) is proved in the same way, only applying (2) instead of (1)
when distributing (∀x) over (ϕk → χ). Q.E.D.

Theorem 26 (Deduction) Let T be a theory and ϕ be a sentence. Then
T � ∆ϕ→ ψ iff T ∪ {ϕ} � ψ.

Theorem 27 (Strong Completeness) Let ϕ be a Γ-formula, T a Γ-theory.
Then the following are equivalent:

• T � ϕ
• ‖ϕ‖L

M = 1 for each �LΠ-algebra L and each safe L-model M of T
• ‖ϕ‖L

M = 1 for each linearly ordered �LΠ-algebra L and each safe L-model M
of T

The following theorem of [7] vindicates the introduction and elimination of
function symbols. Notice the connective ∆, which is provably indispensable
for the validity of this theorem.

11



Theorem 28 Let ϕ(xs11 , . . . , x
sn
n , y

s) be a Γ-formula and T be a theory such
that T � (∀xs11 ) . . . (∀xsn

n )(∃ys)∆ϕ(xs11 , . . . , x
sn
n , y

s). Let f be a new function
symbol such that A(f) = <s1, . . . , sn, s>. Then the Γ ∪ {f}-theory T ′ = T ∪
{(∀xs11 ) . . . (∀xsn

n )∆ϕ(xs11 , . . . , x
sn
n , f(xs11 , . . . , x

sn
n ))} is a conservative extension

of T .

Furthermore, if T � (∀xs11 ) . . . (∀xsn
n )(∃!ys)∆ϕ(xs11 , . . . , x

sn
n , y

s) then for each
Γ ∪ {f}-formula ϕ there is a Γ-formula ϕ′ such that T ′ � ϕ ↔ ϕ′.

3 Class theory over �LΠ

3.1 Axioms

Fuzzy class theory FCT is a theory over �LΠ∀ with two sorts of variables: object
variables, denoted by lowercase letters x, y, . . ., and class variables, denoted
by uppercase letters X, Y, . . . None of the sorts is subsumed by the other.

The only primitive symbol of FCT is the binary membership predicate ∈
between objects and classes (i.e., the first argument must be an object and the
second a class; class theory takes into consideration neither the membership
of classes in classes, nor of objects in objects).

The principal axioms of FCT are instances of the class comprehension scheme:
for any formula ϕ not containing X (it may, however, contain any other object
or class parameters),

(∃X)∆(∀x)(x ∈ X ↔ ϕ(x))

is an axiom of FCT. The strange ∆ is neccessary for securing that the re-
quired class exists in the degree 1 (rather than being only approximated by
classes satisfying the equivalence in degrees arbitrarily close to 1). The ∆ is
also necessary for the conservativeness of the introduction of comprehension
terms 3 {x | ϕ(x)} with axioms

y ∈ {x | ϕ(x)} ↔ ϕ(y)

and their eliminability. In the standard recursive way one proves that ϕ in
comprehension terms may be allowed to contain other comprehension terms.

3 I.e., the Skolem functions of comprehension axioms, see Theorem 28.
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The consistency of FCT is proved by constructing a model. Let M be an
arbitrary set and L be a complete linear �LΠ-algebra. The Zadeh model M over
the universe M and the algebra of truth-values L is constructed as follows:

The range of object variables is M , the range of class variables is the set of
all functions from M to L. For any evaluation e we define ‖x ∈ X‖L

M,e as
the value of the function e(X) on e(x). The value of the comprehension term
{x | ϕ(x)} is defined as the function taking an object a to ‖ϕ(a)‖L

M,e (in fact,
the characteristic function of ϕ(x) where e fixes the parameters). Then it is
trivial that ‖y ∈ {x | ϕ(x)}‖L

M,e = ‖ϕ(y)‖L
M,e which proves the comprehension

axiom.

If L = [0, 1], we call the described model standard.

Definition 29 Let M be a model and A a class in M. The characteristic
function χx∈A is denoted briefly by χA and also called the membership function
of A. (Instead of χA(x) or ‖x ∈ A‖ many papers use just Ax.)

It can be observed that the crisp formula (∀x)∆(x ∈ X ↔ x ∈ Y ) ex-
presses the identity of the membership functions of X and Y (as in all models
‖(∀x)∆(x ∈ X ↔ x ∈ Y )‖ = 1 iff the membership functions of X and Y are
identical, otherwise 0). Since our intended notion of fuzzy class is extensional,
i.e., that fuzzy classes are determined by their membership functions, it is
reasonable to require the axiom of extensionality which identifies classes with
their membership functions:

(∀x)∆(x ∈ X ↔ x ∈ Y ) → X = Y

(the converse implication follows from the axioms for identity). The consis-
tency of this axiom is proved by its validity in Zadeh models.

