Modeling costs of program runs

in fuzzified propositional dynamic logic

In F. Hakl: Doktorandsky den ’08, Matfyzpress 2008.

Preprint with post-publication corrections

Libor Béhounek*

Abstract

The paper introduces a logical framework for representing
costs of program runs in fuzzified propositional dynamic
logic. The costs are represented as truth values governed
by the rules of a suitable t-norm fuzzy logic. A trans-
lation between program constructions in dynamic logic
and fuzzy set-theoretical operations is given, and the ad-
equacy of the logical model to the informal motivation
is demonstrated. The role of tests of conditions in pro-
grams is discussed from the point of view of their costs,
which hints at the necessity of distinguishing between the
fuzzy modalities of admissibility and feasibility of pro-
gram runs.

1 Introduction

It has been argued in [4] that t-norm fuzzy logics can
be interpreted as logics of resources or costs, besides
their usual interpretation as logics of partial truth.
Particular instances of costs are the costs of pro-
gram runs: typically, a run of a program needs vari-
ous kinds of resources like machine time for perform-
ing instructions, operational memory or disk space
for data, access to peripheries or special computa-
tion units, etc. Depending on the amount of the re-

*Institute of Computer Science, Academy of Sciences of
the Czech Republic, email: behounek@cs.cas.cz. The work
was supported by grant No. IAA900090703 Dynamic For-
mal Systems of the Grant Agency of the Academy of Sci-
ences of the Czech Republic and Institutional Research Plan
No. AV0Z10300504. I have profitted from discussions with
Marta Bilkova and Petr Cintula.

sources needed, some runs of programs can be more
costly than others. The most usual logical model of
programs and program runs is presented by proposi-
tional dynamic logic, which will be used as a basis for
the present generalization. The aim of this paper is
to sketch a logical framework for handling the costs of
program runs by means of fuzzy logic, with programs
modeled abstractly in propositional dynamic logic,
and present some basic observations on the proposed
model.

The paper has the following structure: A brief de-
scription of t-norm fuzzy logics and their cost-based
interpretation is given in Sections 2 and 3. The appa-
ratus of propositional dynamic logic is recalled in Sec-
tion 4. A combination of these approaches, leading to
a model of costs of program runs in fuzzified propo-
sitional dynamic logic, is given in Section 5. The role
of tests of conditions in programs, which necessitates
distinguishing the feasibility and admissibility of pro-
gram runs in fuzzified propositional dynamic logic, is
discussed in Section 6.

It should be noted that the paper only presents
an initial sketch of the proposed approach to logi-
cal modeling of program costs. The work on this
approach is currently in progress and a more com-
prehensive elaboration is being prepared, with Marta
Bilkova and Petr Cintula as co-authors.

2 T-norm fuzzy logic

In this section we give a short overview of the most
important t-norm fuzzy logics that will be needed

later on. Only the standard semantics of t-norm
fuzzy logics is presented here, as it suffices for the
needs of this paper. For more details on t-norm log-
ics, including their axiomatic systems and general se-
mantics, see [12, 11].

In the standard semantics, formulae of t-norm
fuzzy logics are evaluated truth-functionally in the
real unit interval [0,1]; i.e., propositional connec-
tives are semantically realized by operations on [0, 1].
In particular, the connective called strong conjunc-
tion & is in t-norm fuzzy logics realized by a left-
continuous t-norm, i.e., a left-continuous binary op-
eration on [0,1] which is commutative, associative,
monotone, and has 1 as its neutral element. The
most important (left-)continuous t-norms are

x % y = min(z, y) Godel t-norm
THIY =T Y product t-norm
x #,y =max(0,x +y — 1) Lukasiewicz t-norm
Every left-continuous t-norm * has a unique residuum
=, defined as

=,y =sup{z | zxzx <y},
which interprets implication — in the logic L(*) of
the left-continuous t-norm *. If x < y, then x=,y =

1; for x > y the residua of the above three t-norms
evaluate as follows:

T=GcY=Y
r=ny=y/x
r=py=min(l,1 —x +y)

Further propositional connectives of L(x) are inter-
preted in the following way:

e Negation - as —,x =2 =, 0
e Fquivalence < as

TS,y =min(x =, y,y =, x)

e Disjunction V as the maximum, and

o Weak conjunction A as the minimum

Optionally, the delta connective A is added to L(x)
with standard interpretation Az = 1 if x = 1, and
Az = 0 otherwise. (We shall always use t-norm logics
with A in this paper.) The algebra

[07 1}* = <[07 1]a *, :>7 \/7 /\707 A>

defining an interpretation of propositional t-norm
logic is called the t-algebra of x (with A).

