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Abstract

We present a method for mass proofs of theorems of certain forms in a formal theory of fuzzy
relations and classes. The method is based on formal identification of fuzzy classes and inner
truth values with certain fuzzy relations, which allows transferring basic properties of sup-T
and inf-R compositions to a family of more than 30 composition-related operations, including
sup-T and inf-R images, pre-images, Cartesian products, domains, ranges, resizes, inclusion,
height, plinth, etc. Besides yielding a large number of theorems on fuzzy relations as simple
corollaries of a few basic principles, the method provides a systematization of the family of
relational notions and generates a simple equational calculus for proving elementary identities
between them, thus trivializing a large part of the theory of fuzzy relations.
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1 Introduction

The theory of fuzzy relations is a prerequisite to any other discipline of fuzzy mathematics. In
this paper we show a method for mass proofs of theorems of certain forms in a formal theory of
fuzzy relations. The method is based on transferring the properties of sup-T and inf-R relational
compositions [42, 2] to a family of related notions in the theory of fuzzy sets and relations. We work
in the formal framework of higher-order fuzzy logic, also known as Fuzzy Class Theory (FCT),
introduced in [12]; we follow the methodology of [15].

Some part of the method we employ has already been briefly and informally sketched in
Bělohlávek’s book [18, Remark 6.16]. Our formal setting allows us to extend it to a larger fam-
ily of notions and exploit the analogies between composition-related notions systematically, thus
obtaining a large number of theorems on fuzzy relations for free. Furthermore, the syntactical
apparatus of FCT makes it possible to show the soundness of this method by means of formal
interpretations [9].

In consequence of methodological assumptions of deductive fuzzy logic explained in [10], our
framework is constrained by certain requirements. First, our fuzzy sets can only take membership
degrees in MTL4-algebras [23] (possibly expanded by additional operators). In particular, if the
system of membership degrees is the real unit interval [0, 1], then our conjunction is bound to be a
left-continuous t-norm ∗ and implication its residuum ⇒. Thus we do not deal with more general
conjunctive or implicational operators, such as mean conjunctions, Kleene–Dienes or early Zadeh
implication, etc., which have also been considered for relational products [2]. Secondly, we always
assume that we work over a fixed crisp ground set V . That is, our atomic objects (urelements)
x are always elements of V (so for all x means actually for all x ∈ V ); our fuzzy sets are always
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elements of the system F(V ) of all fuzzy subsets of V (so their membership functions are defined
for all x ∈ V ); our n-ary fuzzy relations are elements of F(V n); our second-order fuzzy sets are
elements of F(F(V )), or F(⋃∞

n=1 F(V n)
)

if fuzzy sets of fuzzy relations are considered; etc.
For simplicity, our exposition only deals with homogeneous binary fuzzy relations. Neverthe-

less, the results can easily be extended to heterogeneous binary fuzzy relations (see Remarks 4.10
and 5.6); a further extension to fuzzy relations of larger arities is hinted at in Remark 5.23.

The paper presents an application of formal methods of FCT to fuzzy relational notions; hence
it is inevitably loaded with heavy formalism. Its details may therefore be hard to follow for
readers unfamiliar with the apparatus of FCT or formal fuzzy logic. Nevertheless, some of the
results and the general picture of interrelations between the composition-based notions might still
be of interest to readers who are not interested in formalistic details. Therefore we shall first give
an informal account of the methods presented in the paper and indicate which parts of the paper
could be relevant for a broader audience.

The basic idea of the paper is to systematically exploit the similarity of the definitions of several
fuzzy relational concepts. For instance, the definition of sup-T-composition of fuzzy relations,
which in the traditional style of fuzzy mathematics reads

(R ◦ S)xy =
∨
z

Rxz ∗ Szy, (1)

is very similar to the definitions of the preimage and image of a fuzzy set under a fuzzy relation,
which read, respectively,

(R ←A)x =
∨
z

Rxz ∗Az (2)

(S →A)y =
∨
z

Az ∗ Szy (3)

(where ∗ is a left-continuous t-norm). As observed in [18, Remark 6.16], the similarity extends
to the point that many properties of sup-T-composition transfer to the properties of images and
preimages. By formalization of the definitions in a suitable formal framework (viz, that of FCT),
we are able to delimit a class of relational notions (listed in Tables 1–5 below) and a class of their
properties that transfer automatically, without the need of separate proofs.