The comprehension scheme of FCT still allows classical models, as the con-
struction of Zadeh models works for the �LΠ-algebra {0, 1}. Sometimes it may
be desirable to exclude classical models. This can be done either by taking
�LΠ1

2
instead of �LΠ as the underlying logic, or equivalently by adding two con-

stants C, c and the axiom of fuzziness c ∈ C ↔ ¬Lc ∈ C without changing
the underlying logic. In both cases there is a sentence with the value 1

2
in any

model, and all rational truth constants are therefore definable. The consis-
tency of this extension follows from the fact that it holds in standard Zadeh
models.

General models of FCT correspond in the obvious way to Henkin’s general
models of classical second-order logic, while Zadeh models correspond to full
second-order models. FCT with its axioms of comprehension and extension-
ality thus can be viewed as a notational variant of the second-order fuzzy
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logic �LΠ (monadic, in the form presented in this section; for higher arities
see Section 4). Following the axiomatic method, we prefer FCT formulated
in the Henkin style (as a two-sorted first-order theory, rather than a second-
order logic) because of its axiomatizability. For even though (standard) Zadeh
models are the intended models of FCT, the theory of Zadeh models is not
arithmetically definable, let alone recursively axiomatizable. This follows from
the obvious fact that classical full second-order logic (which itself is non-
arithmetical) can be interpreted in the theory of Zadeh models by inscribing
∆ (or ¬¬G) in front of every atomic formula.

3.2 Elementary class operations

Elementary class operations are defined by means of propositional combination
of atomic formulae of FCT.

Convention 30 Let ϕ(p1, . . . , pn) be a propositional formula and ψ1, . . . , ψn
be any formulae. By ϕ(ψ1, . . . , ψn) we denote the formula ϕ in which all oc-
currences of pi are replaced by ψi (for all i ≤ n).

Definition 31 Let ϕ(p1, . . . , pn) be a propositional formula. We define the
n-ary class operation induced by ϕ as

Opϕ(X1, . . . , Xn) =df {x | ϕ(x ∈ X1, . . . , x ∈ Xn)} .

Among elementary class operations we find the following important kinds:

• Class constants. We denote Op0 by ∅ and call it the empty class, and Op1

by V and call it the universal class.
• α-Cuts. Let α be a truth-constant. Then we call the class Op∆(α→p)(X),

i.e., {x | ∆(α→ (x ∈ X))}, the α-cut of X and abbreviate it Xα. Similarly,
Op∆(α↔ p)(X) is called the α-level of X, denoted by X=α.

• Iterated complements, i.e., class operations Opϕ where ϕ is p prefixed with
a chain of negations. In �LΠ, there are only a few such formulae that are
non-equivalent. They yield the following operations (their definitions are
summarized in Table 1): involutive and strict complements, the kernel and
support, and the complement of the kernel. Except for the involutive com-
plement, all of them are crisp.

• Simple binary operations. Some of the class operations Opp◦q where ◦ is a
(primitive or derived) binary connective have their traditional names and
notation, listed in Table 1 (not exhaustively).

14



Table 1
Elementary class operations

ϕ Opϕ(X1, . . . ,Xn) Name

0 ∅ empty class

1 V universal class

∆(α → p) Xα α-cut

∆(α ↔ p) X=α α-level

¬Gp \X strict complement

¬Lp −X involutive complement

¬G¬Lp (or ∆p) Ker(X) kernel

¬¬Gp (or ¬∆¬Lp) Supp(X) support

p &∗ q X ∩∗ Y ∗-intersection

p ∨ q X ∪ Y union

p ⊕ q X � Y strong union

p & ¬Gq X \ Y strict difference

p &∗ ¬Lq X −∗ Y involutive ∗-difference

3.3 Elementary relations between classes

Most of important relations between classes have one of the two forms de-
scribed in the following definition:

Definition 32 (Uniform and supremal relations) Let ϕ(p1, . . . , pn) be a
propositional formula. The n-ary uniform relation between X1, . . . , Xn induced
by ϕ is defined as

Rel∀ϕ(X1, . . . , Xn) ≡df (∀x)ϕ(x ∈ X1, . . . , x ∈ Xn).

