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Abstract

Fuzzy topology based on interior operators
is studied in the fully graded framework of
Fuzzy Class Theory. Its relation to graded
notions of fuzzy topology given by open sets
and neighborhoods is shown.
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1 Introduction

Fuzzy topology is a discipline of fuzzy mathematics de-
veloped since the beginning of the theory of fuzzy sets
[13, 16, 21, 20, 22, 19]. Besides established approaches
to fuzzy topology (categorial, lattice-valued, etc.), re-
cent advances in metamathematics of fuzzy logic have
enabled an approach to fuzzy topology based on for-
mal fuzzy logic. The framework of higher-order fuzzy
logic, also known as Fuzzy Class Theory [4], is espe-
cially suitable for fuzzy topology, as it easily accom-
modates fuzzy sets of fuzzy sets (of arbitrary orders),
which are constantly encountered in fuzzy topology.

In classical mathematics, topology can be defined in
several equivalent ways: by a system of open (closed)
sets, by a system of neighborhoods, or by an interior
(closure) operator. These definitions, however, are no
longer equivalent in fuzzy logic. Notions of fuzzy topol-
ogy given by open sets and neighborhoods have been
investigated in the framework of Fuzzy Class Theory
in [9]. In the present paper we focus on fuzzy topol-
ogy given by interior operators. Unlike the authors
of previous studies of interior and closure operators
(e.g., [15, 10, 11]), we work in the fully graded and
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MŠMT ČR.

formal framework of Fuzzy Class Theory, following the
methodology of [6]. This approach yields a specific
kind of results [8], incomparable to those obtained in
traditional fuzzy mathematics: they are on the one
hand more general (namely fully graded, i.e., admit-
ting partially valid assumptions), while on the other
hand limited to the scope of applicability of deductive
fuzzy logic [2].

2 Preliminaries

Fuzzy Class Theory FCT, introduced in [4], is an ax-
iomatization of Zadeh’s notion of fuzzy set in formal
fuzzy logic. We use its variant defined over MTL4
[14], the logic of all left-continuous t-norms, which is
arguably [2] the weakest fuzzy logic with good infer-
ential properties for fully graded fuzzy mathematics in
the framework of formal fuzzy logic [6].

We assume the reader’s familiarity with MTL4; for
details on this logic see [14]. Here we only recapitulate
its standard real-valued semantics:

& . . . a left-continuous t-norm ∗
→ . . . the residuum ⇒ of ∗, defined as

x ⇒ y =df sup{z | z ∗ x ≤ y}
∧, ∨ . . . min, max
¬ . . . x ⇒ 0
↔ . . . the bi-residuum: min(x ⇒ y, y ⇒ x)
4 . . . 4x = 1− sgn(1− x)
∀, ∃ . . . inf, sup

Definition 2.1 Fuzzy Class Theory FCT is a formal
theory over multi-sorted first-order fuzzy logic (in this
paper, MTL4), with the sorts of variables for

• Atomic objects (lowercase letters x, y, . . . )

• Fuzzy classes of atomic objects (uppercase letters
A,B, . . . )

• Fuzzy classes of fuzzy classes of atomic objects
(Greek letters τ, σ, . . . )



• Fuzzy classes of the third order (in this paper de-
noted by sans serif letters A,B, a, b, . . . )

• Etc., in general for fuzzy classes of the n-th order
(X(n), Y (n), . . . )

Besides the crisp identity predicate =, the language of
FCT contains:

• The membership predicate ∈ between objects of
successive sorts

• Class terms {x | ϕ} of order n+1, for any variable
x of any order n and any formula ϕ

• Symbols 〈x1, . . . , xk〉 for k-tuples of individuals
x1, . . . , xk of any order

FCT has the following axioms (for all formulae ϕ and
variables of all orders):

• The logical axioms of multi-sorted first-order logic
MTL4

• The axioms of crisp identity:

x = x

x = y → (ϕ(x) → ϕ(y))
〈x1, . . . , xk〉 = 〈y1, . . . , yk〉 → xi = yi

• The comprehension axioms:

y ∈ {x | ϕ(x)} ↔ ϕ(y)

• The extensionality axioms:

(∀x)4(x ∈ A ↔ x ∈ B) → A = B

Note that in FCT, fuzzy sets are rendered as a primi-
tive notion rather than modeled by membership func-
tions. In order to capture this distinction, fuzzy sets
are in FCT called fuzzy classes; the name fuzzy set is
reserved for membership functions in the models of the
theory.