Obviously the reason why many properties of sup-T-compositions transfer to images and preim-
ages is the same form of the definitions (1)–(3), the only difference being the absence of one of the
variables occurring in (1) from the formulae (2) and (3). The definitions (2) and (3) can actually
be reduced to instances of (1), by substituting a dummy object 0 for the variable to be eliminated
from (1). By this trick, the fuzzy set A in the definition of preimage becomes identified with a
suitable fuzzy relation S, namely such S that Sz0 = Az and Szy = 0 for y 6= 0, where 0 is an
arbitrarily chosen (but fixed) element.

It turns out to be useful to employ this representation of a fuzzy set by a suitable fuzzy relation
systematically, as it will enable us to reduce several more notions to relational compositions. Thus
in general we identify a fuzzy set A with the fuzzy relation RA such that

RAxy =

{
Ax if y = 0
0 otherwise

(in the following sections, the relation RA is denoted simply by A or even just A). The operation
of preimage then satisfies RR←A = R ◦ RA, i.e., is represented as a special case of R ◦ S (for
S = RA). Simplifying the notation, we may write simply R←A = R ◦A. Similarly, the operation
of image satisfies RR→A = RT ◦RA (or simply R →A = RT ◦ A), where RT is the transposition
of R, i.e., RTxy = Ryx (the transposition is needed for substituting 0 for the first rather than
second variable in the definition of R ◦ S, to match with the definition of R →A).

With the identification of A and RA, we can extend the compositional representation to further
notions, for instance the Cartesian product of two fuzzy sets,

(A×B)xy = Ax ∗By.
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This is done by substituting the dummy object 0 for the variable z in the definition (1) of R ◦ S
(notice that

∨
z becomes void if z is fixed to the single element 0), which yields A×B = RA ◦RT

B ,
or simply A × B = A ◦ BT. The properties of sup-T-compositions (e.g., associativity) thus
automatically transfer to Cartesian products as well.

Besides fuzzy sets, single membership degrees can also be represented by suitable fuzzy rela-
tions: namely, if both arguments in Rxy are replaced by 0, then the expression R00 denotes the
particular membership degree of the single pair 00 in R. Conversely, a membership degree α can
be represented by a fuzzy relation Rα defined as

Rαxy =

{
α for x = y = 0
0 otherwise.

(Again, in the following sections we simply write α or just α instead of Rα.) This representa-
tion of membership degrees by fuzzy relations yields further composition-based relational notions,
obtained by replacing more than one variable by the dummy object 0 in (1).

For instance, replacing all three variables x, y, z in (1) by 0 will yield the conjunction ∗ of truth
degrees, as clearly Rα∗β = Rα◦Rβ (notice that

∨
z is again void as z is fixed to the single value 0).

Similarly, by setting x = z = 0 (or y = z = 0) we obtain the operation of α-resize αA, defined as
(αA)x = α ∗Ax for all x, satisfying, as again the supremum over z = 0 is void, RαA = Rα ◦RA,
or simply αA = α ◦ A. Finally, by setting x = y = 0 in (1) we obtain the graded relation of
compatibility (or the height of intersection) of two fuzzy sets,

(A ‖ B) =
∨
z

(Az ∗Bz),

with RA‖B = RT
A ◦RB .