The n-ary supremal relation between X1, . . . , Xn induced by ϕ is defined as

Rel∃ϕ(X1, . . . , Xn) ≡df (∃x)ϕ(x ∈ X1, . . . , x ∈ Xn).

Among elementary class relations we find the following important kinds (they
are summarized in Table 2):

• Equalities Rel∀p↔∗ q denoted ≈∗. The value of X ≈G Y is the maximal truth
degree below which the membership functions of X and Y are identical.
In standard [0, 1]-models, 1 − ‖X ≈L Y ‖ is the maximal difference of the
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Table 2
Class properties and relations

Relation Notation Name

Rel∃p(X) Hgt(X) height

Rel∃∆p(X) Norm(X) normality

Rel∀∆(p∨¬p)(X) Crisp(X) crispness

Rel∃¬∆(p∨¬p)(X) Fuzzy(X) fuzziness

Rel∀p→∗q(X,Y ) X ⊆∗ Y ∗-inclusion

Rel∀p↔∗ q(X,Y ) X ≈∗ Y ∗-equality

Rel∃p&∗q(X,Y ) X‖∗Y ∗-compatibility

(values of) the membership functions of X and Y , and ‖X ≈Π Y ‖ is the
infimum of their ratios. All ≈∗ get value 1 iff the membership functions are
identical. For crisp classes, these notions of equality coincide with classical
equality.

• Inclusions Rel∀p→∗q, denoted ⊆∗. Their semantics is analogous to that of
equalities. They get the value 1 iff the membership function of X is ma-
jorized by that of Y .

• Compatibilities Rel∃p&∗q. Their strict and involutive negations may respec-
tively be called strict and involutive ∗-disjointness.

• Unary properties of height, normality, fuzziness, and crispness.

Notice that due to the axiom of extensionality, the relation Rel∀∆(p↔ q), which
is obviously equivalent to ∆(X ≈∗ Y ), coincides with the identity of classes.
Thus it is ∆(X ≈∗ Y ) that guarantees intersubstitutivity salva veritate in all
formulae (equalities generally do not).

It can be noticed that Gödel equality ≈G is highly true only if the membership
functions are identical on low truth values; product equality ≈Π is also more
restrictive on lower truth values. However, this does not conform with the intu-
ition that the difference in the high values (on the “prototypes”) should matter
more than a negligible difference on objects that almost do not belong to the
classes under consideration. Equality of involutive complements, −X ≈∗−Y ,
is therefore a better measure of similarity of classes. Similarly, −Y ⊆∗ −X may
give a better measure of containment of X in Y than X ⊆∗ Y .

3.4 Theorems on elementary class relations and operations

The following metatheorems show that a large part of elementary fuzzy set
theory can be reduced to fuzzy propositional calculus.
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Theorem 33 Let ϕ, ψ1, . . . , ψn be propositional formulae.

Then � ϕ(ψ1, . . . , ψn)

iff � Rel∀ϕ(Opψ1
(X1,1, . . . , X1,k1), . . . ,Opψn

(Xn,1, . . . , Xn,kn)) (7)

iff � Rel∃ϕ(Opψ1
(X1,1, . . . , X1,k1), . . . ,Opψn

(Xn,1, . . . , Xn,kn)) (8)

Proof. The substitution of the formulae x ∈ Xi,j for pi,j into ψi(pi,1, . . . , pi,ki
)

everywhere in the (propositional) proof of ϕ(ψ1, . . . , ψn) transforms it into the
proof of

ϕ(x ∈ Opψ1
(X1,1, . . . , X1,k1), . . . , x ∈ Opψn

(Xn,1, . . . , Xn,kn)).

Then use generalization on x to get Rel∀ϕ and ∃-introduction to get Rel∃ϕ.

Conversely, given an evaluation e that refutes ϕ(ψ1, . . . , ψn), we construct a
Zadeh model M refuting (7) and (8) by assigning to the class variables Xi,j

the functions Ai,j such that Ai,j(a) = e(pi,j) for every a in the universe of M.
Applying Theorems 4 and 27, the proof is done. Q.E.D.

Corollary 34 Let ϕ and ψ be propositional formulae.

If � ϕ→ ψ then � Opϕ(X1, . . . , Xn) ⊆ Opψ(X1, . . . , Xn).

If � ϕ ↔ ψ then � Opϕ(X1, . . . , Xn) = Opψ(X1, . . . , Xn).