Formulae that always evaluate to 1 are called tau-
tologies of the logic L(x). The formulae that are tau-
tologies of L(x) for all * from some class K of left-con-
tinuous t-norms form the t-norm logic of the class K.
In particular, Hajek’s [12] logic BL is the logic of all
continuous t-norms and the logic MTL of [11] is the
logic of all left-continuous t-norms: these general log-
ics capture rules valid independently of a particular
t-norm realization of &. The proofs in this paper will
be carried out in the logic MTL, thus sound for all
left-continuous t-norms.

Propositional t-norm logics can be extended to
their first-order and higher-order variants. These are
needed for mathematical reasoning about fuzzy prop-
erties and will be employed later in this paper. For
the formal apparatus of first-order fuzzy logic I refer
the reader to [12]; Higher-order fuzzy logic has been
introduced in [6] and described in a primer [9] freely
available online. Here we shall only recall that the
quantifiers V, 3 are respectively realized as the infi-
mum and supremum of the truth values, and that
higher-order logic is a theory of fuzzy sets and rela-
tions with terms {x | ¢(z)}, each of which represents
the fuzzy set to which any element x belongs to the
degree given by the truth value of the formula p(z).

3 Fuzzy logics as logics of costs

In fuzzy logic, truth values x € [0,1] are usually in-
terpreted as degrees of truth, with 1 representing full
truth and 0 full falsity of a proposition. As argued
in [4], the truth values can also be interpreted as
measuring costs, with propositional connectives rep-
resenting natural operations on costs. Under this in-
terpretation, we abstract from the nature of costs
(be they time, money, space, or any other kind of

resources) and only assume that they are linearly or-
dered and normalized into the interval [0, 1].

(The assumption of linear ordering can actually be
relaxed to more general prelinear orderings, which
cover most usual kinds of resources. In particular,
direct products of linear orderings fall within the
class, which allows vectors of costs, e.g., pairs of disk
space and computation time, to be represented within
this framework. In general, the cost-interpretation of
fuzzy logic is based on the fact that most common re-
sources show the structure of a prelinear residuated
lattice. However, for simplicity we shall only consider
linearly ordered costs that can be embedded in the
real unit interval here.)

Under the cost-based interpretation, the truth
value 1 represents the zero cost (“for free”) and the
truth value 0 represents a maximal or unaffordable
cost. Intermediary truth values represent various de-
grees of costliness, with the usual ordering of [0, 1]
inverse to that of costs (the truth values can thus
be understood as expressing degrees of truth of the
fuzzy predicate “is cheap”). Strong conjunction &
represents the fusion of resources, or the “sum” of
costs. Various left-continuous t-norms represent var-
ious ways by which costs may sum, and particu-
lar t-norm logics thus capture the rules that govern
particular ways of cost addition. For example, the
Lukasiewicz t-norm x*j, corresponds to the bounded
sum of costs: assume that costs sum up to a bound
b > 0; if we normalize the interval [0, 5] to [0,1] with
the cost ¢ € [0,b] represented by 1 — ¢/b € [0,1],
then the bounded sum on [0,b] corresponds to the
Lukasiewicz t-norm on [0, 1], since

(I-z)*x(1-y)=1~(z+y)

unless the bound 0 (representing b) is achieved. Sim-
ilarly the product t-norm corresponds to the wun-
bounded sum of costs (via the negative logarithm),
with O representing the infinite cost. The Godel t-
norm corresponds to taking the maximum cost as
the “sum”, which is also natural for some kinds of
costs (e.g., the disk space for temporary results of
calculation, which can be erased before the program
proceeds). Other left-continuous t-norms correspond
to variously distorted addition of costs, possibly suit-
able under some rare circumstances.