Further useful notions can be obtained, e.g., by substituting the maximal fuzzy set, i.e., the
fuzzy set V such that V x = 1 for all x, for some of the arguments in the above definitions. Thus,
e.g., the graded property of height of a fuzzy set,

Hgt A =
∨
z

Az,

arises as V ‖ A, i.e., RHgt A = RT
V ◦ RA, or Hgt A = V T ◦ A. Similarly the domain and range

of a fuzzy relation R are defined as R ← V and R → V , respectively, i.e., DomR = R ◦ V and
Rng R = RT ◦ V .

Such properties of sup-T-composition that are preserved under restricting its arguments to
relations of the form RA or Rα then automatically transfer to all members of the above family of
notions. Among such properties are, e.g., the associativity of ◦, its monotony with respect to fuzzy
inclusion, its invariance or monotony under unions and intersections, etc. Representing the family
of notions as special cases of composition thus yields a mass proof method for their properties, as
it is only necessary to prove such properties for the single notion of sup-T-composition ◦; their
validity for the whole family of derived notions then follows automatically.

Furthermore, the associativity and transposition properties of sup-T-composition

(R ◦ S) ◦ T = R ◦ (S ◦ T ) (4)

(R ◦ S)T = ST ◦RT (5)

allow us to derive interrelations between the composition-based notions by simple equational
calculations. For instance, R → (S → A) = (S ◦ R) → A is proved by the following identities,
which just apply (4) and (5) to the derived notions:

R → (S →A) = RT ◦ (ST ◦A) = (RT ◦ ST) ◦A = (S ◦R)T ◦A = (S ◦R)→A.

The application of the simple rules (4), (5) to nested composition-based notions thus yields an
infinite number of easily derivable corollaries.
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The method just described for sup-T-compositions can also be applied to other kinds of fuzzy
relational products—for instance, the BK-products, i.e., the inf-R-composition / and the related
products . and ¤, introduced by Bandler and Kohout in [2] and defined as

(R / S)xy =
∧
z

(Rxz ⇒ Szy) (6)

(R . S)xy =
∧
z

(Szy ⇒ Rxz) (7)

(R ¤ S)xy =
∧
z

((Rxz ⇒ Szy) ∧ (Szy ⇒ Rxz)) (8)

(where ⇒ is the residuum of the left-continuous t-norm ∗). The elimination of some variables
from (6)–(8), formally achieved by the same trick of substituting the dummy object 0, produces
a family of notions analogous to those based on sup-T-composition. The family includes further
well-known operations, such as:

• The graded inclusion of fuzzy sets (A ⊆ B) =
∧

z(Az ⇒ Bz), which can be represented as
the BK-product RT

A / RB , or simply AT / B, and thus is the BK-analogue of compatibility
(A ‖ B) = AT ◦B

• The operation of plinth, PltA =
∧

z Az = V T / A, which is the BK-analogue of height
Hgt A = V T ◦A

• The implication ⇒ itself, as Rα⇒β = Rα / Rβ : thus by our conventions, α ⇒ β can also be
written as α / β; it is the BK-analogue of the conjunction ∗.

The BK-analogues of the operations of image, preimage, Cartesian product, and α-resize are
also important and appear frequently in fuzzy mathematics (see Examples 5.9–5.14 below). The
present approach systematizes these notions and suggests their systematic names (e.g., /-image,
.-preimage, etc.).

Again, the well-known properties of BK-products, such as their monotony with respect to
inclusion, their invariance or monotony under unions and intersections, etc., are transferred to the
whole family of BK-based notions. Furthermore, (4) and (5) jointly with the identities valid for
BK-products

(R / S)T = ST . RT

R / (S / T ) = (R ◦ S) / T

R / (S . T ) = (R / S) . T

enable us to derive interrelations between all sup-T and BK-based notions by easy equational
calculations. The resulting simple equational calculus contains more than thirty notions from
both sup-T and BK families and covers a large part of the theory of fuzzy sets and fuzzy relations.
The calculus thus may serve as a basis for an automated generation of a broad class of valid
theorems on fuzzy sets and fuzzy relations.