The models of FCT are systems of fuzzy sets (and
fuzzy relations) of all orders over a crisp universe of dis-
course, with truth degrees taking values in an MTL4-
chain L (e.g., the interval [0, 1] equipped with a left-
continuous t-norm); thus all theorems on fuzzy classes
provable in FCT are true statements about L-valued
fuzzy sets. Notice however that the theorems of FCT
have to be derived from its axioms by the rules of the
fuzzy logic MTL4 rather than classical Boolean logic.
For details on proving theorems of FCT see [7] or [5].

In formulae of FCT we employ usual abbreviations
known from classical mathematics or traditional fuzzy

Table 1: Abbreviations used in the formulae of FCT

Ax ≡df x ∈ A
x1 . . . xk =df 〈x1, . . . , xk〉

x /∈ A ≡df ¬(x ∈ A)
(∀x ∈ A)ϕ ≡df (∀x)(x ∈ A → ϕ)
(∃x ∈ A)ϕ ≡df (∃x)(x ∈ A & ϕ)

(∀x1, . . . , xk ∈ A)ϕ ≡df (∀x1 ∈ A) . . . (∀xk ∈ A)ϕ
(∃x1, . . . , xk ∈ A)ϕ ≡df (∃x1 ∈ A) . . . (∃xk ∈ A)ϕ

{x ∈ A | ϕ} =df {x | x ∈ A & ϕ}
{t(x1, . . . , xk) | ϕ} =df {z | z = t(x1, . . . , xk) & ϕ}

y = F (x) ≡df Fxy, if 4Fnc F (see Tab. 2)
is proved or assumed

ϕn ≡df ϕ & . . . & ϕ (n times)

ϕ4 ≡df 4ϕ

mathematics, including those listed in Table 1. Usual
rules of precedence apply to the connectives of MTL4.
Furthermore we define standard derived notions of
FCT, summarized in Table 2, for all orders of fuzzy
classes.

Fuzzy counterparts of classical mathematical notions
are in the present paper defined following the method-
ology sketched in [18, §5] and further elaborated in [4,
§7], namely by choosing a suitable formula that ex-
presses the classical definitions and re-interpreting it
in fuzzy logic.

A distinguishing feature of FCT is that not only the
membership predicate ∈, but all defined notions are
in general fuzzy (unless they are defined as provably
crisp). FCT thus presents a fully graded approach to
fuzzy mathematics. The importance of full graded-
ness in fuzzy mathematics is explained in [7, 3, 1]: its
main merit lies in that it allows inferring relevant in-
formation even when a property of fuzzy sets is not
fully satisfied. Fuzzy topology has a long tradition of
attempting full gradedness, cf. graded definitions and
theorems in [19, 22].

3 Open Fuzzy Topology

In classical mathematics, topology introduced by
means of open sets is given by a crisp system τ of
crisp subsets of a ground set V, where τ is required to
satisfy certain conditions (closedness under

⋃
,∩, ∅,V,

and possibly further properties, e.g., separation ax-
ioms). Generalization by admitting fuzzy subsets leads
in FCT to regarding open fuzzy topology as a (possi-
bly fuzzy) class of (possibly fuzzy) subclasses of the
ground class V, i.e., a fuzzy class τ of the second or-
der.1

1We keep the ground class crisp to avoid problems with
quantification relativized to a fuzzy domain; generalization
to fuzzy topological spaces with fuzzy universes is a topic



Table 2: Defined notions of FCT

∅ =df {x | 0} . . . empty class
V =df {x | 1} . . . universal class

Ker A =df {x | 4Ax} . . . kernel
αA =df {x | α & Ax} . . . α-resize
−A =df {x | ¬Ax} . . . complement

A ∩B =df {x | Ax & Bx} . . . (strong) intersection
A uB =df {x | Ax ∧Bx} . . . min-intersection
A ∪B =df {x | Ax ∨Bx} . . . (strong) union
A×B =df {xy | Ax & By} . . . Cartesian product
Rng R =df {y | (∃x)Rxy} . . . range⋃

τ =df {x | (∃A ∈ τ)(x ∈ A)} . . . class union⋂
τ =df {x | (∀A ∈ τ)(x ∈ A)} . . . class intersec.

