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Abstract—The paper presents a form of rendering classical math-
ematical notions by formal theories over suitable t-norm fuzzy logics
in such a way that references to real numbers are eliminated from
definitions and theorems, being removed to the standard semantics
of fuzzy logic. Several examples demonstrate how this move concep-
tually simplifies the theory in exchange for non-classical reasoning,
facilitates certain generalizations, and puts the concepts into a differ-
ent perspective. The formal framework employed for the number-free
formalization of mathematical concepts is that of higher-order fuzzy
logic, also known as Fuzzy Class Theory.
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1 Introduction

In the standard semantics of t-norm fuzzy logics [1], truth
values are represented by real numbers from the unit inter-
val [0, 1]; truth functions of n-ary propositional connectives
are interpreted as certain real-valued functions on [0, 1]n; and
the quantifiers ∃,∀ as the suprema and infima of sets of truth
values. Read inversely, the logical apparatus of t-norm fuzzy
logics expresses, by means of its standard semantics, certain
first- and second-order constructions over real numbers. The
axioms and rules of t-norm logics are designed to capture ba-
sic properties of such constructions and ensure the soundness
of formally derivable theorems expressible in the language.

A suitable formal theory in first-order fuzzy logic thus can,
by means of its standard semantics, express facts about classi-
cal mathematical notions and make them derivable by logical
deductions in fuzzy logic. Since real numbers appear in the
standard semantics of such a theory, they need no longer be
explicitly mentioned by the theory itself. A notion of classical
mathematics then becomes represented as the standard model
of another notion of formal fuzzy mathematics that makes no
explicit reference to real numbers: the reals are only implic-
itly present behind the logical axioms that govern reasoning in
formal fuzzy mathematics.

This way of eliminating real numbers from the theory in fa-
vor of reasoning by means of t-norm fuzzy logic will here be
called the number-free (or by analogy with “pointless topol-
ogy”, numberless) approach.

Number-free formalization of mathematical concepts is not
new and has implicitly been around since the beginning of
the theory of fuzzy sets: in fact, the notion of fuzzy set it-
self can be understood as a number-free rendering of the no-
tion of real-valued function (see Section 2). However, it was
only after the advancement of t-norm fuzzy logics, mostly in
the past decade, that number-free notions could be treated rig-
orously in formal theories over first-order fuzzy logics. An

early example of the number-free treatment of a classical no-
tion is the formalization of finitely additive probability as
a modality Probable in Łukasiewicz logic (see Section 3).
Number-free rendering of more advanced mathematical no-
tions, however, requires more complex concepts of formal
fuzzy mathematics—esp. higher-order set-constructions and
a formal theory of fuzzy relations. The latter prerequisites
have only recently been developed in the framework of higher-
order fuzzy logic [2, 3, 4], which made it possible to apply
the number-free approach systematically to various classical
mathematical notions.

The profit we gain under the number-free approach in ex-
change for having to use non-classical rules of reasoning is,
in the first place, conceptual simplification (roughly speaking,
we get ‘a set for a function’). Secondly, the number-free ren-
dering often reveals a new perspective upon the notion, ex-
posing the gradual quality of the classical construct and ren-
dering it as a primitive rather than derivative feature. Thirdly,
many theorems of classical mathematics are under this ap-
proach detected as provable by simple (often, propositional)
logical derivations in a suitable fuzzy logic, instead of com-
plex classical proofs involving arithmetic, infima, functions,
etc. Furthermore, adopting a non-standard semantics (e.g.,
taking Chang’s MV-algebra instead of the standard real num-
bers) or a different interpretation of the logical symbols in-
volved (e.g., taking another t-norm for conjunction) yields an
effortless generalization that might be harder to find (and mo-
tivate) in the classical language of crisp mathematics. Finally,
the many-valuedness of all formulae in fuzzy logic makes it
possible to consider another kind of graded generalization, by
admitting partial satisfaction of the axioms for the represented
notion (e.g., a metric to degree .99, cf. [5, 6]).