The present paper carries out the above ideas in a rigorous manner within the formal framework
of Fuzzy Class Theory:

Section 2 briefly introduces the apparatus of FCT over the logic MTL4 and gives definitions
of the standard notions employed in the paper. It also contains several lemmata needed later for
proofs of some theorems; readers who are not interested in formal proofs can safely skip them.

Section 3 gives a formal account of the representation of fuzzy sets A and membership degrees α
by the fuzzy relations RA and Rα (denoted there just A and α for the sake of simplicity) and
illustrates it on the matrix representation of fuzzy relations, under which fuzzy sets correspond to
(file) vectors and membership degrees to scalars. For the representation of truth degrees, however,
it is necessary first to internalize semantic truth values within the theory: recall that FCT has
no variables for truth degrees, so a model that represents them by some FCT-defined fuzzy sets
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has to be constructed first. The construction of inner truth values is important for many parts
of fuzzy mathematics formalized in FCT (cf. Remark 3.5). Nevertheless, the readers who are not
interested in metamathematical issues can safely skip the part on the internalization and simply
assume that we have the lattice L of truth values α at our disposal within the theory.

The formal definition of the family of notions based on sup-T-compositions is given in Section 4,
where the reduction to compositions is also illustrated by showing how they work under the matrix
and graph representations of fuzzy relations. The notions based on BK-products are then treated
in Section 5; their importance for fuzzy mathematics is exemplified by Examples 5.9–5.14. The
basic properties of sup-T-compositions are given in Theorem 4.2 and Corollary 4.3, and those of
BK-compositions in Theorem 5.3 and Corollary 5.4. Their automatic consequents for the derived
notions are listed in Corollaries 4.7–4.14 and 5.15–5.19. Independently of the formalism employed
in their derivation, these corollaries may be of interest for a broader fuzzy community as a reference
table listing a number of properties of fuzzy relational notions.

2 Preliminaries

Fuzzy Class Theory FCT, introduced in [12], is an axiomatization of Zadeh’s notion of fuzzy set in
formal fuzzy logic. Here we use its variant defined over MTL4 [23], the logic of all left-continuous
t-norms enriched with the connective 4, since it is arguably [10] the weakest fuzzy logic with good
inferential properties for fully graded fuzzy mathematics and its expressive power is sufficient for
our needs. The results of the present paper are readily transferable to any well-behaved extension
of MTL4(formally, to any deductive fuzzy logic in the sense of [10]), e.g., ÃLukasiewicz, product,
or Gödel logic, Hájek’s basic logic BL, etc. [30, 23].

We assume the reader’s familiarity with first-order MTL4; for details on this logic see [23, 32].
We only recapitulate its standard [0, 1] semantics here:

& . . . any left-continuous t-norm ∗
→ . . . the residuum ⇒ of ∗, defined as x ⇒ y =df sup{z | z ∗ x ≤ y}
∧, ∨ . . . min, max
¬ . . . ¬x =df x ⇒ 0
↔ . . . bi-residuum: min(x ⇒ y, y ⇒ x)
4 . . . 4x =df 1− sgn(1− x)
∀, ∃ . . . inf, sup

For reference, the following definition lists the axioms of multi-sorted first-order MTL4 with crisp
identity.

Definition 2.1 The language of multi-sorted first-order logic MTL4 with identity consists of the
binary connectives →, &, and ∧, unary connective 4, propositional constant 0, quantifiers ∀ and
∃, binary predicate =, an arbitrary fixed set of predicate and function symbols of arbitrary arities,
a pre-ordered set of sorts of variables, and countably many variables of each sort. There are the
following defined connectives:

ϕ ∨ ψ ≡df ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ)
¬ϕ ≡df ϕ → 0

ϕ ↔ ψ ≡df (ϕ → ψ) ∧ (ψ → ϕ)
1 ≡df ¬0

The deduction rules of first-order MTL4 are the modus ponens (from ϕ and ϕ → ψ infer ψ),
4-necessitation (from ϕ infer 4ϕ), and generalization (from ϕ infer (∀x)ϕ), for all well-formed
formulae ϕ and ψ of the given language.