If � ϕ ∨ ¬ϕ then � Crisp(Opϕ(X1, . . . , Xn)).

By virtue of Theorem 33, the properties of propositional connectives directly
translate to the properties of class relations and operations. For example:

� ∆p→ p proves � Ker(X) ⊆ X

� p→ p ∨ q ” � X ⊆ X ∪ Y
� 0 → p ” � ∅ ⊆ X

� p & q → p ∧ q ” � X ∩∗ Y ⊆ X ∩G Y

� ¬Gp ∨ ¬¬Gp ” � Crisp(\X)

� ∆(α → p) → ∆(β → p) for α ≥ β ” � Xα ⊆ Xβ for α ≥ β, etc.

In order to translate monotonicity and congruence properties of propositional
connectives to the same properties of class operations, we need another theo-
rem:
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Theorem 35 Let ϕi, ϕ
′
i, ψi,j, ψ

′
i,j be propositional formulae. Then

�
k

&∗
i=1

ϕi(ψi,1, . . . , ψi,ni
) →

k′∧
i=1

ϕ′
i(ψ

′
i,1, . . . , ψ

′
i,n′

i
) (9)

iff

�
k

&∗
i=1

Rel∀ϕi

(
Opψi,1

( �X), . . . ,Opψi,ni
( �X)

)
→

→
k′∧
i=1

Rel∀ϕ′
i

(
Opψ′

i,1
( �X), . . . ,Opψ′

i,n′
i

( �X)

)
(10)

Proof. Without loss of generality, the principal implications of (9) and (10)
can be assumed to be →∗. Replacing all propositional variables pj in the proof
of (9) by the atomic formulae x ∈ Xj then yields the proof of

k

&∗
i=1

ϕi
(
Opψi,1

( �X), . . . ,Opψi,ni
( �X)

)
→∗

→∗
k′∧
i=1

ϕ′
i

(
Opψ′

i,1
( �X), . . . ,Opψ′

i,n′
i

( �X)

)
.

Generalization on x and distribution of ∀ over all conjuncts using (1), (5),
and (3) of Lemma 25 proves (10). The converse is proved as in Theorem 33.

Q.E.D.

Examples of direct corollaries of the theorem:

Provability in BL∆ of Proves in FCT

(p→ q) → ((p & r) → (q & r)) X ⊆∗ Y → X ∩∗ Z ⊆∗ Y ∩∗ Z

(p→ q) → (p→ (p ∧ q)) X ⊆∗ Y → X ⊆∗X ∩G Y

[(p→ q) & (q → p)] → (p ↔ q) (X ⊆∗ Y & Y ⊆∗X) → X ≈∗ Y

(p ↔ q) → [(p→ q) ∧ (q → p)] X ≈∗ Y → (X ⊆∗ Y ∧ Y ⊆∗X)

[(p→ r) & (q → r)] → (p ∨ q → r) (X ⊆∗ Z & Y ⊆∗ Z) → X ∪ Y ⊆∗ Z

∆(p→ q) → [∆(α → p) → ∆(α→ q)] ∆(X ⊆ Y ) → Xα ⊆ Yα

transitivity of →, ↔ transitivity of ⊆∗,≈∗, etc.

Similarly, L � (¬p ↔ ¬q) ↔ (q ↔ p) proves −X ⊆L −Y ↔ Y ⊆LX, etc.
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To derive theorems about Rel∃, we slightly modify Theorem 35:

Theorem 36 Let ϕi, ϕ
′
i, ψi,j, ψ

′
i,j be propositional formulae. Then

�
k

&∗
i=1

ϕi(ψi,1, . . . , ψi,ni
) →

k′∨
i=1

ϕ′
i(ψ

′
i,1, . . . , ψ

′
i,n′

i
) (11)

iff

�
k−1

&∗
i=1

Rel∀ϕi

(
Opψi,1

( �X), . . . ,Opψi,ni
( �X)

)
&∗

&∗ Rel∃ϕk

(
Opψk,1

( �X), . . . ,Opψk,nk
( �X
)

→

→
k′∨
i=1

Rel∃ϕ′
i

(
Opψ′

i,1
( �X), . . . ,Opψ′

i,n′
i

( �X)

)
(12)

Proof. Modify the proof of Theorem 35, using (6) of Lemma 25 instead of (5),
and then (4) of the same Lemma to distribute ∃ over the disjuncts. Q.E.D.