The particular formal framework in which number-free for-
malization of classical mathematical concepts is carried out
in this paper is that of higher-order fuzzy logic, also known
as Fuzzy Class Theory (FCT), over a suitable propositional
fuzzy logic at least as strong as MTL∆. A working knowl-
edge of FCT will be assumed throughout; for an introduction
to the theory and more information see [2, 5]. For reference,
the definitions used in the present paper are repeated below in
the Appendix.

The aim of this paper is only to introduce the number-free
approach as a distinct paradigm of formalization, rather than
to develop particular number-free theories in depth. Therefore
it only gives definitions of and a few observations on several
number-free notions and discusses the merits of such formal-
ization; a detailed investigation of number-free theories is left
for future work. A slightly more eloquent version of this paper
has been made available as a research report [7].



2 Real-valued functions
The very first notion of fuzzy mathematics, namely Zadeh’s
notion of fuzzy set [8], can be regarded as a number-free repre-
sentation of classical [0, 1]-valued functions by non-classical
(namely, fuzzy) sets. Even though the formal apparatus of
first-order fuzzy logic, which makes it possible to cast fuzzy
sets as a primitive notion instead of representing them by
classical real-valued functions, was developed years later, the
tendency of regarding fuzzy sets and relations as a number-
free rendition of real-valued functions has partly been present
since the very beginning of the fuzzy set theory, as witnessed
by the vocabulary and notation employed. E.g., the function
x 7→ min(A(x), B(x)) is in the traditional fuzzy set theory
denoted by A ∩ B and called the intersection of A and B:
that is, the functions A,B : X → [0, 1] are regarded as (non-
classical) sets rather than real-valued functions (as the inter-
section of real-valued functions is a different thing). Similarly,
such notions as fuzzy relational composition or the image un-
der a fuzzy relation would make little sense if the n-ary func-
tions involved were not regarded as (a non-classical kind of)
relations. The terminological shift towards the number-free
discourse is expressed by the very term “fuzzy set” and its
informal motivation of an unsharp collection of elements.

A certain part of the talk about real-valued functions and
their properties was thus replaced by a talk about sets and
relations that behave non-classically (e.g., do not follow the
rule of excluded middle). This move eliminated references to
numbers at least from the wording of some theorems, giving
them compact forms and new conceptual meanings.1 Clearly,
this original number-free notion has proved immensely fruit-
ful even in its semi-formal form of traditional fuzzy mathe-
matics. The formal apparatus of logic-based fuzzy mathe-
matics has provided means for accomplishing the long-present
idea and developing a fully fledged number-free approach to
fuzzy sets and fuzzy relations.2

3 Finitely additive probability measures
Another number-free representation, already based on for-
mal fuzzy logic, was the axiomatization of finitely additive
probability measures as models of a fuzzy modality Proba-
ble over propositional Łukasiewicz logic by Hájek, Godo, and
Esteva [10]. Later it was elaborated in a series of papers by
Flaminio, Marchioni, Montagna, and the authors of [10]. We
shall briefly recapitulate the original axiomatization (adapted
from [11]) as another illustration of the number-free approach.

Consider a classical probability space (Ω,B, π), where Ω
is a set of elementary events, B a Boolean algebra of subsets
of Ω, and π a finitely additive probability measure on B, i.e.,
a function π : B → [0, 1] satisfying the following conditions:

π(Ω) = 1
If A ⊆ B, then π(A) ≤ π(B)
If A ∩B = ∅, then π(A ∪B) = π(A) + π(B)

1The elimination of numbers also from proofs would have re-
quired a consistent use of first-order fuzzy logic. This approach was
not embraced in the early works on fuzzy set theory, even though
particular first-order fuzzy logics already existed, e.g., [9].

2Cf. [2, 3], where the formal theory of fuzzy sets and relations is
developed without making any reference to real numbers in defini-
tions, theorems, or proofs (only in explanatory semantic examples).