The axioms of first-order MTL4 with crisp identity are the following, for all well-formed
formulae ϕ,ψ, χ of the given language:
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(MTL1) (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))
(MTL2) (ϕ & ψ) → ϕ
(MTL3) (ϕ & ψ) → (ψ & ϕ)
(MTL4a) (ϕ & (ϕ → ψ)) → (ϕ ∧ ψ)
(MTL4b) (ϕ ∧ ψ) → ϕ
(MTL4c) (ϕ ∧ ψ) → (ψ ∧ ϕ)
(MTL5a) (ϕ → (ψ → χ)) → ((ϕ & ψ) → χ)
(MTL5b) ((ϕ & ψ) → χ) → (ϕ → (ψ → χ))
(MTL6) ((ϕ → ψ) → χ) → (((ψ → ϕ) → χ) → χ)
(MTL7) 0 → ϕ

(41) 4ϕ ∨ ¬4ϕ
(42) 4(ϕ ∨ ψ) → (4ϕ ∨4ψ)
(43) 4ϕ → ϕ
(44) 4ϕ →44ϕ
(45) 4(ϕ → ψ) → (4ϕ →4ψ)

(∀1) (∀x)ϕ(x) → ϕ(t) if t is substitutable for x in ϕ(x)
(∃1) ϕ(t) → (∃x)ϕ(x) if t is substitutable for x in ϕ(x)
(∀2) (∀x)(χ → ϕ(x)) → (χ → (∀x)ϕ(x)) if x is not free in χ
(∃2) (∀x)(ϕ(x) → χ) → ((∃x)ϕ(x) → χ) if x is not free in χ
(∀3) (∀x)(χ ∨ ϕ(x)) → (χ ∨ (∀x)ϕ(x)) if x is not free in χ

(=1) x = x
(=2) x = y → (ϕ(x) ↔ ϕ(y)) if y is substitutable for x in ϕ(x)

In (∀1)–(=2), x and y can be of any sort of variables in the given language. (Recall that in multi-
sorted logics, the definition of substitutability requires the compatibility of sorts besides the usual
conditions.)

By appropriate restrictions of language we get the propositional logics MTL4 or MTL (with-
out 4) and the first-order logics MTL4 or MTL, with or without crisp identity.

Convention 2.2 In order to save some parentheses, we apply usual rules of precedence to propo-
sitional connectives of MTL4, namely, → and ↔ have lower priority than other binary con-
nectives, and unary connectives have the highest priority. We use the sign ≡ for equivalence-
by-definition. A chain of implications ϕ1 → ϕ2, ϕ2 → ϕ3, . . . , ϕn−1 → ϕn can be written as
ϕ1 −→ ϕ2 −→ · · · −→ ϕn (and similarly for the equivalence connective).

Besides the axioms, we shall use the theorems of first-order MTL4 listed in [23, 16] with-
out mention, as they are standard instruments for proving in MTL4 (for more details on proof
techniques in MTL4, see [13, 16]). Furthermore we shall need the following lemmata:

Lemma 2.3 MTL4 proves:

1. 4¬ϕ ↔4(ϕ ↔ 0)

2. 4¬ϕ &4¬ψ →4(ϕ ↔ ψ)

3. ϕ & (χ → ψ) → (χ → ϕ & ψ)

4. ϕ & (ψ → χ) → ((ϕ → ψ) → χ)

5. (∃y)(∀x)ϕ → (∀x)(∃y)ϕ

6. χ & (∀x)ϕ → (∀x)(χ & ϕ)), if x is not free in χ.

Proof: 1. By (MTL7) and 4-necessitation, 4(0 → ϕ) is a theorem; thus 4¬ϕ ←→ (4(ϕ → 0)∧
4(0 → ϕ)) ←→4(ϕ ↔ 0).
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2. By 1., 4¬ϕ → 4(ϕ ↔ 0) and 4¬ψ → 4(0 ↔ ψ), whence the statement follows by the
(4-necessitated) transitivity of ↔.

