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Abstract

In the framework of Henkin style higher-order
fuzzy logic ÃLΠω we construct fuzzy real numbers
as fuzzy Dedekind cuts over crisp rationals, and
show some of their properties provable in ÃLΠω.
The definitions of algebraic operations and fuzzy
intervals are sketched.
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1 Introduction

In [3], Henkin-style higher-order fuzzy logic ÃLΠ
has been introduced and proposed as a unified
foundational theory for fuzzy mathematics. This
paper contributes to the programme of develop-
ing fuzzy mathematics within its framework by
introducing the structure of fuzzy real numbers.
A solid theory of fuzzy reals is indispensable for
the more advanced disciplines of unified formal
fuzzy mathematics, such as fuzzy measure theory
or fuzzy probability.

The approach adopted in this paper conforms to
the methodology of the Manifesto [2]. Real num-
bers and other concepts are therefore constructed
in full analogy with classical mathematics, taking
advantage of the similarity of both formalisms.

The method of construction of real numbers ap-
plied here is certainly not the only possible one,
even within the framework of Henkin-style high-
er-order fuzzy logic. Another readily available
method consists in implanting the first-order ax-
ioms of the real closed field in higher-order fuzzy
logic. The systematic development of alternative

notions of real number within higher-order fuzzy
logic and their careful comparison, especially from
the point of view of real-life applicability, is part
of a broader long-term programme. Although the
usability of the present notion for applications
cannot yet be predicted, it nevertheless seems ca-
pable of capturing many features of fuzzy num-
bers already used in applied fuzzy mathematics,
and furthermore shows many properties of inde-
pendent mathematical interest. As sketched in
Section 6, it can serve as a basis for a formal
theory of fuzzy intervals, which is very close to
applied practice.

We are going to construct fuzzy real numbers as
fuzzy Dedekind cuts over crisp rationals. The rea-
son why we use crisp rather than fuzzy rationals
reflects the usual definitions of fuzzy numbers as
fuzzy sets of (some kind of) common crisp num-
bers. However, unlike most definitions of fuzzy
numbers, Dedekind cuts do not express the ‘den-
sity’ of the fuzzy number across the underlying
crisp numbers, but rather its distribution (cumu-
lative density), similar to the probabilistic dis-
tribution function. Intuitively, the membership
q ∈ A of a rational number q in a Dedekind fuzzy
real number A expresses (the truth value of) the
fact that q majorizes the fuzzy real.

In somewhat different settings, fuzzy Dedekind
completion has already been studied in [7] and [1].
Dedekind reals in an axiomatic fuzzy set theory
(over a slightly different logic) appear also in [8].

In [5], Dubois and Prade require of fuzzy reals
that they be objects whose every α-cut is a (crisp)
real. Interestingly, Dedekind fuzzy reals do meet
this requirement, since every α-cut of a fuzzy



Dedekind cut is a crisp Dedekind cut, i.e., a crisp
real (represented by the cut). We will see in Sec-
tion 4 that (unlike the proposal of [5]) a mono-
tonicity condition α ≤ β → Aα ≤ Aβ is met here,
which seems essential for some of the motivational
aspects of fuzzy notions rendered horizontally (as
sets of cuts); a thoroughful discussion of these re-
quirements is yet to be carried out.

2 Preliminaries

For the ease of reference, we repeat here the def-
initions and axioms of Henkin-style higher-order
fuzzy logic ÃLΠ, which will be our framework in
the rest of the paper. For details, see [3].