A number-free representation of π draws on the fact that a
[0, 1]-valued function on a Boolean algebra can be understood
as the standard model of a fuzzy modality P over an algebra
of crisp propositions. The above conditions on π can be trans-
formed into the axioms for P , which (due to the additivity) are
expressible in Łukasiewicz logic:3

Definition 3.1. The axioms and rules of the logic FP(Ł) are
those of Łukasiewicz propositional logic plus the following
axioms and rules, for non-modal ϕ, ψ:

ϕ ∨ ¬ϕ
From ϕ infer Pϕ
Pϕ, for all Boolean tautologies ϕ
P (ϕ→ ψ) → (Pϕ→ Pψ)
P (¬ϕ) ↔ ¬Pϕ
P (ϕ ∨ ψ) ↔ ((Pϕ→ P (ϕ ∧ ψ)) → Pψ)

The axioms and rules of FP(Ł) ensure the following repre-
sentation theorem (adapted from [10]):

Theorem 3.2. Any probability space (Ω,B, π) is a standard
model of FP(Ł). Vice versa, all standard models of FP(Ł)
are probability spaces.

The representation theorem shows that the number-free theory
faithfully captures the original notion of finitely additive prob-
ability measure. Moreover, by the completeness theorem of
FP(Ł) w.r.t. probability spaces proved in [11], all valid laws
of finitely additive probability that are expressible in the lan-
guage of FP(Ł) can in FP(Ł) be also (number-freely) proved.

In a given probability space (Ω,B, π), i.e., a standard model
of FP(Ł) with ‖P‖ = π, the truth value of Pϕ is the prob-
ability of the event ϕ: ‖Pϕ‖ = π(‖ϕ‖); the formula Pϕ
can therefore be understood as “ϕ is probable”. Numerical
calculations with probabilities are thus in FP(Ł) replaced by
logical derivations with the modality “is probable”. The key
difference is that the latter represent inference salva probabil-
itate (i.e., salvo probabilitatis gradu, in the sense of P ): e.g.,
it can be observed that numberless probability is transmitted
by modus ponens, as Pϕ & P (ϕ → ψ) → Pψ, i.e., “if ϕ
is probable and ϕ → ψ is probable, then ψ is probable”, is a
theorem of FP(Ł).

The number-free approach to probability facilitates sev-
eral kinds of generalization. First, generalizations to mod-
els over non-standard algebras for Łukasiewicz logic: thus
we can have, e.g., probability valued in Chang’s MV-algebra,
or in non-standard reals (as in [12]). Second, a generaliza-
tion to measures with only partially satisfied additivity (by
a many-valued interpretation of the axioms, see [6]). And
third, a generalization to the probability of fuzzy events, where
one discards the axiom ϕ ∨ ¬ϕ for events and adapts the fi-
nite additivity axiom to work well with fuzzy events (e.g., as
P (ϕ⊕ ψ) ↔ ((Pϕ→ P (ϕ& ψ)) → Pψ)).4

3Ł with rational truth constants is used in [10], but the truth con-
stants are inessential for our account. The language is two-layered,
admitting only non-modal formulae and propositional combinations
of non-nested modal formulae.

4This approach has been taken in [13], though only over finitely-
valued events, as the authors strove for the completeness of the logic;
in [12] this was generalized to infinitely-valued events, with com-
pleteness w.r.t. non-standard reals.



4 Distribution functions
Classical distribution functions present a special way how to
define a probabilistic measure on Borel sets, i.e., on the σ-
algebra B of subsets of the real line generated by all intervals
(−∞, x]. A function f : R → [0, 1] defines a measure on
B with µ(−∞, x] = f(x) and µ(R) = 1 iff it satisfies the
following conditions, which can thus be taken as the axioms
for distribution functions:

1. Monotony: if x ≤ y then f(x) ≤ f(y), for all x, y ∈ R

2. Margin conditions: lim
x→−∞

f(x) = 0, lim
x→+∞

f(x) = 1

3. Right-continuity: lim
x→x+

0

f(x) = f(x0) for all x0 ∈ R

Let us translate these conditions into the number-free lan-
guage. The function f : R → [0, 1] represents a standard fuzzy
set of reals, i.e., in FCT over any expansion of MTL∆, the
standard model of a predicate A on reals.5 By the standard
semantics of MTL∆, the above conditions translate into the
following axioms on the predicate A:6

(∀xy)(x ≤ y → (Ax→ Ay))
(∃x)Ax, ¬(∀x)Ax
(∀x0)[(∀x > x0)Ax→ Ax0]

In FCT, these conditions express, respectively, the upper-
ness of A in R, the full height and null plinth of A, and the
left-closedness of the fuzzy upper class A. Consequently,
number-free distribution functions are left-closed upper sets
in R with full height and null plinth, i.e., (weakly bounded)
fuzzy Dedekind cuts on R. The number-free rendering of dis-
tribution functions as fuzzy Dedekind cuts corresponds to the
known fact that distribution functions represent Hutton fuzzy
reals (cf., e.g., [15]). A use of fuzzy Dedekind cuts for the de-
velopment of a logic-based theory of fuzzy intervals (or fuzzy
numbers) is hinted at in [16].

5 Continuous functions on reals
In Section 4 we abused the presence of monotony for the
number-free rendering of right-continuity. However, if we
want to develop a graded theory with monotony satisfied to
partial degrees, we need a different number-free characteriza-
tion of continuity that does not rely on monotony. Again we
shall work with functions R → [0, 1] only, even though vari-
ous generalizations are easy to obtain.

For a number-free rendering of left-continuity, we shall use
the following classical characterization. A function f : R →
[0, 1] is left-continuous in x0 iff

lim supx→x−0
f(x) = lim infx→x−0

f(x) = f(x0), where

lim supx→x−0
f(x) = infx1<x0 supx1<x<x0

f(x)

lim infx→x−0
f(x) = supx1<x0

infx1<x<x0 f(x).

5Recall that R as well as other crisp mathematical structures are
available in FCT by means of the ∆-interpretation, see [2, §7] and
[14, §4]. In this and the next section, we shall understand all first-
order quantifications relativized to R, unless specified otherwise.

6We use the fact that due to the monotony assumed, the margin
conditions reduce to infx f(x) = 0 and supx f(x) = 1, and the
right-continuity to f(x0) ≥ infx>x0 f(x). The representation theo-
rem is then immediate by the standard semantics of MTL∆. Observe
that as the axioms are required to degree 1, they are (due to the crisp-
ness of≤) independent of the particular left-continuous t-norm used.

This translates into the following number-free definitions in
FCT over MTL∆:7

LimSup−(A, x0) ≡df(∀x1 < x0)(∃x ∈ (x1, x0))Ax

LimInf−(A, x0) ≡df(∃x1 < x0)(∀x ∈ (x1, x0))Ax

∆ Cont−(A, x0) ≡df (Ax0 = LimSup−(A, x0)) &

(Ax0 = LimInf−(A, x0))

The right-sided predicates LimSup+ and LimInf+ are defined
dually (with > for <), and the both-sided ones as

LimSup(A, x0) ≡df LimSup−(A, x0) ∨ LimSup+(A, x0)

LimInf(A, x0) ≡df LimInf−(A, x0) ∧ LimInf+(A, x0).

These definitions reconstruct the classical notions in a
number-free way in the framework of FCT; the representa-
tion theorems follow directly from the above considerations
and the standard semantics of MTL∆. The following obser-
vation shows that many properties of the classical notions can
be reconstructed in FCT as well.

Observation 5.1. By shifts of crisp relativized quantifiers
valid in first-order MTL∆, the following theorems are easily
provable in FCT:8

1. LimInf(A, x0) ≤ LimSup(A, x0)

2. A ⊆ B → (LimSup(A, x0) → LimSup(B, x0))
and analogously for LimInf .

3. LimInf(\A, x0) ≤ ¬LimSup(A, x0)
LimSup(\A, x0) ≥ ¬LimInf(A, x0)
(Equality holds in logics with involutive negation, but not
generally in MTL∆.)