Obviously, disjunction and weak conjunction cor-
respond, respectively, to the minimum and maximum
of the two costs. The meaning of implication is that
of surcharge: the cost expressed by A — B is the
cost needed for B, provided we have already got the
cost of A. (Observe that if the cost of B is less than
or equal to that of A, then indeed A — B evaluates
to 1, as we have already got the cost of B if we have
the cost of A; i.e., the “upgrade” from A to B is
“for free”, which is represented by the value 1.) The
equivalence connective represents the “difference” (in
terms of &) between two costs, and negation the re-
mainder to the maximal cost.

Tautologies of a given t-norm logic represent com-
binations of costs that are always “for free”. More im-
portantly, tautologies of the form A; & ... & A,, — B
express the rules of preservation of “cheapness”, as
their cost-based interpretation reads: if we have the
costs of all A; together, then we also have the cost
of B. Particular t-norm fuzzy logics thus express the
rules of reasoning salvis expensis, in a similar man-
ner as classical Boolean tautologies of the above form
express the rules of reasoning salva veritate.

In the following sections we shall apply this in-
terpretation of fuzzy logic to a particular kind of
costs, namely the costs of program runs as modeled
in propositional dynamic logic.

4 Propositional dynamic logic

Propositional dynamic logic (PDL) provides an ab-
stract apparatus for logical modeling of behavior of
programs. For details on PDL see [13, 14].

PDL models programs as (non-deterministic) tran-
sitions in an abstract space of states. (As such, PDL
programs can represent any kind of actions over an
arbitrary set of states, not only programs operating
on the states of a computer; the applicability of both
PDL and the present approach is thus much broader
than just to computer programs.) Programs can in
PDL be composed of simpler programs by means of a
fixed set of constructions (the usual choice is that of
regular expressions with tests, by which all common
programming constructions are expressible), applied
recursively on a fixed countable set of atomic pro-

grams (representing, e.g., the instructions of a proces-
sor). Propositional formulae of PDL express Boolean
propositions about the states of the state space, and
include, besides usual connectives of Boolean logic,
modalities corresponding to programs, by means of
which it is possible to reason about programs and
their preconditions and postconditions.

Formally, the sets Form of formulae and Prog of
programs of PDL are defined by simultaneous recur-
sion from fixed countable sets of atomic formulae and
atomic programs as follows:

e Every atomic formula is a formula; every atomic
program is a program.

e If p and ¢ are formulae, then —¢ and (p A)
are formulae (meaning not o resp. ¢ and). The
abbreviations T, L, (¢ V), (¢ — ¢), and (¢ <
1) are defined as usual in Boolean logic, with
usual conventions on omitting parentheses.

e If « and § are programs, then o*, (U), and
(a; B) are programs (meaning repeat o finitely
many times, do o or 3, and do « and then (3,
respectively, where or and finitely many means
a non-deterministic choice).

e If p is a formula and « is a program, then [y is
a formula (meaning ¢ holds after any run of «).
The expression {(a)p abbreviates —=[a]—p.

e If ¢ is a formula, then ¢? is a program (meaning
continue iff).

The semantic models of PDL are multimodal
Kripke structures (W, R, V') with W a non-empty set
(of states), R: Prog — 2" an evaluation of pro-
grams by binary relations on W (representing possi-
ble transitions between states by the program), and
V: Form — 2" an evaluation of formulae by subsets

of W (namely, the sets of verifying states), such that

Vo =WV, (1)
Vorw = Vo NVy (2)
Viayp = Ra =V, (3)
Rap = Ro o R (4)
Rau,B =R, U Rﬁ (5)

Ro- = R}, (6)

Ry, =1dNV, (7)

where o denotes the composition of relations, < the
preimage under a relation, R* the reflexive and tran-
sitive closure of R, and Id the identity relation. A
formula ¢ is valid in the model iff V, = W, and is a
tautology iff is valid in all models.

PDL is sound and complete w.r.t. the axiomatic
system consisting of all propositional tautologies, the
axioms

[a; Bl < [o][Ble (8)
[aU Blp < [ap A Bl 9)
[a*]p < o A [a][a”]p (10)
[y < (¢ — ¥) (11)
[a](p =) — ([a]e — [a]y) (12)

and the rules of modus ponens (from ¢ and ¢ —
infer 1), necessitation (from ¢ infer [a]p), and induc-
tion (from ¢ — [a]p infer ¢ — [a*]p).