Definition 2.1 The logic ÃLΠ (introduced in [6])
has the following primitive connectives (listed
here with their standard [0, 1]-semantics):

The truth constant falsum 0 = 0
Product conjunction x &Π y = x · y
Product implication x →Π y = min(1, x/y)
ÃLukasiewicz implic. x →L y = min(1, 1− x + y)

We define various derived connectives of ÃLΠ:

1 is ¬L0, i.e. 1
¬Lx is x →L 0, i.e. 1− x
¬Πx is x →Π 0, i.e. 0/x
∆x is ¬Π¬Lx, i.e. ∆x = 1 if x = 1, else 0
x &L y is ¬L(x →L ¬Ly), i.e. max(0, x + y − 1)
x ∧ y is x &L (x →L y), i.e. min(x, y)
x ∨ y is (x →L y) →L y, i.e. max(x, y)
x⊕ y is ¬Lx →L y, i.e. min(1, x + y)
xª y is x &L ¬Ly, i.e. max(0, x− y)
x →G y is ∆(x →L y) ∨ y, i.e. 1 if x ≤ y, else y

Bi-implications ↔L, ↔Π, and ↔G are defined
as usual. Furthermore, for any t-norm ∗ repre-
sentable in ÃLΠ, the connectives &∗, →∗, ¬∗, and
↔∗ can be defined. We employ the usual prece-
dence of connectives.

Convention 2.2 We omit the t-norm indices of
connectives and other defined symbols whenever
they do not matter, i.e., whenever the substitu-
tion of any other t-norm index would yield a for-
mula provably equivalent (or, in case of axioms
and theorems, just equiprovable) to the original
one. An index subscripted to a closing parenthe-
sis distributes to all connectives and other indexed

symbols within its scope that do not have their in-
dex explicitly marked.

Definition 2.3 The propositional logic ÃLΠ has
the following axioms:

(ÃL) The axioms of ÃLukasiewicz logic
(Π) The axioms of Product logic
(ÃLΠ) ∆(ϕ →L ψ) →L (ϕ →Π ψ)
(ΠL) ∆(ϕ →Π ψ) →L (ϕ →L ψ)
(D) (ϕ &Π (χª ψ)) ↔L ((ϕ &Π χ)ª (ϕ &Π ψ))

The deduction rules of ÃLΠ are modus ponens and
∆-necessitation (from ϕ infer ∆ϕ).

Definition 2.4 The first-order logic ÃLΠ [4] adds
the deduction rule of generalization and the fol-
lowing axioms for quantifiers and (crisp) identity:

(∀1) (∀x)ϕ(x) → ϕ(t)
if t is substitutable for x in ψ

(∀2) (∀x)(χ →L ϕ) → (χ →L (∀x)ϕ)
if x is not free in χ

(=1) x = x
(=2) x = y → ∆(ϕ(x) ↔ ϕ(y))

The symbol (∃x) is an abbreviation for ¬L(∀x)¬L.

Definition 2.5 The Henkin-style second-order
logic ÃLΠ is a theory in the multi-sorted first-order
logic ÃLΠ, with sorts for objects (lowercase vari-
ables) and classes (uppercase variables). Both
of the sorts subsume subsorts of n-tuples, for all
n ≥ 1. Apart from the obvious necessary func-
tion symbols and axioms for tuples (tuples equal
iff their respective constituents equal), the only
primitive symbol is the membership predicate ∈
between objects and classes. The axioms for ∈
are (i) the comprehension axioms

(∃X)∆(∀x)(x ∈ X ↔ ϕ),

for all ϕ not containing X, which enable the
(eliminable) introduction of comprehension terms
{x | ϕ} with axioms y ∈ {x | ϕ(x)} ↔ ϕ(y)
(where ϕ may be allowed to contain other compre-
hension terms); and (ii) the extensionality axiom

(∀x)∆(x ∈ X ↔ x ∈ Y ) → X = Y.

Convention 2.6 Formulae (∀x)(x ∈ X →∗ ϕ),
(∃x)(x ∈ X &∗ ϕ) are abbreviated (∀x ∈ X)∗ϕ



and (∃x ∈ X)∗ϕ, resp.; x /∈∗ X stands for ¬∗(x ∈
X); alternatively we write Ax and Rx1 . . . xn for
x ∈ A and 〈x1, . . . , xn〉 ∈ R, resp.