4. LimInf(A uB, x0) = LimInf(A, x0) ∧ LimInf(B, x0)
LimInf(A tB, x0) = LimInf(A, x0) ∨ LimInf(B, x0)
and analogously for LimSup.

Since the definitions reconstruct classical notions, we have
retained the classical terminology and notation referring to
limits and continuity, even though these regard member-
ship functions (i.e., semantic models of fuzzy classes), rather
than fuzzy classes themselves. In FCT, the fuzzy predicate
LimSup−(A, x0) actually expresses the condition that x0 is
a left-limit point of the fuzzy class A, and LimInf−(A, x0)
that x0 is an interior point of A ∪ {x0} in the right half-
open interval topology,9 as these are the properties ex-
pressed by the defining formulae if all sets involved are crisp.
Consequently, the formulae (∀x0 ∈ A) LimInf(A, x0) and
(∀x0 ∈ A) LimSup(A, x0) express the notions of openness
resp. closedness of A in a fuzzy interval topology on R. The
study of this fuzzy topology and its relationship to the fuzzy
interval topologies of [17, 18] is left for future work.

Similarly as the definitions of LimInf and LimSup, also
the theorems of Observation 5.1 have double meanings. On

7Again it can be observed that the definitions are independent of
a particular t-norm and are the same in all expansions of MTL∆.

8The theorems are stated for both-sided limits only, but hold
equally well for one-sided limits.

9I.e., the topology with the open base of all half-open intervals
(a, b], also known as the upper-limit topology or the Sorgenfrey line.



the one hand they can be understood as number-free recon-
structions and graded generalizations of the classical theorems
on (membership) functions. On the other hand, they can be
interpreted as fuzzy-mathematical theorems on (fuzzy) sets,
under the above fuzzy interval topology on reals. In partic-
ular, 1. says that an interior point of a fuzzy set of reals is
also its limit point; 2. that a limit point of a fuzzy set is also a
limit point of a larger fuzzy set (and dually for interior points);
3. that an interior point of the complement of a fuzzy set A is
not a limit point of A (and vice versa); and 4. that x0 is a limit
point ofAuB exactly to the degree it is a limit point ofA and
(∧) a limit point of B (and dually for t). (The theorems are
graded, ‘is’ therefore represents fuzzy implication →.)

6 Operations on reals
In the previous examples, only the codomain of real-valued
functions of reals was rendered numberless. Obviously, the
domain R (or more conveniently, R∪{±∞}) can be re-scaled
into [0, 1] and regarded as the standard set of truth degrees as
well. The functions Rn → R then become n-ary functions
from truth values to truth values, i.e., truth functions of fuzzy-
logical connectives.

An apparatus for internalizing truth values and logical con-
nectives in FCT was developed in [4, §3]. As shown there, the
truth values can be internalized as the elements of the crisp
class L = Ker Pow{a}, i.e., subclasses of a fixed crisp sin-
gleton. The class L of internalized truth values is ordered by
crisp inclusion ⊆∆, and the correspondence between internal
and semantical truth values is given as follows:10 α ∈ L corre-
sponds to the semantic truth value of ∅ ∈ α, and the semantic
truth value of ϕ is represented by the class ϕ =df {a | ϕ}; the
correspondences ϕ ↔ (a ∈ ϕ) and ϕ ⊆ ψ ↔ (ϕ → ψ) then
hold.

Logical connectives are then internalized by crisp functions
c : Ln → L (which can be called internal, inner, or formal
connectives). In particular, definable connectives c of the
logic are represented by the corresponding class operations
c = {x ∈ L | c(x ∈ X1, . . . , x ∈ Xn)} on L (e.g., & by
∩, ∨ by t, etc.). Since the n-ary internal connectives are
crisp functions valued in L, they can as well be regarded as
fuzzy subsets of Ln, i.e., n-ary fuzzy relations on L. Usual
fuzzy class operations then apply to them, making their the-
ory graded: e.g., the graded inclusion

c ⊆ d ≡df (∀x1 . . . xn)(c(x1, . . . , xn) → d(x1, . . . , xn)).