For simplicity, we shall not consider expansions of
PDL by further program constructions like intersec-
tion, converse, etc.

5 Modeling the costs of
program runs

PDL does not take costs of program runs into con-
sideration. In PDL, possible runs of a program « are
modeled as transitions from a state w to states w’
such that R,ww’. The relation R, representing the
program « is binary (crisp): thus the states w’ are
either accessible or unaccessible from w by a run of a.
In practice, however, it often occurs that although a
state w’ is theoretically achievable from w by «, the

run of « from w to w’ is not feasible—e.g., is too long
(for example, needs to perform 10'%° instructions, a
frequent case in exponentially complex problems), re-
quires too much memory, etc. Obviously, such un-
feasible runs should not play a role in the practical
assessment whether some condition ¢ can or cannot
hold after the possible runs of a. Nevertheless, classi-
cal PDL cannot exclude such unfeasible runs, as there
is no sharp boundary between feasible and unfeasible
runs (i.e., the feasibility of runs is a fuzzy property).

A more realistic model can be obtained by consid-
ering costs of program runs, by means of which we
can measure their feasibility. A simple model, which
nevertheless covers many common situations, would
assign the triple o, w, w’ such that R,ww’ in a model
of PDL a real number C,ww’ representing the cost
of the run of a from w to w’. The cost thus would
be represented by a function

C': Prog x W? — [0, +-o0],

i.e., we are weighting the arrows in the co-graph of
R, by their costs; we assign the cost 4+oco to im-
possible runs with —R,ww’. The cost of a run of
Q1;Q9;. .. ap going from wg through wi,ws,... to
wy, would be a function f (most often, the sum) of
the costs of the runs of «; from w;_1 to w;. If there
are different paths between wy and w,, through which
Qa1; Q. .. ; u, can run, we are interested in the cheap-
est path, i.e., the run of o; 8 from w to w’ will be
understood as costing

Cppww’ = infyr f(Coww”, Cauw"w'). (13)

This model would allow us to work with the costs
of program runs in the expanded models of PDL and
define and investigate many useful notions related to
costs by means of classical mathematics and logic.
Nevertheless, since the important property of feasi-
bility of a program run is essentially a fuzzy predicate,
we shall recast this model in terms of the cost-based
interpretation of fuzzy logic. This will allow us to
employ fuzzy logic for a convenient definition of fea-
sible runs and use the apparatus of fuzzy logic for
reasoning about the costs on the propositional level,
by replacing classical rules of reasoning by those of
fuzzy logic. For a methodological discussion of this
approach see [6, 9, 8, 7].

Thus we shall assume that the structure of costs is
that of some t-norm algebra (see Section 3 for possible
extension to more general algebras). Then, instead
of weighting the arrows in the co-graph of R, with
costs, we can directly replace R, with a fuzzy rela-
tion R € [0,1]"", with the truth values of Rqww’
representing the cost of the run of « from w to w'.

Since the sum of costs now translates to conjunc-
tion in a suitable t-norm logic and since we are inter-
ested in the cheapest runs if more paths are possible,
(13) now translates to

Ropww’ = (Fuw”)(Ryww” & Raw"w') (14)
with logical symbols interpreted in a t-norm fuzzy
logic, i.e., in semantics,

Ro.pww’ = sup,,. (Roww” * Rgw"w')

It can be observed that the formula (14) has ex-
actly the same form as in classical PDL where R,.3 =
R, o Rg, since by definition

(Ro 0o Rg)ww' = (Fuw")(Ryww” & Rgw"w') (15)
The only difference between (14) and (15) is that the
relations in (14) are fuzzy, and that the logical op-
erations are (therefore) interpreted in a t-norm fuzzy
logic instead of Boolean logic. This is in fact a general
feature of using the framework of formal fuzzy logic
that natural definitions usually take the same form as
in the crisp case, only with the logical symbols rein-
terpreted in fuzzy logic (cf. [6, 9, 8, 7]): we shall see
that further definitions will follow this pattern, too.
Indeed, analogously to (15) it is usual [16] in fuzzy
logic to define the composition of fuzzy relations R
and S as

(Ro S)ww' = (3uw")(Rww” & Sw"w'), i.e.,

= sup,,» (Rww" * Sw"w')
Consequently, we can write
Rayp = Ra o Rp

in our setting, in full analogy with the definition (4)
of Ry in classical PDL.