Definition 2.7 The Henkin-style logics ÃLΠ of
higher orders are obtained by repeating the pre-
vious definition on each level of the type hierar-
chy. Obviously, all defined symbols of any type
can then be shifted to all higher types as well.
(Consequently, all theorems are preserved by uni-
form upward type-shifts.) Types may be allowed
to subsume all lower types.

Henkin-style ÃLΠ of order n will be denoted by
ÃLΠn, the whole hierarchy by ÃLΠω. The types of
terms are either denoted by a superscripted paren-
thesized number (e.g., X(3)), or understood from
the context.

Definition 2.8 In ÃLΠ2, we define the following
relations and operations:

∅ =df {x | 0}
Ker(X) =df {x | ∆(x ∈ X)}

Xα =df {x | ∆(α → x ∈ X)}
\∗X =df {x | x /∈∗ X}

X ∩∗ Y =df {x | x ∈ X &∗ x ∈ Y }
X ∪ Y =df {x | x ∈ X ∨ x ∈ Y }

Crisp(X) ≡df (∀x)∆(x ∈ X ∨ x /∈ X)
Fuzzy(X) ≡df ¬Crisp(X)

X ⊆∗ Y ≡df (∀x)(x ∈ X →∗ x ∈ Y )
X ≈∗ Y ≡df (∀x)(x ∈ X ↔∗ x ∈ Y )
X ×∗ Y =df {〈x, y〉 | x ∈ X &∗ y ∈ Y }

R−1 =df {〈x, y〉 | Ryx}
Id =df {〈x, y〉 | x = y}

We shall freely use all elementary theorems on
these notions which follow from the metatheorems
proved in [3], and thus can be checked by simple
propositional calculations.

Definition 2.9 In ÃLΠ2, we can also define the
usual properties of relations:

Reflexivity Refl(R) ≡df (∀x)(Rxx)
Dichotomy Dich(R) ≡df (∀x, y)(Rxy ∨ Ryx)
∗-Symmetry Sym∗(R) ≡df (∀x, y)(Rxy →∗ Ryx)
∗-Transitivity Trans∗(R)

≡df (∀x, y, z)(Rxy & Ryz → Rxz)∗
∗-Antisymmetry AsymE,∗(R) (w.r.t. E)

≡df (∀x, y)(Rxy & Ryx → Exy)∗
∗-Quasi-ordering QOrd∗(R)

≡df (Refl(R) & Trans(R))∗
∗-Ordering OrdE,∗(R) (w.r.t. E)

≡df (QOrd(R) & AsymE(R))∗
∗-Linear ordering LOrdE,∗(R) (w.r.t. E)

≡df (OrdE(R) & Dich(R))∗
∗-Function FncE,∗(R) (w.r.t. E)

≡df (∀x, y, z)(Rxy & Rxz → Eyz)∗

We adopt the convention that the index E can be
dropped if ∆(E = Id). If ∆Fnc∗(F ), we can write
y = F (x) instead of ∆Fxy.

Definition 2.10 The class union and class in-
tersection are the functions

⋃(n+3)
∗ and

⋂(n+3)
∗ ,

respectively, assigning a class A(n+1) to a class of
classes A(n+2) and defined as follows:

⋃
∗A =df {x | (∃A ∈ A)∗(x ∈ A)}

⋂
∗A =df {x | (∀A ∈ A)∗(x ∈ A)}

3 Formal theory of suprema and
infima

The notions defined in this section are most mean-
ingful for (quasi)orderings. Nevertheless, the defi-
nitions can be formulated for just any relation and
most of the results hold regardless of any proper-
ties of the relation involved.