The number-free theory of functions Rn → R is thus the
fuzzy-logical theory of internal connectives, i.e., fuzzy rela-
tions on internal truth values. Usual generalizations are avail-
able (e.g., taking Chang’s MV-algebra instead of reals), to
which number-freely provable theorems on real functions au-
tomatically transfer.

An elaboration of the theory of unary and binary internal
connectives has been sketched in [19, 20]. These prelimi-
nary papers focus on the defining properties of t-norms (i.e.,
monotony, commutativity, associativity, and the unit) and the
relation of domination between internal connectives, making
them graded by reinterpretation of their defining formulae in

10However, see [4, Rem. 3.3] for certain metamathematical quali-
fications regarding this correspondence.

fuzzy logic (cf. [2, §7], [5, §2.3], or [6, §4]) and studying their
graded properties. A full paper on the topic (by the authors of
[20]) is currently under construction.

7 Metrics
Recall that a pseudometric11 on a setX is a function d : X2 →
[0,+∞] such that

d(x, x) = 0
d(x, y) = d(y, x)
d(x, z) ≤ d(x, y) + d(y, z)

The numberless reduction will first need to normalize the
range of pseudometrics from [0,+∞] to [0, 1], e.g., setting

c(x, y) = 2−d(x,y) (1)

The defining conditions on pseudometric then become the fol-
lowing equivalent conditions on c:12

c(x, x) = 1
c(x, y) = c(y, x)
c(x, z) ≥ c(x, y) · c(y, z)

These conditions are nothing else but the defining conditions
of fuzzy equivalences, also known as similarity relations [21],
in the standard semantics of product fuzzy logic [1]. We can
thus equate number-free pseudometrics with product similar-
ities, i.e., standard models of the following axioms in product
fuzzy logic:

Cxx

Cxy → Cyx

Cxy & Cyz → Cxz

The definition of a metric strengthens the first condition to
d(x, y) = 0 iff x = y, which is equivalent to c being a fuzzy
equality (also called separated similarity), i.e., c(x, y) = 1 iff
x = y, thus replacing the first axiom by Cxy ↔ x = y.

Using a different left-continuous t-norm represents differ-
ent ways of combining the distances d(x, y) and d(y, z) in
the triangle inequality: e.g., with the minimum t-norm, c rep-
resents a (pseudo)ultrametrics under the same transforma-
tion (1), while with the Łukasiewicz t-norm, c represents
a bounded pseudometric d under a different transformation
c(x, y) = (1−d(x, y))/dmax, where dmax < +∞ is an upper
bound on the distances. (The obvious both-way representation
theorems are left to the reader.) Since furthermore many theo-
rems on on number-free metrics hold generally over MTL∆, it
is quite natural to generalize the notion of number-free metrics
to any similarity, not only the product one.

Various notions based on such (generalized) number-free
metrics can be defined and their properties investigated in the
framework of FCT (over MTL∆ or stronger). Only a few
observations on number-free limits are given here as a further
illustration of the numberless approach.

11For simplicity, we shall work with extended pseudometrics, al-
lowing the value +∞.

12Notice that since the function 2−x reverses the order, the fuzzy
relation c : X2 → [0, 1] expresses closeness rather than distance.



Fix a metric d rendered in the numberless way by a close-
ness predicate C under the transformation (1). The limit
limn→∞ xn of a sequence {xn}n∈N (abbreviated ~x) under C
can be defined as follows:13

∆LimC(~x, x) ≡df ∆(∃n0)(∀n > n0)Cxxn (2)

Theorem 7.1. Standard models over product logic validate
∆LimC(~x, x) iff x = limn→∞ xn under d.