Similarly it is natural to assume Rauﬂ =]:Za U R,@
as in (5), where (R U S)ww’ is defined for any fuzzy
relations R, S as Rww’V Sww’, since the cost of a run
of av U 3 between w and w’ should be the smaller of
the two costs of the runs of a and 3 between the same
states (which in [0, 1], is represented by the larger of
the two truth values). Analogously one verifies that
the cost of a* is represented by the transitive and
reflexive closure R* of the fuzzy relation R, defined
as usual in the theory of fuzzy relations [16], in full
analogy to (6).

The reinterpretation in fuzzy logic of (3), which
expands to

Viayow = (Fw')(Roww' & Vouw') (16)

yields a very natural modality expressing that after
a feasible run of « the condition ¢ can hold. (Notice
that this definition reflects the motivation for taking
the costs of program runs into account, described in
the beginning of this section.)

It can be observed in (16) that even if V, is crisp,
a fuzzy R, will yield a fuzzy V(... Thus, because of
the interplay of programs and formulae in PDL, our
fuzzification of programs necessitates a fuzzification
of formulae as well. A model of our fuzzified PDL is
thus a triple (W, R, V), where W is a non-empty crisp
set of states, R maps programs « to fuzzy relations
Re €10,1]"", and V gives fuzzy sets V, € [0,1]V of
states which fuzzily validate ¢ (i.e., wa is the truth
value of ¢ in w).

Thus in the fuzzified (16), which reads

Viayow = (Fw')(Raww’ & V'), (17)
the subformula Roww’ can be understood as express-
ing the fuzzy proposition “w’ is cheaply accessible
from w by a run of &” (which is a fuzzy-propositional
reading of the cost represented by Roww’) and ‘Z/,w’
as the fuzzy proposition “p holds in w’” (viz, to
the degree expressed by V,w’). Both R,ww’ and
f/@w’ can thus be understood as fuzzy propositions,
and their combination in a single formula thus does
not present a type mismatch: we only assume that
the cost is represented by a truth value of the fuzzy
proposition “the run is cheap”, and that the map-
ping of costs to [0, 1], is such that the conjunction

* of truth values coincides with summation of costs.
(This assumption is more natural if ‘N/g, for non-modal
o are assumed to be crisp, since then the fuzziness
of f/w for modal ¢ arise exactly from considering the
costs Ryww' in (16). However, in many real-world
applications of fuzzified PDL it may be desirable to
have non-modal formulae fuzzy as well: then, if dif-
ferent algebras of degrees are needed for V and R in
a particular model, one can use suitable direct prod-
ucts of t-norm algebras; T omit details here.) Particu-
lar interpretations * of & and particular mappings of
actual costs under consideration to [0, 1], will then
yield concrete ways of calculating the truth values
of this expression in particular models; importantly,
however, the rules of general fuzzy logics like BL or
MTL allow deriving theorems on program costs that
are valid independently of a concrete representation
in [0, 1],.

Returning to (16), one can observe that again it
coincides with the usual definition of preimage of a
fuzzy set in a fuzzy relation (see, e.g., [10]). Thus we
can write

V(Of)@ = Ro ™ Vw’
again in full analogy with (3).

The derived semantical clause for [a]y, which in
the classical case reads

Vialpw = (V') (Raww” — Vow'), (18)
yields in the fuzzy reinterpretation
Viajow = (V') (Raww' — Vyw'), (19)

a useful fuzzy modality expressing that after all feasi-
ble (or cheap enough) runs of « the fuzzy condition ¢
will hold. (Similar comments as in the case of ()¢
are applicable.) The operation defined by (18) for
crisp R, and V,, and by (19) for fuzzy R, and V,
is denoted by < and called the subproduct preim-
age in [10], where it is studied as a particular case
of BK-subproduct <. (These notions were introduced
by Bandler and Kohout in [1] for crisp relations and
generalized for fuzzy relations in [2]. Further refer-
ences to the literature on ~7 and its properties in

fuzzy logic are given in [10].) Thus we can write
<« V@
«~ V(p

Vialp = Ba
Vialp = Ba

respectively for crisp and fuzzy PDL. Notice that un-
like in classical PDL, [a]¢ and (a)¢ are no longer
interdefinable in fuzzified PDL, as the clauses (17)
and (19) do not generally Satlsfy V (a)p = V[a]mp in
fuzzy logic, unless the negation — is involutive. Both
[a] and (a) therefore need to be present in the lan-
guage of fuzzified PDL as primitive symbols.