Definition 3.1 The upper and lower ∗-cone of a
class A w.r.t. ≤ is defined as follows:

A↑∗ =df {x | (∀a ∈ A)∗(a ≤ x)}
A↓∗ =df {x | (∀a ∈ A)∗(x ≤ a)}

Let us fix some relation ≤ and denote its converse
as usual by ≥. The usual definition of suprema
and infima as least upper bounds and greatest
lower bounds can then be formulated as follows
(notice that they are fuzzy classes, since the prop-
erty of being a supremum is graded):

Definition 3.2 The classes of ∗-suprema and ∗-
infima of a class A w.r.t. ≤ are defined as

≤-Sup∗A =df A↑∗ ∩∗ A↑∗↓∗

≤- Inf∗A =df A↓∗ ∩∗ A↓∗↑∗

Example 3.3
⋃
∗A is a ∗-supremum of A w.r.t.

⊆∗. Similarly,
⋂
∗A ∈ ⊆∗- Inf∗A.



The following lemmata on suprema and infima,
needed for the formal theory of Dedekind reals,
are mostly known in the algebraic setting (see e.g.
[1]); here we reconstruct them in the formal the-
ory ÃLΠω. In the rest of this section we drop the
≤ sign in ≤- Sup∗ and ≤- Inf∗, and assume all for-
mulae indexed by ∗. We formulate the lemmata
only for suprema, omitting their dual versions.

Lemma 3.4 SupA = Inf A↑

Lemma 3.5
(x ∈ SupA & y ∈ SupA) → (x ≤ y & y ≤ x)

Corollary 3.6 The ∗-suprema w.r.t. ⊆∗ are ≈∗-
unique. By the extensionality axiom, the element
of the kernel of ⊆∗-Sup∗A is unique w.r.t. iden-
tity. (Generally, 1-true suprema w.r.t. R are E-
unique if R is antisymmetric w.r.t. E.)∗

Lemma 3.7
(A ⊆ B & x ∈ SupA & y ∈ SupB) → x ≤ y

4 Fuzzy Dedekind reals

In [3] it is shown that any classical nth-order the-
ory can be interpreted in ÃLΠn by adding the ax-
ioms of crispness of all predicates and functions in
the language of the theory. Thus we may assume
that in ÃLΠω we have at our disposal a theory of
crisp natural numbers (obtained e.g. by the inter-
pretation of 1st- or 2nd-order Peano arithmetic
or any sufficiently strong theory of natural num-
bers in ÃLΠω). By the standard construction we
get integers and rationals as certain pairs of nat-
ural numbers, with the usual crisp ordering and
operations. Further on we shall therefore presup-
pose the existence of the class Q of crisp rational
numbers, equipped with all usual relations and
operations. We shall freely use any classical theo-
rem of the classical theory of rational numbers, as
they are provable in ÃLΠω due to Lemma 41 of [3].

We require the following axioms of Dedekind cuts
A ⊆ Q (which will represent Dedekind reals):

1. (∀p, q ∈ Q)[(p ≤ q → (p ∈ A → q ∈ A)]
2. (∀p ∈ Q)[(∀p ∈ Q)(q > p → q ∈ A) → p ∈ A]

The first axiom (which says that A is an up-
per set) reflects the intuitive motivation (see Sec-
tion 1) that the membership p ∈ A of a rational p

in the Dedekind fuzzy real A expresses (the truth
value of) the fact that p majorizes the fuzzy real:
thus if q ≥ p, then a fortiori q majorizes A at
least in the degree p does.

The second axiom (the right-continuity of the
membership function of A) is aimed at exclud-
ing the “left-continuous” doppelgangers of cuts
with discontinuous membership functions. The
reason for this requirement is the same as in clas-
sical mathematics, where the set of all cuts must
similarly be pruned. Keeping the left-closed cuts
corresponds to the choice of the informal meaning
of q ∈ A as “A ≤ q” (rather than “A < q”).

Definition 4.1 The (second order) class R of
fuzzy Dedekind reals is the class of all A ⊆ Q
that satisfy both axioms 1 and 2 above. (It exists
by the comprehension axiom of ÃLΠ3.)

Crisp cuts in R correspond to (all and only) clas-
sical real numbers. A crisp cut with the least ele-
ment q can be identified with the rational number
q itself; if the distinction is necessary, we denote
the cut by q. Crisp cuts lacking the least ele-
ment represent classical irrational numbers; those
which are definable can be given the same name
as in classical mathematics, e.g.