Proof: limxn = x under d iff lim sup d(x, xn) = 0, iff
lim inf 2−d(x,xn) = 1, iff supn0

infn>n0 c(x, xn) = 1, which
is the semantics of ∆LimC(~x, x).

As noted above, the meaning of ∆LimC is natural not only
in product logic, but also in other t-norm logics, esp. if the re-
lation C is interpreted as indistinguishability rather than mere
closeness: then (2) expresses the condition that from some-
where on, xn is indistinguishable from x. Similarly, Theo-
rem 7.2 below expresses the fact that all limits of ~x are indis-
tinguishable (to the degree the indistinguishability relation is
symmetric and transitive).

Discarding the ∆ in (2) yields a graded number-free notion
of limit:14

LimC(~x, x) ≡df (∃n0)(∀n > n0)Cxxn

limC ~x =df {x | LimC(~x, x)}
ConvgC(~x) ≡df (∃x) LimC(~x, x), i.e., Hgt(limC ~x)

Interestingly, LimC(~x, x) coincides with G. Soylu’s notion
of similarity-based fuzzy limit [22]. Even without employing
explicitly the formalism of t-norm fuzzy logic, the author was
able to prove graded theorems such as [22, Prop. 3.5],

LimC(~x, x) & LimC(~y, y) → LimC(~x+ ~y, x+ y).

With the apparatus of FCT, the gradedness of Soylu’s re-
sults can be extended even further by not requiring the full
satisfaction of the defining properties of the similarity C (this
conforms to the standard methodology of constructing graded
theories [6, §7]). An example of such graded results is the
following theorem on the fuzzy uniqueness of the limit:

Theorem 7.2. FCT over MTL∆ proves:

SymC & TransC & LimC(~x, x) & LimC(~x, x′) → Cxx′

Proof. By TransC we obtain Cxxn & Cxnx
′ → Cxx′; thus

Cxnx& Cxnx
′ → Cxx′ by SymC, whence

((n > n0) → Cxnx) & ((n > n0) → Cxnx
′) → Cxx′

follows propositionally. By generalization on n and distribu-
tion of the quantifier,

(∀n > n0)Cxnx & (∀n > n0)Cxnx
′ → Cxx′

is obtained (as in the consequent the quantification is void).
Generalization on n0 and the shift of the quantifier to the an-
tecedent (as ∃) then yields the required formula.

A more detailed investigation of convergence based on
fuzzy indistinguishability in the formal framework of FCT
exceeds the scope of the present paper, and is therefore left
for future research.

13The ∆ in ∆LimC refers to the ∆ in the defining formula, which
will later be dropped.

14Observe that LimC is a Σ2-formula: compare it with the classi-
cal Π3-definition and the Π1-definition in non-standard analysis.

Appendix: Fuzzy Class Theory

Fuzzy Class Theory (FCT) is a formal theory aimed at giving
an axiomatic approximation of Zadeh’s fuzzy sets of all orders
over a fixed crisp domain. It can be characterized as Henkin-
style higher-order fuzzy logic, or fuzzified Russell-style sim-
ple type theory. FCT can be regarded as a foundational theory
for fuzzy mathematics [23], as other axiomatic mathematical
theories over fuzzy logic can be formalized within its frame-
work. For more details on FCT see [2, 5]; the relevant defini-
tions of [5] are briefly repeated here for reference.

The reader’s familiarity with the logic MTL∆ and its main
extensions is assumed; for details on these logics see [1, 24].
Here we only recapitulate its standard real-valued semantics,
which is crucial for number-free mathematics:

& . . . a left-continuous t-norm ∗
→ . . . the residuum ⇒ of ∗, defined as

x⇒ y =df sup{z | z ∗ x ≤ y}
∧, ∨ . . . min, max
¬ . . . x⇒ 0
↔ . . . the bi-residuum: min(x⇒ y, y ⇒ x)
∆ . . . ∆x = 1− sgn(1− x)
∀, ∃ . . . inf , sup

Łukasiewicz logic further specifies x ∗ y = (x + y − 1) ∨ 0,
product logic sets x ∗ y = x · y, and Gödel logic sets x ∗ y =
x ∧ y.