As an example of theorems that can be proved in
our framework, we shall check the soundness of the
axioms (8)—(12) and the three inference rules of clas-
sical PDL in our fuzzified PDL semantics. The valid-
ity of the axiom (8) in any model M = (W, R, V) is

proved as follows:
M = [a; Ble < [o][B]e
iff ‘/[a Bl V
iff Ry "V, = R “Vige
iff (RooRp) V,=R, " (Rg V,),

where the last identity is an easy property of <, see
[10, Cor. 5.17].
Similarly, the validity of the axiom (9) is proved by

M E [aUBlp < [a]p A [Ble

iff Viaugle = Vialoalsle
iff Rauﬁ Ve = Viaje Na Vialp
iff (Ra U Rﬂ) - ‘750 = (Ra - Vw) I (Rﬂ - ‘789)7

where the last identity is again an easy property of
<, see [10, Cor. 5.16]. Notice that weak conjunction
A is in order in the fuzzy version of (9), corresponding
in the proof to min-intersection defined for any fuzzy
sets U,V as (UNy V)w = Uw A Vw.

In order to verify the axiom (10), we need a few
definitions and lemmata. First, define for any fuzzy
relation R its iterations

R’ =1d
Rn+1 :RORn

for all n € N. Furthermore, the union [J.A of a crisp
or fuzzy set A of fuzzy relations is in higher-order
fuzzy logic defined as

(UA)ww' = (3R)(AR & Ruww').

Obviously, for any fuzzy relation R,
oo
U
n=0

by (20). It can trivially be verified that by defini-
tions, Id 9V = V, thus also R* <V =V, for any
fuzzy relation R and any fuzzy set V. Finally, it can
be proved (cf. [16]) that the transitive and reflexive
closure R* of a fuzzy relation R is in fuzzy logic char-
acterized in the same way as in classical mathematics,

viz
UR”—Idu UR”

n=0

_ o)k =1au) &

n=1 n=1

Now we can show the soundness of (10), which
amounts to the general validity of f/[a*] = VW\[Q] [a*]
We have the following chain of identities, justified by
definitions and previous lemmata:

D «—
:Ra* o =

n=1
=7 ((Rae Gfﬂﬁv)
— Ve lIA (] o ®
n=0
= ‘Zp Ma ‘7[0;0*150 = ~<P/\[0¢][0‘*]80'

Notice again that weak conjunction is in order in
fuzzified (10).

The soundness of the rule of induction amounts to
the validity of inferring

Vw gé;wf@ from f/g, QRQH]\N/@.

By induction, we shall prove that from ‘N/SO - Ra‘_qf/w
we can infer V,, C R ““V,, for all n € N, i.e., by [5,
Lemma B.8(L5)],

‘790 g m (RZ - ‘ZP)?
neN
which is by [10, Cor. 5.16] equivalent to the required

7, c (LEJNRQ) =7,

The first step f/@ C RO < f/gp of the induction is
trivially valid by R <V, =Id “*V,, = V,,. For the
induction step, we need to infer

]

V, C RV <V, from V,C R, "V,
and NSD g RZ - ~<pa
ie., by [5, Th. 4.3(114)],
(RZ oRy) ™~ f/@ C f/q,, from R, ™ ~¢ C 10
and R~ V,CV,

By [10, Cor. 4.14], the former is equivalent to
Ro ™ (R 7 Vi) €V,

which follows from Ra - ‘Zp - f/@ and the induction
premise by monotony of — w.r.t. C [10, Cor. 4.7].