√
2 =df {q ∈ Q |

q2 > 2}. We denote the empty cut ∅ by +∞ and
the whole Q by −∞.

Zadeh’s extension principle does not yield a use-
ful notion of ordering for cumulative distributions
(e.g., we would have A ≤ B for any crisp A,B 6=
+∞, as surely (∃p, q ∈ Q)(Ap & Bq & p ≤ q)).
On the other hand, the usual definition of order-
ing as inclusion (reversed, as we chose the up-
per cuts) used in classical Dedekind completions
is well-motivated and works well:

Definition 4.2 Let A,B ∈ R, then

A ≤∗ B ≡df B ⊆∗ A

Obviously, ≤∗ extends the order on Q, i.e.,
(∀p, q ∈ Q)(p ≤ q ↔ p ≤ q). Moreover, it embod-
ies our original motivation of interpreting q ∈ A
as “A ≤ q”, since it can be proved that for q ∈ Q
and A ∈ R,

q ∈ A ↔ A ≤∗ q. (1)



It follows immediately from the properties of in-
clusion that ≤∗ is an (≈∗, ∗)-ordering, though not
linear. Like in classical mathematics, +∞ is the
greatest and −∞ the least real.

There are several candidates for the definition of
strict ordering < on R. Here we only give one of
the strongest <-like notions, which is analogous
to the intuitionistic relation of apartness:

Definition 4.3 For A,B ∈ R,

A ¿ B ≡df (∃q)(∆Aq & ∆¬Bq)

Reals A such that −∞ ¿ A ¿ +∞ are bounded,
and thus can be called proper reals.

Like in classical mathematics, the chief merit of
the Dedekind completion is the existence of all
suprema and infima:

Theorem 4.4 A ⊆ R → ⋂
∗A ∈ R

From Example 3.3 and Corollary 3.6 it follows
that

⋂
∗A is the unique 1-true ∗-supremum w.r.t.

≤∗. On the contrary,
⋃
∗A need not be in R (it

is an upper subset of Q, but not necessarily left-
closed). Nevertheless, due to Lemma 3.4, all in-
fima exist in R as well. We shall denote the unique
element of Ker(≤∗- Sup∗A) by sup∗A (and sim-
ilarly for inf∗A). The suprema and infima that
already existed in Q are obviously (since all sets
involved are crisp) preserved.

5 Algebraic operations

We only sketch the definitions of addition and
multiplication of fuzzy reals.

Since the addition of rationals is monotonous
w.r.t. ≤, Zadeh’s principle yields a well-motivated
extension of + to fuzzy reals: if defined as

q ∈ A +∗ B ≡df (∃a ∈ A)∗(∃b ∈ B)∗(q = a + b)

then q ∈ A +∗ B (i.e. A +∗ B ≤∗ q) is true just
as much as Aq and Bq (i.e. A, B ≤∗ q) guaran-
tee. It can be proved that addition of fuzzy reals
is commutative and associative, 0 is the neutral
element, and it extends addition of crisp reals.

A similarly straightforward application of Zadeh’s
principle to multiplication on Q (which is not

monotonous w.r.t. ≤) would yield a counter-
intuitive results. Like in classical Dedekind
reals, one must restrict Zadeh’s extension to
subdomains of rationals where multiplication is
monotonous (i.e., positive and negative rationals)
and take the union of Zadeh’s extensions on these
pieces (I omit the details here for space reasons).

A task yet to be done is to define further opera-
tions on reals (subtraction, division, exponentia-
tion, etc.) with suitable properties. Preliminary
results (to be presented in a subsequent paper)
suggest that these tasks are viable.

6 Fuzzy intervals

The formal theory presented in the previous sec-
tions can be extended to a theory of fuzzy inter-
vals (often called just ‘fuzzy numbers’), of which
we give a brief sketch here.