Fuzzy Class Theory FCT is a formal theory over a given
multi-sorted first-order fuzzy logic L (at least as strong as
MTL∆), with sorts of variables for: atomic objects (lower-
case letters x, y, . . . ), fuzzy classes of atomic objects (up-
percase letters A,B, . . . ), fuzzy classes of fuzzy classes of
atomic objects (calligraphic letters A,B, . . . ), etc., in general
for fuzzy classes of the n-th order (X(n), Y (n), . . . ).

Besides the crisp identity predicate =, the language of FCT
contains:

• The membership predicate ∈ between objects of succes-
sive sorts

• The class terms {x | ϕ} of order n + 1, for any variable
x of any order n and any formula ϕ

• The symbols 〈x1, . . . , xk〉 for k-tuples of individuals
x1, . . . , xk of any order

In formulae of FCT we employ usual abbreviations and de-
fined notions known from classical mathematics or traditional
fuzzy mathematics, including those listed in Table 1, for all
orders of fuzzy classes.

FCT has the following axioms, for all formulae ϕ and vari-
ables of all orders:

• The logical axioms of multi-sorted first-order logic L

• The axioms of crisp identity: x = x; x = y & ϕ(x) →
ϕ(y); and 〈x1, . . . , xk〉 = 〈y1, . . . , yk〉 → xi = yi

• The comprehension axioms: y ∈ {x | ϕ(x)} ↔ ϕ(y)

• The extensionality axioms: (∀x)(Ax = Bx) → A = B



Table 1: Abbreviations and defined notions of FCT

ϕ = ψ ≡df ∆(ϕ↔ ψ)
ϕ ≤ ψ ≡df ∆(ϕ→ ψ)

Ax ≡df x ∈ A
x1 . . . xk =df 〈x1, . . . , xk〉

(∀x ∈ A)ϕ ≡df (∀x)(x ∈ A→ ϕ)
(∃x ∈ A)ϕ ≡df (∃x)(x ∈ A & ϕ)
{x ∈ A | ϕ} =df {x | x ∈ A & ϕ}

∅ =df {x | 0}
KerA =df {x | ∆Ax}
\A =df {x | ¬Ax}

A ∩B =df {x | Ax&Bx}
A uB =df {x | Ax ∧Bx}
A tB =df {x | Ax ∨Bx}
PowA =df {X | X ⊆ A}
HgtA ≡df (∃x)Ax
PltA ≡df (∀x)Ax

CrispA ≡df (∀x)∆(Ax ∨ ¬Ax)
SymR ≡df (∀xy)(Rxy → Rzx)

TransR ≡df (∀x, y, z)(Rxy &Ryz → Rxz)
FncR ≡df (∀x, y, y′)(Rxy & Rxy′ → y = y′)
A ⊆ B ≡df (∀x)(Ax→ Bx)

A ⊆∆ B ≡df (∀x)(Ax ≤ Bx)

Models of FCT are systems of fuzzy sets (and fuzzy re-
lations) of all orders over a crisp universe of discourse, with
truth degrees taking values in an L-chain L (e.g., the interval
[0, 1] equipped with a left-continuous t-norm); thus all theo-
rems on fuzzy classes provable in FCT are true statements
about L-valued fuzzy sets. Note, however, that the theorems
of FCT are derived from its axioms by the rules of the fuzzy
logic L rather than classical Boolean logic. For details on
proving theorems in FCT see [5] or [25].
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[23] Libor Běhounek and Petr Cintula. From fuzzy logic to fuzzy
mathematics: A methodological manifesto. Fuzzy Sets and Sys-
tems, 157(5):642–646, 2006.

[24] Francesc Esteva and Lluı́s Godo. Monoidal t-norm based logic:
Towards a logic for left-continuous t-norms. Fuzzy Sets and
Systems, 124(3):271–288, 2001.
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