A discussion of the test construction is postponed
to Section 6; therefore we shall skip checking the
soundness of the the axiom (11). The soundness of
the rule of modus ponens and the axioms of propo-
sitional logic is demonstrated in [3], as (W, V) forms
the usual intensional semantics for fuzzy logic. The
soundness of the rule of necessitation amounts to the
validity of inferring W C Ra“qf/w, ie, Ry ~W C f/@,
from W C VW; but since R, only operates on W, it
is immediate that Ra “WCW C \N/g,.

On the other hand, the axiom (12) fails in fuzzy
PDL, as it is well known (already from [12]) that
fuzzified Kripke frames do not in general validate the
modal axiom K. Since also the interdefinability of
(o) and [a] fails for non-involutive negation, dual ax-
ioms and rules for (o) need to be added to a prospec-
tive axiomatic system of fuzzified PDL. I omit the

discussion of these axioms here; it can nevertheless
be hinted that since the relationship between the se-
mantic clauses for (a) and [a] is that of Morsi’s du-
ality [15] (combined with the duality between fuzzy
relations and their converses), the formulation and
soundness of the dual axioms and rules for («) can
be obtained from the axioms and rules for [a] auto-
matically by the same duality.

6 The role of tests

In classical PDL, tests ? have the role in branching
complex programs: they are employed in definitions
of such programming constructions as if-then—else,
while—do, or repeat—until. They do not themselves
affect the state in which a program run is, but bar
a further execution of the program if their condition
is not met. A straightforward fuzzification of the se-
mantic condition (7), R,? = IdNV,,, would interpret
tests in fuzzy PDL as programs which do not change
the state, but can decrease the “passability” of the
run through the current state according to the truth
value of the condition . This, however, does not
correspond to the primary motivation of Roww' as
the cost of the run of a from w to w’: the condition
¢ may be cheap to test, but can have a low truth
degree in w, or vice versa. The two roles of the truth
value yielded by the test ¢? do not match in fuzzy
PDL: the truth degree of ¢ should affect the possibil-
ity of further execution, while the cost of performing
the test of ¢ should contribute to the overall cost of
the run of a complex program. Neither of the two
roles can be sacrificed, since the former is necessary
for branching the program (by the fuzzy if-then—else
and cycle constructions), while without the latter we
would be unable to distinguish between feasible and
unfeasible runs (which was our primary motivation
for the fuzzification of PDL).

Unless we want to stipulate that the conventional
complexity (or cost) of a test be identified with the
truth value it yields, thus equating the accessibility
of paths of program execution with their costs (by
which the actual cost of performing the computation
is replaced by a different conventional measure), we
may have to admit that the identification of the fea-

sibility (or cost) value with the value of accessibility
was too bold and that these two fuzzy relations on W
have to be distinguished. If we denote the fuzzy ac-
cessibility relation by R, and the feasibility relation
by C,, then the test »? would contribute to R4 by
the truth value of ¢, while to C., by the cost of per-
forming the test. For instance, performing a test of
a difficult tautology may contribute a lot to the cost
of the run, while not decreasing the “correctness” de-
gree of the run at all. We may then distinguish the
modality (a)fp expressing that there is a “correct”
run to a state where ¢ holds from ()7 express-
ing that there is a “correct feasible” run validating ¢
(all conditions understood fuzzily). Their semantic
clauses are, respectively:

‘7(a>é¢,w = (3uw')(Roww' & V,u')
= (Hw’)(éaww’ & Couww' & f/gpw’)

Viayrno ,w
The apparatus of costs of program runs thus ap-
pears to operate best on PDL with fuzzified acces-
sibility relations of programs, whose truth degrees
do not express the degrees of feasibility (or costs) of
program runs, but the degrees of their admissibility
(or “correctness”, in the sense of the satisfaction of
conditions passed through). The fuzzification of ad-
missibility can be developed independently, without
regarding costs of runs at all, thus making the same
idealization as regards costs as classical PDF, i.e.,
with equating feasibility and admissibility of runs.
Such fuzzification only generalizes the framework of
PDL to permit fuzzy conditions like “if the temper-
ature is high, do «” (which may be quite useful in
real-world applications) and a measure of “correct-
ness” of some transitions between states by programs
(capturing for instance such phenomena as rounding
numerical results etc.).