Observe that since no special property of Q has
been used, the results of the previous sections
hold for the fuzzy Dedekind completion of any
crisp poset (in particular, it always yields a fuzzy
complete lattice). From the applicational point
of view, probably the most useful are fuzzy inter-
vals over crisp reals; further on we shall therefore
assume that the crisp numbers (denoted by lower-
case variables) are crisp reals instead of rationals
(the results, however, again hold for any crisp or-
dered domain).

By (1), an upper Dedekind cut A is in fact an
upper interval {q | A ≤ q}. Obviously, the results
for upper Dedekind cuts can be dualized for lower
cuts as well; thus in the same way, a lower cut B
is a lower interval {q | B ≥ q}. A fuzzy interval

[A,B]∗ =df {q | A ≤ q &∗ q ≤ B}

is therefore an intersection of an upper cut A and
a lower cut B. In other words, the upper cut A
represents the left endpoint of an upper interval
[A,+∞); similarly B represents the right endpoint
of (−∞, B], and [A, B]∗ = [A, +∞) ∩∗ (−∞, B].

The operations of Section 5 have been motivated
by (1); thus they are subject to this ‘interval in-
terpretation’. We thus get an algebra of intervals
with natural operations induced by the cut oper-



ations on the endpoints, e.g.

[A,B]∗ +∗ [C, D]∗ =df [A +∗ C,B +∗ D]∗

The crisp points where the kernel of an interval
ends play an important role. In virtue of the lat-
tice completeness of the system of cuts we can
define them within the theory:

Definition 6.1 Let A be an upper cut and B a
lower cut. Then we define the upper cut A← and
the lower cut B→ as follows:

A← =df inf {q | ∆Aq}
B→ =df sup {q | ∆Bq}

(If the system of underlying crisp numbers is a
complete lattice, as in the case of crisp reals, the
cuts A← and B→ can be identified with the corre-
sponding crisp numbers.)

Observe that in virtue of axiom 2 for Dedekind
cuts (Section 4), A← is in fact a minimum of the
kernel of the cut (and dually). These crisp end-
points are preserved by arithmetical operations
on cuts (since kernels behave classically in good
definitions); thus, e.g., (X +∗ Y )← = X← + Y ←.
(On the other hand, one can easily find counter-
examples to X ≤∗ Y → X← ≤∗ Y ← or the con-
verse; only ∆(X ≤ Y ) → X← ≤ Y ← holds.)

It can be observed that a fuzzy interval is normal
iff A← ≤ B→. In such a case the membership
function of [A,B] is that of A on (−∞, A←], that
of B on [B→,+∞), and 1 on [A←, B→].

If A← = B→, then there is exactly one element
in the kernel of [A,B]. We will call such degener-
ate intervals fuzzy points. Due to the axioms for
Dedekind cuts, fuzzy points satisfy the most usual
requirements on ‘fuzzy real numbers’ (singleton
kernel, convexity of cuts, monotony of member-
ship function towards the central point). Con-
forming to the tradition of fuzzy mathematics,
we can therefore (ambiguously, but intelligibly)
denote representatives of the (crisp) equivalence
class {[A,B] | A← = B→ = r} by r̃.

The set of all fuzzy points is closed under usual
arithmetical operations (since, as stated above,
they preserve the crisp endpoints of cuts). Fur-
thermore, their arithmetics (sketched above) ex-
tends the arithmetics of crisp numbers (thus,

e.g., 1̃ + 1̃ = 2̃). However, the arithmetics of
fuzzy points differs somewhat from the traditional
arithmetics of fuzzy intervals, as our operations
are defined separately for the upper and lower
endpoints of fuzzy intervals. It is beyond the
scope of this short paper to argue why this is well-
motivated; it will be elaborated in more details in
a separate paper. At present we only propose this
new formal theory of fuzzy intervals and fuzzy
points (or, “fuzzy numbers”) for further study
and for trying it in applications.
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