Examples of direct corollaries:

Provability in BL∆ of Proves in FCT

p & (p→ q) → q Hgt(X) &∗ (X ⊆∗ Y ) → Hgt(Y )

∆(p ∨ q) → ∆p ∨ ∆q Norm(X ∪ Y ) → Norm(X) ∨ Norm(Y )

(p→ r) & (p & q) → (q & r) X ⊆∗ Z &∗ X‖∗Y → Y ‖∗Z, etc.

4 Tuples of objects

In order to be able to deal with fuzzy relations, we will further assume that
the language of FCT contains an apparatus for forming tuples of objects and
accessing their components. Such an extension can be achieved, e.g., by postu-
lating variable sorts for any multiplicity of tuples (all of which are subsumed by
the sort of objects), enriching the language with the functions for forming n-
tuples of any combination of tuples and accessing its components, and adding
axiom schemes expressing that tuples equal iff their respective constituents
equal. The definition of Zadeh model then must be adjusted by partitioning
the range of object variables and interpreting the tuples-handling functions.
We omit elaborating this sort of syntactic sugar.
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In what follows, the usual abbreviations of the form {〈x1, . . . , xn〉 | ϕ} for
{z | (∃x1) . . . (∃xn)(z = 〈x1, . . . , xn〉 & ϕ)} will be used.

FCT equipped with tuples of objects contains common operations for dealing
with relations. We can define Cartesian products, domains, ranges and the
relational operations as usual: 4

X ×∗ Y =df {〈x, y〉 | x ∈ X &∗ y ∈ Y }
Dom(R) =df {x | 〈x, y〉 ∈ R}
Rng(R) =df {y | 〈x, y〉 ∈ R}
R ◦∗ S=df {〈x, y〉 | (∃z)(〈x, z〉 ∈ R &∗ 〈z, y〉 ∈ S)}
R−1 =df {〈x, y〉 | 〈y, x〉 ∈ R}

Id =df {〈x, y〉 | x = y}

The introduction of tuples of objects also allows an axiomatic investigation of
various kinds of fuzzy relations (e.g., similarities) and fuzzy structures (fuzzy
preorderings, graphs, etc.). We can define the usual properties of relations, as
summarized in Table 3 (for brevity’s sake, we write just Rxy for 〈x, y〉 ∈ R). 5

Classical definitions of some properties of relations (e.g., antisymmetry) make
use of the identity predicate on objects. One may be tempted to use the iden-
tity predicate = of �LΠ∀ in the rôle of the classical identity in these definitions.
However, since = is crisp, such definitions do not yield useful and genuine fuzzy
notions. A fuzzy analogue of the crisp notion of identity is that of similarity
or equality (see Table 3). We can therefore define these properties relative to
a ∗-similarity or ∗-equality S. For details see the last section.

In this way, the properties of being a ∗-antisymmetric relation, a ∗-ordering, a
linear ∗-ordering, a ∗-well-ordering, a ∗-function and a ∗-bijection (w.r.t. some
fuzzy ∗-equality) can be introduced. By means of ∗-bijections, the notions of
∗-subvalence, ∗-equipotence and ∗-finitude of classes (again w.r.t. some fuzzy

4 Obviously for crisp arguments these operations yield crisp classes; X ×∗ Y is crisp
iff both X and Y are crisp. Unless X and Y are crisp, the property of being a relation
from X to Y is double-indexed (a ∗′-subset of the Cartesian product X ×∗ Y ). Also
the definitions of usual properties (e.g., reflexivity, ∗-symmetry, etc.) of a relation on
a non-crisp Cartesian product have to be defined with relativized quantifiers which
bring another index. It is doubtful that definitions combining various t-norms will
have any real meaning. The situation is much easier if only relations on crisp classes
are considered.
5 Following the usual mathematical terminology, ∗-similarity may also be called ∗-
equivalence; we respect the established fuzzy set terminology here. Weak dichotomy
(∀x, y)(Rxy ⊕ Ryx) could also be defined and weak versions of the properties that
contain dichotomy, e.g. weakly linear ∗-ordering.
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Table 3
Properties of relations

Notation Definition Name

Refl(R) (∀x)(Rxx) reflexive

Sym∗(R) (∀x, y)(Rxy →∗ Ryx) ∗-symmetric

Trans∗(R) (∀x, y, z)(Rxy &∗ Ryz →∗ Rxz) ∗-transitive

Dich(R) (∀x, y)(Rxy ∨ Ryx) dichotomic

Quord∗(R) Refl(R) &∗ Trans∗(R) ∗-quasiordering

Linquord∗(R) Quord∗(R) &∗ Dich(R) linear ∗-quasiordering

Sim∗(R) Quord∗(R) &∗ Sym∗(R) ∗-similarity

Equ∗(R) Sim∗(R) &∗ (∀x, y)(∆Rxy →∗ x = y) ∗-equality

∗-equality) can be defined. A thorough investigation of these notions, however,
exceeds the scope of this paper.