3. follows from the MTL-theorems ζ ←→ (1 → ζ) ←→ (1 & ζ) and (ϑ → ϕ) & (ψ → χ) →
(ϑ & ψ → ϕ & χ) with 1 for ϑ.

4. is proved by the following chain of equivalences:
[(ϕ → ψ) & (ψ → χ) → (ϕ → χ)] ←→ [ϕ → ((ϕ → ψ) & (ψ → χ) → χ)] ←→
[ϕ → ((ψ → χ) → ((ϕ → ψ) → χ))] ←→ [(ϕ & (ψ → χ)) → ((ϕ → ψ) → χ)].

5. From the instance (∀x)ϕ → ϕ of (∀1) we get (∀y)((∀x)ϕ → ϕ) by generalization, whence
(∃y)(∀x)ϕ → (∃y)ϕ follows by quantifier distribution. Generalization over x and a quantifier shift
completes the proof.

6. is proved by the following chain of equivalences and implications:
(∀x)(χ & ϕ → χ & ϕ) ←→ (∀x)(χ → (ϕ → χ & ϕ)) ←→ [χ → (∀x)(ϕ → χ & ϕ)] −→
[χ → ((∀x)ϕ → (∀x)(χ & ϕ))] ←→ [χ & (∀x)ϕ → (∀x)(χ & ϕ)]
by (MTL5a,b), (∀2), and quantifier distribution. QED

Lemma 2.4 The following shifts of relativized quantifiers (cf. Convention 2.6 below) are provable
in first-order MTL (with or without 4), if x is not free in χ and y is not free in ϑ:

1. (∃y)(χ & (∀x)(ϑ → ϕ)) → (∀x)(ϑ → (∃y)(χ & ϕ))

2. (∀x)(ϕ → (χ → ψ)) ↔ (χ → (∀x)(ϕ → ψ))

3. (∀x)(ϕ → (ψ → χ)) ↔ ((∃x)(ϕ & ψ) → χ)

4. (∃x)(ϕ & (χ → ψ)) → (χ → (∃x)(ϕ & ψ))

5. (∃x)(ϕ & (ψ → χ)) → ((∀x)(ϕ → ψ) → χ)

Proof: 1. is proved by the following chain of implications based respectively on Lemma 2.3(6,5,3),
and the shift of ∃ over implication:
(∃y)(χ & (∀x)(ϑ → ϕ)) −→ (∃y)(∀x)(χ & (ϑ → ϕ)) −→ (∀x)(∃y)(χ & (ϑ → ϕ)) −→
(∀x)(∃y)(ϑ → χ & ϕ) −→ (∀x)(ϑ → (∃y)(χ & ϕ)).

2. follows from the following chain of equivalences:

(∀x)(ϕ → (χ → ψ)) ←→ (∀x)(χ → (ϕ → ψ)) ←→ (χ → (∀x)(ϕ → ψ))

3.–5. follow in a similar way from (MTL5a,b), Lemma 2.3(3) and Lemma 2.3(4), respectively,
by usual quantifier shifts. QED

We now proceed to the definition of the apparatus of Fuzzy Class Theory (i.e., Henkin-style
higher-order fuzzy logic) over MTL4.

Definition 2.5 Fuzzy Class Theory FCT is a formal theory over a multi-sorted first-order deduc-
tive fuzzy logic (in this paper, MTL4), with the sorts of variables for

• Atomic objects (‘urelements’), denoted by lowercase letters x, y, . . .