Adding moreover the apparatus for costs then
makes the (already fuzzified) model more realistic by
the possibility of distinguishing not only (the degree
of) correctness, but also (the degree of) feasibility of
(more or less correct) runs of programs. The double
nature of tests regarding the truth and cost degrees,
however, seems to exclude the possibility of adding
the apparatus of costs directly to crisp rather than
already fuzzified PDL, unless we forbid tests on fea-

sibility (e.g., of the form ((a)®"“)?), which auto-
matically fuzzify the admissibility of runs.

Various kinds of restrictions on tests (e.g., allowing
only tests of atomic formulae, non-modal formulae,
formulae not referring to feasibility, etc.) would, how-
ever, strongly affect the requirements on the models
and their properties. An elaboration of these consid-
erations is left for future work, as are the problems of
axiomatizability of such systems of fuzzy PDL and a
detailed investigation of their properties.

References

[1] W. Bandler and L. J. Kohout. Mathematical
relations, their products and generalized mor-
phisms. Technical Report EES-MMS-REL 77-3,
Man—-Machine Systems Laboratory, Department
of Electrical Engineering, University of Essex,
Essex, Colchester, 1977.

[2) W. Bandler and L. J. Kohout. Fuzzy rela-
tional products and fuzzy implication operators.
In International Workshop of Fuzzy Reasoning
Theory and Applications, London, 1978. Queen
Mary College, University of London.

[3] L. Béhounek. Fuzzification of Groenendijk—
Stokhof propositional erotetic logic. Logique et
Analyse, 47(185-188):167-188, 2004.

[4] L. Béhounek. Fuzzy logics interpreted as log-
ics of resources. In XXII Logica Volume of Ab-
stracts, Prague, 2008. Institute of Philosophy,
Academy of Sciences of the Czech Republic.
XXII International Conference Logica, held on
June 16-19, 2008 in Hejnice, Czech Republic.

[5] L. Béhounek, U. Bodenhofer, and P. Cintula.
Relations in Fuzzy Class Theory: Initial steps.
Fuzzy Sets and Systems, 159(14):1729-1772,
2008.

[6] L. Behounek and P. Cintula. Fuzzy class theory.
Fuzzy Sets and Systems, 154(1):34-55, 2005.

[7] L. Béhounek and P. Cintula. Fuzzy class theory
as foundations for fuzzy mathematics. In Fuzzy

[10]

[12]

[13]

Logic, Soft Computing and Computational Intel-
ligence: 11th IFSA World Congress, volume 2,
pages 1233-1238, Beijing, 2005. Tsinghua Uni-
versity Press/Springer.

L. Béhounek and P. Cintula. From fuzzy logic
to fuzzy mathematics: A methodological mani-
festo. Fuzzy Sets and Systems, 157(5):642-646,
2006.

L. Béhounek and P. Cintula. Fuzzy Class The-
ory: A primer v1.0. Technical Report V-939,
Institute of Computer Science, Academy of Sci-
ences of the Czech Republic, Prague, 2006.
Available at www.cs.cas.cz.

L. Béhounek and M. Dankova. Relational
compositions in Fuzzy Class Theory. To ap-
pear in Fuzzy Sets and Systems, 2008 (doi:
10.1016/j.£ss.2008.06.013).

F. Esteva and L. Godo. Monoidal t-norm based
logic: Towards a logic for left-continuous t-
norms. Fuzzy Sets and Systems, 124(3):271-288,
2001.

P. Héjek. Metamathematics of Fuzzy Logic, vol-
ume 4 of Trends in Logic. Kluwer, Dordercht,
1998.

D. Harel. Dynamic logic. In D. M. Gabbay
and F. Guenthner, editors, Handbook of Philo-
sophical Logic, volume II: Extensions of Classi-
cal Logic, pages 497-604. D. Reidel, Dordrecht,
1st edition, 1984.

D. Harel, D. Kozen, and J. Tiurin. Dynamic
Logic. MIT Press, Cambridge MA, 2000.

N. N. Morsi, W. Lotfallah, and M. El-Zekey. The
logic of tied implications, part 2: Syntax. Fuzzy
Sets and Systems, 157:2030-2057, 2006.

L. A. Zadeh. Similarity relations and fuzzy or-
derings. Information Sciences, 3:177-200, 1971.

10