Pow A =df {X | X ⊆ A} . . . power class
Hgt A ≡df (∃x)Ax . . . height
Plt A ≡df (∀x)Ax . . . plinth

Crisp A ≡df (∀x)4(Ax ∨ ¬Ax) . . . crispness
Refl R ≡df (∀x)Rxx . . . reflexivity

Trans R ≡df (∀x, y, z)(Rxy & Ryz → Rxz)
. . . transitivity

Preord R ≡df Refl R & Trans R . . . preorder
Fnc R ≡df (∀x, y, y′)(Rxy & Rxy′ → y = y′)

. . . functionality
A ⊆ B ≡df (∀x)(Ax → Bx) . . . inclusion
A ≈ B ≡df (A ⊆ B) ∧ (B ⊆ A) . . . weak bi-incl.
A u B ≡df (A ⊆ B) & (B ⊆ A) . . . strong bi-incl.

When investigating open fuzzy topologies, we are in-
terested in such τ that satisfy analogous (but fuzzified)
closure conditions as in classical topology. These are
given by the following predicates that express the (de-
gree of) closedness of τ under

⋃
and ∩:

ic(τ) ≡df (∀A,B ∈ τ)(A ∩B ∈ τ)

Uc(τ) ≡df (∀σ ⊆ τ)
(⋃

σ ∈ τ
)

These conditions (plus ∅ ∈ τ and V ∈ τ) can be re-
garded as characteristic of open fuzzy topology. How-
ever, when studying open fuzzy topologies, we do not
in general require that these axioms be satisfied as in
classical topology. This is because they are (like all
formulae of FCT) interpreted in many-valued logic;
thus they need not be simply true or false, but are
always true to some degree. By restricting our atten-
tion just to the systems that fully satisfy the above
axioms, we would completely disregard systems that
satisfy them to a degree of, e.g., 0.9999, even though
graded theorems of FCT can provide us with useful
information about such systems. Therefore we study
all systems τ , no matter to which degree they satisfy
the above axioms. Similarly we proceed also in fuzzi-
fication of other definitions of fuzzy topology in the

for future work. Since in this paper we always work within
a single topological space, we can identify the ground class
with the universal class V.

following sections.

It turns out [9] that besides the predicate Uc, also
predicates of the following forms are often met in the
study of fuzzy topology (for m,n ≥ 1):

Ucm,n(τ) ≡df (∀σ)
(
σ ⊆m τ →

⋃
(σ ∩ n. . . ∩ σ) ∈ τ

)
Note that because ϕ & ϕ is not generally equivalent
to ϕ in MTL4 (nor in stronger fuzzy logics except
for Gödel fuzzy logic or stronger), σ ∩ n. . . ∩ σ does
not generally equal σ (only σ ∩ n. . . ∩ σ ⊆ σ holds for
all σ). Similarly (σ ⊆ τ)m is in general stronger than
simple σ ⊆ τ if m > 1. Recall that the larger m,
the stronger ϕm; informally ϕm can be understood
as m-times stressed ϕ (consult, e.g., [7] for the role
of multiple conjunction in formal proofs). Thus, like
Uc, the predicate Ucm,n expresses the closedness of
τ under a certain operation similar to the union of
subsystems, only the condition of what counts as a
subsystem is strengthened by m and the union itself
is strengthened by n.

By convention, we also admit the value “4” for either
m or n or both (cf. the last line of Table 1). Then,
e.g., Uc4,1(τ) expresses the closedness of τ under the
unions of crisp subsystems of τ , while Uc1,4(τ) ex-
presses the closedness of τ under the unions of kernels
of subsystems of τ (i.e., only full members of the sub-
system enter the union).