5 Higher types of classes

5.1 Second-level classes

Class theory does not contain an apparatus for dealing with families of classes.
In many cases, a family of classes can be represented by a class of pairs or
some other kind of ‘encoding’. For instance, a relation R may be understood
as representing the family of classes Xi = {x | 〈i, x〉 ∈ R} for all i ∈ Dom(R).

In other cases, however, no suitable class of indices can be found and such
an ‘encoding’ is not possible. Then it is desirable to extend the apparatus of
class theory by classes of the second level. This is done simply by repeating
the same definitions one level higher. We introduce a new sort of variables
for families of classes X ,Y , . . ., a new membership predicate between classes
and families of classes X ∈ X , and the comprehension scheme for families of
classes

(∃X )∆(∀X)(X ∈ X ↔ ϕ(X))

for all formulae ϕ (where ϕ may contain any parameters except for X ). The
extensionality axiom for families of classes now reads

(∀X)∆(X ∈ X ↔ X ∈ Y) → X = Y .
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Again it is possible to introduce second-level comprehension terms {X | ϕ(X)},
which introduction is conservative and eliminable by Theorem 28.

The consistency of this extension is proved by a construction of second-level
Zadeh models over a linear �LΠ-algebra L, in which the object variables range
over a universe U , the class variables over the set LU of all functions from U
to L, and the second-level class variables range over the set LLU

of all func-
tions from LU to L. The second-level class {X | ϕ(X)} is again identified with
the characteristic function of ϕ as in Section 3.1. Obviously, this construction
makes both the second-level comprehension scheme and the axiom of exten-
sionality satisfied in the model; the theory of second-level classes can thus be
viewed as third-order fuzzy logic (we omit details).

All definitions of elementary class relations and operations and all theorems
can directly be transferred from classes to second-level classes. Refining the
language, axioms, and Zadeh models to tuples of classes is also straightforward.

It may be observed that the class operations and relations Opϕ, Rel∀ϕ, and

Rel∃ϕ, which were introduced in Sections 3.2 and 3.3 as defined functors and
predicates, are now individuals of the theory, viz. second-level classes.

5.2 Simple fuzzy type theory

If there be need for families of families of classes, it is straightforward to repeat
the whole construction once again to get third-level classes. By iterating this
process, we get a simple type theory over �LΠ, for which the class theory
described in Sections 3–4 is the induction step. The comprehension schemes
and Zadeh models can easily be generalized to allow membership of elements
of any type less then n in classes of the n-th level. 6

A type theory over a particular fuzzy logic (viz. IMTL∆, extended also to
�L∆) has already been proposed by V. Novák in [14]. As mentioned in the
Introduction, our theory can be built over various fuzzy logics with ∆; its
variant over IMTL∆ and Novák’s type theory seem to be equivalent (though
radically different in notation, as Novák uses λ-terms).

Since almost all classical applied mathematics can be formalized within the
first few levels of simple type theory, the formalism just described should be

6 This is done simply by postulating that the n-th sort of variables is subsumed
by the k-th sort if n < k. The sorts can further be refined to allow arbitrary
tuples of individuals of lesser types with the appropriate tuple-forming, component-
extracting, and tuple-identity axioms added. The generalization of Zadeh models is
again quite straightforward.
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sufficient for all applications of fuzzy sets based on t-norms or other functions
definable in �LΠ (see Theorem 7). To illustrate this, we show the formalization
of Zadeh’s extension principle.