• Fuzzy classes of atomic objects (uppercase letters A,B, . . . )

• Fuzzy classes of fuzzy classes of atomic objects (calligraphic letters A,B, . . . )

• Etc., in general for fuzzy classes of the n-th order (X(n), Y (n), . . . )

Besides the crisp identity predicate =, the language of FCT contains:

• The membership predicate ∈ between objects of successive sorts

• Class terms {x | ϕ} of order n + 1, for any formula ϕ and any variable x of any order n

• Symbols 〈x1, . . . , xk〉 for k-tuples of individuals x1, . . . , xk of any order
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FCT has the following axioms (for all formulae ϕ and variables of any order):

• The logical axioms of multi-sorted first-order logic MTL4 with crisp identity

• The tuple-identity axioms (for all k): 〈x1, . . . , xk〉 = 〈y1, . . . , yk〉 → x1 = y1 & . . . & xk = yk

• The comprehension axioms: y ∈ {x | ϕ(x)} ↔ ϕ(y)

• The extensionality axioms: (∀x)4(x ∈ A ↔ x ∈ B) → A = B

The models of FCT are systems (closed under definable operations) of fuzzy sets of all orders
over a fixed crisp universe of discourse, with truth degrees taking values in an MTL4-chain L
(e.g., the interval [0, 1] equipped with a left-continuous t-norm). Thus all theorems on fuzzy
classes provable in FCT are true statements about L-valued fuzzy sets, for any MTL4-chain L.

For details on the apparatus of FCT we refer the reader to [12, 14] or a freely available
primer [16]. Peculiar properties of fuzzy mathematics axiomatized over formal fuzzy logic are
described in [17]. The following features of FCT are worth mentioning here:

• In FCT, fuzzy sets are rendered as a primitive notion, rather than modeled by membership
functions. In order to capture this distinction, the objects of FCT are called fuzzy classes
rather than fuzzy sets; the name fuzzy set is reserved for membership functions in the models
of the theory.1 Nevertheless, since FCT is sound w.r.t. models formed of all fuzzy subsets,
the reader can always safely substitute fuzzy sets for our classes.

• Not only the membership predicate ∈, but all defined notions of FCT are in general fuzzy
(unless they are defined as provably crisp). FCT thus presents a fully graded approach to
fuzzy mathematics. The importance of full gradedness in fuzzy mathematics is explained
in [16, 11, 8]: its main merit is in that it allows inferring relevant information even when a
property of fuzzy sets is not fully satisfied.

• Since FCT is a formal theory over the fuzzy logic MTL4, its theorems have to be derived by
the rules of MTL4 rather than classical Boolean logic which is used in usual mathematical
theories. For details on proving theorems in FCT see [16] or [13].

• Since the language and axioms of FCT have the same form for all orders of fuzzy classes, it
is sufficient to formulate conventions, definitions, and theorems only for the lowest order, as
they can be propagated to all higher orders automatically.

Convention 2.6 In formulae of FCT, we employ usual abbreviations known from classical and
fuzzy mathematics, including the following ones:

Ax ≡df x ∈ A
x1 . . . xk =df 〈x1, . . . , xk〉

x /∈ A ≡df ¬(x ∈ A), and similarly for 6=
(∀x ∈ A)ϕ ≡df (∀x)(x ∈ A → ϕ)
(∃x ∈ A)ϕ ≡df (∃x)(x ∈ A & ϕ)
{x ∈ A | ϕ} =df {x | x ∈ A & ϕ}

(∀τ)ϕ ≡df (∀z)(z = τ → ϕ), for any term τ of the same sort as z, and z not free in ϕ
(∃τ)ϕ ≡df (∃z)(z = τ & ϕ), for any term τ of the same sort as z, and z not free in ϕ
{τ | ϕ} =df {z | z = τ & ϕ}, for any term τ of the same sort as z, and z not free in ϕ

{x1, . . . , xn} =df {z | z = x1 ∨ . . . ∨ z = xn}
t1 = · · · = tn ≡df (t1 = t2) & . . . & (tn−1 = tn)

ϕn ≡df ϕ & . . . & ϕ (n times)
y = F (x) ≡df Fxy, if 4(∀xyy′)(Fxy & Fxy′ → y = y′) is proved or assumed⋃