For convenience, we define a predicate that puts the
properties monitored in open fuzzy topologies to-
gether. Since each of the properties can appear with
varying multiplicity in theorems, we have to add fur-
ther indices that parameterize the multiplicity of each
of the conditions:

Definition 3.1 We define the predicate indicating the
degree to which τ is an (e, v, i, u, m, n)–open fuzzy
topology as

OTope,v,i,u
m,n (τ) ≡df (∅ ∈ τ)e & (V ∈ τ)v &

ici(τ) & Ucu
m,n(τ)

For the sake of brevity, we drop the subscripts if both
equal 1, and similarly for the superscripts.

The properties of open fuzzy topologies have been
studied in [9]. Since in this paper we are mainly in-
terested in the interior operator, we repeat here the
definition of the interior operator induced by an open
fuzzy topology and list its basic properties.

Definition 3.2 Given a class of classes τ , we define
the interior of a class A in τ as

Intτ (A) =df

⋃
{B ∈ τ | B ⊆ A}



Proposition 3.3 It is provable in FCT:

(i) Intτ (A) ⊆ A

(ii) A ∈ τ → Intτ (A) u A

(iii) A ⊆ B → Intτ (A) ⊆ Intτ (B)

(iv) Intτ (A uB) ⊆ Intτ (A) u Intτ (B)

Proposition 3.4 It is provable in FCT:

(i) V ∈ τ → Intτ (V) u V

(ii) Uc(τ) → Intτ (Intτ (A)) u Intτ (A)

(iii) ic(τ) → Intτ (A) ∩ Intτ (B) ⊆ Intτ (A ∩B)

Propositions 3.3 and 3.4 show that the interior op-
erator generated by an open fuzzy topology τ satis-
fies properties expected from an interior operator—
unconditionally in Proposition 3.3, and to a guaran-
teed degree (depending on the degree to which τ sat-
isfies the conditions required from open fuzzy topolo-
gies) in Proposition 3.4.

If the antecedent conditions in Propositions 3.3 and 3.4
are fulfilled to the full degree, so are the conclusions.
In particular, we have the following corollary:

Corollary 3.5 FCT proves:

(i) 4(A ∈ τ) → Intτ (A) = A

(ii) 4Uc(τ) → Intτ (Intτ (A)) = Intτ (A)

In words, whenever a fuzzy class A is fully in τ , it
equals its interior (no matter what conditions τ does
or does not satisfy to which degree). Similarly, if τ
is fully closed under fuzzy unions, interiors are stable
in τ .

It will further be seen in Section 5 that an open fuzzy
topology can vice versa be recovered from a primi-
tive interior operator, under conditions similar to those
above.

4 Neighborhood Fuzzy Topology

In classical mathematics, topology can also be intro-
duced by assigning a system of neighborhoods to each
point of a ground set V. Such a neighborhood system
can be represented by a relation Nb between elements
and subsets of V, where Nb(x,A) represents the fact
that A ⊆ V is a neighborhood of x ∈ V. The no-
tion of neighborhood-based fuzzy topology, obtained
by fuzzification of the classical notion in FCT, just al-
lows the relation Nb and the class A in Nb(x, A) to

be fuzzy.2 Thus in FCT, neighborhood fuzzy topolo-
gies will be second-order relations between atomic ob-
jects and first-order classes, i.e., classes Nb such that
4(Nb ⊆ V ×Ker Pow V).

Neighborhood systems are in classical topology re-
quired to satisfy certain conditions. Fuzzified versions
of these conditions will be of interest in neighborhood-
based fuzzy topology, too:

Definition 4.1 Let Nb be a second-order class such
that 4(Nb ⊆ V × Ker Pow(V)). Then we define the
following predicates:

N1(Nb) ≡df (∀x) Nb(x,V)
N2(Nb) ≡df (∀x,A)(Nb(x,A) → x ∈ A)
N3(Nb) ≡df (∀x,A,B)(Nb(x, A) & A ⊆ B →

Nb(x,B))
N4(Nb) ≡df (∀x,A,B)(Nb(x, A) & Nb(x,B) →

Nb(x,A ∩B))
N5(Nb) ≡df (∀x,A)(Nb(x,A) → (∃B)(B ⊆ A &

Nb(x,B) & (∀y ∈ B) Nb(y, B))

For convenience, we aggregate them in the following
defined predicate:

Definition 4.2 We define the predicate indicating the
degree to which Nb is a (k1, . . . , k5)–neighborhood
fuzzy topology as follows:

NTopk1,...,k5(Nb) ≡df Nb ⊆4 V ×Ker Pow(V)

&
5

&
i=1

Nki
i (Nb)

Basic properties of neighborhood fuzzy topologies and
their relation to open fuzzy topologies have been sum-
marized in [9]. Here we restrict our attention to their
relationship to interior-based topologies. The follow-
ing definition internalizes in FCT the classical defini-
tion of the interior of a class A:

Definition 4.3 Given a binary predicate Nb between
elements and classes, we define

IntNb(A) =df {x | Nb(x,A)}

The behavior of IntNb w.r.t. Kuratowski’s (fuzzified)
axioms of interior operators is studied in the following
section.

5 Interior Fuzzy Topology

In classical topology, an interior operator is a function
Int that assigns to each subset A of a ground set V

2We again keep the ground set V crisp for simplicity
and identify it with the universal class; see footnote 1.



a set Int(A) ⊆ V. In FCT we allow both the argu-
ment A and the output Int(A) of the function to be
fuzzy.3 Fuzzy interior operators are thus construed as
crisp second-order functions, i.e., classes Int such that
Int ⊆4 Ker Pow(V)×KerPow(V) & 4Fnc(Int).

The degrees to which Int satisfies (fuzzy versions of)
Kuratowski’s axioms for interior operators are given
by the following predicates:

Definition 5.1 For second-order classes Int such that
Int ⊆4 Ker Pow(V) × KerPow(V) & 4Fnc(Int) we
define the following predicates:

K1(Int) ≡df Int(V) u V
K2(Int) ≡df (∀A)(Int(A) ⊆ A)
K3(Int) ≡df (∀A)(Int(Int(A)) u Int(A))
K4(Int) ≡df (∀A,B)(Int(A) ∩ Int(B) ⊆ Int(A ∩B))

Unlike in classical topology, in MTL4 these conditions
do not imply the monotonicity of Int. Therefore we
define also the following predicates:

Mon(Int) ≡df (∀A,B)(A ⊆ B → Int(A) ⊆ Int(B))
K5(Int) ≡df (∀A,B)(Int(A uB) ⊆ Int(A) u Int(B))

Although Mon and K5 are not equivalent, the following
relationships between them hold:

Proposition 5.2 It is provable in FCT:

1. K5(Int) → Mon(Int)

2. Mon2(Int) → K5(Int)

3. 4K5(Int) ↔4Mon(Int)

For convenience, we gather the conditions K1–K5 into
one predicate ITop:4

Definition 5.3 We define the notion of (k1, . . . , k5)–
interior fuzzy topology by the predicate

ITopk1,...,k5(Int) ≡df

Int ⊆4 KerPow(V)×KerPow(V) & 4Fnc(Int)

&
5

&
i=1

Kki
i (Int)

3Again we keep V crisp and identify it with the universal
class as in footnote 1. The function Int itself is conceived
as crisp as well, to keep the correspondence to logical func-
tions of [17]; if needed, it can be fuzzified by a similarity
relation as in [1].

4It is not much important whether we take K5 or Mon
in the definition of ITop, as Proposition 5.2 “translates”
between the two variants.

Open classes can be defined by means of the interior
operator as usual:

τInt =df {A | A ⊆ Int(A)}

The following graded theorem shows that if Int satis-
fies Kuratowski’s axioms to a large degree, then τInt

satisfies the properties of open fuzzy topologies to a
large degree, and the interior operator generated by
τInt equals Int to a large degree. Notice, however, that
we have only got OTop2,1(τInt) rather than OTop(τInt);
in other words, we can only prove that the system of
classes open w.r.t. a fuzzy Kuratowski interior opera-
tor is closed under unions of families “doubly included”
in the system.