Definition 37 (Extension by Zadeh’s principle) A (fuzzy) binary rela-
tion 7 R between objects is extended by Zadeh’s principle (based on a t-norm
∗) to a relation R∗ between (fuzzy) classes as follows:

R∗(X, Y ) ≡df (∃x, y)(Rxy &∗ x ∈ X &∗ y ∈ Y )

Since relations between classes are classes of the second level in our simple
type theory, Zadeh’s extension principle in fact assigns to a first-level class R
a second-level relation; such an assignment itself is an individual of the third
level. Thus we can define Zadeh’s principle as an individual of our theory—a
special class Z∗ of the third level:

Definition 38 (Zadeh’s extension principle) Zadeh’s extension principle
based on ∗ is a third-level function Z∗ defined as follows (we adopt the usual
functional notation for classes which are functions):

Z∗(R) =df {〈X, Y 〉 | (∃x, y)(Rxy &∗ x ∈ X &∗ y ∈ Y )}

Generally we can extend any fuzzy relation R(n+1) of type n + 1 to one of
type n+ 2 by Zadeh’s principle of type n+ 3 (based on a t-norm ∗). All these
‘principles’ are in fact individuals of our theory, whose existence follows from
the comprehension scheme.

Definition 39 (Zadeh’s extension principle for higher types) Zadeh’s
extension principle for relations of type n + 1 (for n ≥ 0) based on ∗ is the
function of type n + 3 defined as follows:

Z∗(n+3)
(
R(n+1)

)
=df

{〈
X

(n+1)
1 , . . . , X

(n+1)
k

〉 ∣∣∣
(∃W (n)

1 , . . . ,W
(n)
k )

(〈
W

(n)
1 , . . . ,W

(n)
k

〉
∈ R(n+1) &∗

k

&∗
i=1

W
(n)
i ∈ X

(n+1)
i

)}

7 The generalization to n-ary relations is trivial.
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6 Adding structure to the domain of discourse

As we have shown, in FCT we can define many properties of individuals of our
theory (objects or classes). Since our theory contains classical class theory (for
classes which are crisp), we can introduce arbitrary relations and functions on
the universe of objects which are definable in classical class theory. As they can
be described by formulae, their existence is guaranteed by the comprehension
axiom. So the only thing we need to add is a constant of the appropriate sort
and the instance of the comprehension axiom. The following definition is the
formalization of this approach for the first-order theories.

Definition 40 Let Γ be a classical one-sorted predicate language and T be
a Γ-theory. For each n-ary predicate symbol P of Γ let us introduce a new
constant P̄ for a class of n-tuples, and for each n-ary function symbol F we
take a new constant F̄ for a class of (n+1)-tuples. We define the language
FCT(Γ) as the language of FCT extended by the symbols Q̄ for each symbol
Q ∈ Γ. The translation ϕ̄ of a Γ-formula ϕ to FCT(Γ) is obtained as the
result of replacing all occurrences of all Γ-symbols Q in ϕ by Q̄.

We define the theory FCT(T ) in the language FCT(Γ) as the theory with the
following axioms:

• The axioms of FCT
• The translations ϕ̄ of all axioms ϕ of T
• Crisp(Q̄) for each symbol Q ∈ Γ (for the definition of Crisp, see Table 2)
• 〈x1, . . . xn, y〉 ∈ F̄ ∧ 〈x1, . . . xn, z〉 ∈ F̄ → y = z for each n-ary function

symbol F ∈ Γ.

Lemma 41 Let Γ be a classical predicate language, T a Γ-theory, L an �LΠ-
algebra. If M is an L-model of FCT(T ), then Mc = (M, (QMc)Q∈Γ), where
QMc = Q̄M for each Q ∈ Γ, is a model (in the sense of classical logic) of the
theory T .

Vice versa, for each model M of T there is an L-model N of FCT(T ) such
that Nc is isomorphic to M.

Therefore (in virtue of Theorem 27), T � ϕ iff FCT(T ) � ϕ̄, for any Γ-
formula ϕ.

Proof. If M is an L-model of FCT, then for each Q ∈ Γ, Q̄M is crisp due to
the axiom Crisp(Q̄) of FCT(T ). Setting the universe of Mc to that of M, and
for each symbol Q ∈ Γ, setting QMc to the set whose characteristic function
is Q̄M, we can see that Mc models T , because the axioms of T , which contain
only crisp predicates, are evaluated classically in Mc.
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Conversely, we define M as the standard Zadeh model with the universe of N,
in which F̄M = FN for every function symbol F ∈ Γ, and for every predicate
P ∈ Γ, P̄M is realized as the characteristic function of PN. Then M obviously
satisfies all axioms of FCT(T ); the axioms of T are again evaluated classically
in M, as the realizations of all predicates involved are crisp. Q.E.D.

Example 42 Let R be a constant for a class of pairs. Then in each L-model
of the theory Crisp(R),Refl(R),Trans(R), (∀x, y)(Rxy & Ryx → x = y), the
constant R is represented by a crisp ordering on the universe of objects. (For
the definitions of Refl and Trans, see Table 3.)

Example 43 If T is a classical theory of the real closed field, then in each L-
model M of the theory FCT(T ), the universe of objects with ≤̄M, +̄M, −̄M, ·̄M,
0̄M, 1̄M is a real closed field.

In Lemma 41 we speak of first-order theories only. Nevertheless, it can be
extended to any theory formalizable in classical type theory. Here we present
only one example.

Example 44 Let τ be a constant for a class of classes and T the theory with
the axioms:

• Crisp(τ)
• (∀X)(X ∈ τ → Crisp(X))
• (∀X )(Crisp(X ) & X ⊆ τ → {x | (∃X ∈ X )(x ∈ X)} ∈ τ)
• (∀X1) . . . (∀Xn)(X1 ∈ τ & . . . & Xn ∈ τ → X1 ∩ . . . ∩ Xn ∈ τ) for each
n ∈ N

Then in each L-model of the theory T , the constant τ is represented by a
classical topology on the universe of objects.

7 Fuzzy mathematics

If we examine the above definitions we see the crucial rôle of the predicate
Crisp. If we remove this predicate from the above definitions we get the “nat-
ural” fuzzification of the above-mentioned concepts. 8

8 A sketch of this method can already be found in Höhle’s 1987 paper [12, Section 5]:

“It is the opinion of the author that from a mathematical viewpoint the important
feature of fuzzy set theory is the replacement of the two-valued logic by a multiple-
valued logic. [. . . I]t is now clear how we can find for every mathematical notion its
‘fuzzy counterpart’. Since every mathematical notion can be written as a formula
in a formal language, we have only to internalize, i.e. to interpret these expressions
by the given multiple-valued logic.”
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In order to illustrate the methodology of fuzzification, let us concentrate on the
concept of ordering. If we remove the predicate Crisp from the definition, then
we have to distinguish which t-norm was used in the axioms of transitivity and
antisymmetry. Thus we get the concept of ∗-fuzzy ordering. This is the way
this concept was introduced by Zadeh. However, some carefulness is due here
not to overlook some “hidden” crispness. There is crisp identity used in the
antisymmetry axiom, and also in the reflexivity axiom which can be written as
(∀x, y)(x = y → Rxy). A more general definition is therefore parameterized
also by a fuzzy equality in the following way:

Example 45 Let E and R be two constants of classes of tuples. The following
axioms define the concept of (∗, E)-ordering R:

• Equ∗(E)
• Trans∗(R)
• (∀x, y)(Exy → Rxy)
• (∀x, y)(Rxy &∗ Ryx→ Exy)

Observe that E is a ∗-equality, and the last two conditions can be written as
R ∩∗ R−1 ⊆ E ⊆ R. We thus get the notion of fuzzy ordering as defined by
Bodenhoffer in [2].

In contemporary fuzzy mathematics the methodology of fuzzification of con-
cepts is somewhat sketchy and non-consistent: usually only some features of
a classical concept are fuzzified while other features are left crisp.

We would like to propose another “inductive” approach. We propose to follow
the usual “inductive” development of mathematics (in some metamathemati-
cal setting—here in simple type theory) and fuzzify “along the way”. In more
words: develop a fuzzy generalization of basic classical concepts (the notion of
class, relation, equality—as done in this paper); then define compound fuzzy
notions by taking their classical definitions and consistently replacing classi-
cal sub-concepts in the definitions by their already fuzzified counterparts. The
consistency of this approach promises that no crispness will be unintentionally
“left behind”.

This approach is formal and sometimes may lead to too complex notions.
In such cases, some features of the complex notion may intentionally be left
crisp by retaining some of the crispness axioms. The advantage of the proposed
approach is that we always know which features are left crisp.

The framework presented in this paper provides a unified formalism for var-
ious disciplines of fuzzy mathematics. This may enable, i.a., an interchange
of results and methods between distant disciplines of fuzzy mathematics, till
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now separated by differences in notation and incompatibilities in definitions.
It can also bring new (proof-theoretic and model-theoretic) methods to tradi-
tional fuzzy disciplines and enable their further development in both theory
and applications. Finally, the axiomatization of the whole fuzzy mathemat-
ics, independent of particular [0, 1]-functions, can be an important step in
understanding vague phenomena. Further elaboration of the proposed formal-
ism and its application to various disciplines of fuzzy mathematics is thus a
possible direction towards firm foundations of fuzzy mathematics.
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