Theorem 5.4 FCT proves:

ITop1,1,1,1,2(Int) →
OTop2,1(τInt) & (∀A)(Int(A) u IntτInt(A))

Corollary 5.5 FCT proves:

4 ITop(Int) →4OTop2,1(τInt) & Int = IntτInt

Vice versa, interiors in well-behaved open fuzzy topolo-
gies are well-behaved fuzzy interior operators:

Theorem 5.6 FCT proves:

OTop0,1,1,1(τ) →
ITop(Intτ ) & (∀A)(A ∈ τ ↔ A ⊆ Intτ (A))

Corollary 5.7 FCT proves:

4OTop(τ) →4 ITop(Intτ ) & τ = τIntτ

Neighborhoods can also be defined by means of the
interior operator as usual:

NbInt(x,A) ≡df x ∈ Int(A)

It is immediate that NbInt and IntNb of Definition 4.3
are mutually inverse, i.e.,

Int = IntNbInt

Nb = NbIntNb

Moreover we have the following correspondence be-
tween the predicates ITop and NTop:

Theorem 5.8 FCT proves:

1. ITop1,2,2,1,1(Int) → NTop(NbInt)

2. NTop1,3,3,2,1(Nb) → ITop(IntNb)



As a corollary, we get the perfect match between the
conditions ITop and NTop when true to degree 1:

Corollary 5.9 FCT proves:

4 ITop(Int) ↔4NTop(NbInt), Int = IntNbInt

4NTop(Nb) ↔4 ITop(IntNb), Nb = NbIntNb

We conclude by giving three examples of interior-based
fuzzy topology.

Example 5.10 The operation sending a fuzzy class
to its kernel is an interior operator that fully satisfies
all of Kuratowski’s axioms, as FCT proves

Ker V = V
KerA ⊆ A

KerKerA = KerA

KerA ∩KerB = Ker(A ∩B)
Ker(A uB) = Ker A uKerB

by [4, §3.4]. Thus 4 ITop(Ker); we call it the kernel
fuzzy topology.

In the kernel fuzzy topology, a class is fully open iff
it is crisp: 4(A ∈ τKer) ↔ CrispA. Partially open
classes are those whose fuzzy elements only have low
membership degrees. Since all crisp classes (including
singletons) are open in the kernel fuzzy topology, it is a
generalization of the notion of discrete crisp topology,
with which it coincides in 2-valued models.

Example 5.11 Define the interior of A as (Plt A)V
(see Table 2 for the definitions of plinth and resize);
i.e., x ∈ IntA ≡df (∀y)Ay. In other words, the mem-
bership function of Int A is constant and all elements
belong to Int A to the degree which is the infimum of
the membership function of A. Then it is provable
in FCT that 4 ITop(Int); we call it the plinth fuzzy
topology.

A class is fully open in the plinth topology iff it is a
resize of the universal class. Thus, the plinth fuzzy
topology is stratified (stratified topologies are defined
as those in which all classes αV are open [21, 19]).
Partially open in the plinth topology are such classes
whose membership functions have small amplitudes
(i.e., the differences between their suprema and in-
fima), as τInt = {A | HgtA → Plt A}. Since the only
crisp open classes in the plinth topology are ∅ and V,
it is a generalization of the notion of anti-discrete crisp
topology (with which it coincides in 2-valued models).

Example 5.12 In [12], an operation of the opening of
a fuzzy set under a fuzzy relation has been introduced.
In [3] the definition has been generalized to the graded
framework of FCT and its graded properties have been

investigated. The definition can be rephrased as fol-
lows:

IntR(A) =df {y | (∃x)(Rxy & (∀z)(Rxz → Az))}

From results proved in [3] it follows that for any rela-
tion R, the operator fully satisfies the conditions K2,
K3, and K5. If R is a crisp preorder, then furthermore
IntR fully satisfies K4. Since K1(IntR) is equivalent to
V ⊆ Rng R, we get

4PreordR & CrispR →4 ITop(IntR)

This result can be generalized to a larger class of fuzzy
relations: e.g., instead of crispness, R = R ∩ R is suf-
ficient for 4K4(IntR) if 4PreordR; both conditions
can further be relaxed if ITop is not required to de-
gree 1. Furthermore it is shown in [3] that for any R
we have IntR = IntτIntR

.
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[6] L. Běhounek and P. Cintula. From fuzzy logic to
fuzzy mathematics: A methodological manifesto.
Fuzzy Sets and Systems, 157(5):642–646, 2006.
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