ϕ τ =df

⋃{τ | ϕ} for any term τ , and similarly for
⋂

(see Definition 2.12 for
⋃

,
⋂

)

1The difference between fuzzy sets and classes is not just terminological: due to the first-order axiomatization,
some fuzzy subsets may be missing from a model of FCT. An extreme example is provided by models consisting
only of crisp subsets: it can be observed that they satisfy all axioms of FCT over MTL4. Such non-intended
models can be excluded by additional axioms ensuring the existence of non-crisp classes.
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Convention 2.7 Let ϕ be a propositional formula and let all propositional variables that occur
in ϕ be among p1, . . . , pk. The result of substitution of first-order formulae ψ1, . . . , ψk respectively
for the variables p1, . . . , pk in ϕ(p1, . . . , pk) will be symbolized by ϕ(ψ1, . . . , ψk).

Definition 2.8 In FCT, we define the following class constants and operations:

∅ =df {x | 0} empty class
V =df {x | 1} universal class

KerA =df {x | 4Ax} kernel
−A =df {x | ¬Ax} complement

A−B =df {x | Ax & ¬Bx} difference
A ∩B =df {x | Ax & Bx} (strong) intersection

A ∩∧ B =df {x | Ax ∧Bx} min-intersection
A ∪∨ B =df {x | Ax ∨Bx} max-union

Generally for any propositional formula ϕ(p1, . . . , pk) of MTL4 we define the corresponding class
operation

Opϕ(A1, . . . , Ak) =df {x | ϕ(A1x, . . . , Akx)}
Example 2.9 A ∩B = Opp&q(A,B), −A = Op¬p(A), Ker A = Op4p(A), ∅ = Op0, etc.

Definition 2.10 In FCT, we define the following elementary relations between fuzzy classes:

A ⊆ B ≡df (∀x)(Ax → Bx) inclusion
A ≈ B ≡df (∀x)(Ax ↔ Bx) weak bi-inclusion

A ⊆4 B ≡df (∀x)4(Ax → Bx) crisp inclusion
A ‖ B ≡df (∃x)(Ax & Bx) compatibility

Hgt(A) ≡df (∃x)Ax height
Crisp(A) ≡df (∀x)4(Ax ∨ ¬Ax) crispness

Generally for any propositional formula ϕ(p1, . . . , pk) of MTL4 we define two induced elementary
relations between fuzzy classes

Rel∀ϕ(A1, . . . , Ak) ≡df (∀x)ϕ(A1x, . . . , Akx)

Rel∃ϕ(A1, . . . , Ak) ≡df (∃x)ϕ(A1x, . . . , Akx)

Example 2.11 (A ⊆ B) ≡ Rel∀p→q(A,B) and Hgt(A) ≡ Rel∃p(A) by definition, and (A = B) ↔
Rel∀4(p↔q)(A,B) by the axiom of extensionality.

Metatheorems of [12, §3.4] reduce proofs of a broad class of theorems on elementary operations
and relations between fuzzy classes to simple propositional calculations. In the present paper we
shall freely use corollaries of these metatheorems (like A∩B ⊆ A, Ker A ⊆ A, etc.), as their direct
proofs in FCT are easy anyway.

Definition 2.12 In FCT, we define the following higher-order fuzzy class operations:
⋃A =df {x | (∃A ∈ A)(x ∈ A)} class union⋂A =df {x | (∀A ∈ A)(x ∈ A)} class intersection

Pow A =df {X | X ⊆ A} power class

Definition 2.13 In FCT, we define the following relational operations:

A×B =df {xy | Ax & By} Cartesian product
Dom(R) =df {x | Rxy} domain
Rng(R) =df {y | Rxy} range

R →A =df {y | (∃x)(Ax & Rxy)} image
R ←B =df {x | (∃y)(By & Rxy)} pre-image

RT =df {xy | Ryx} transposition
Id =df {xy | x = y} identity relation

An =df {x1 . . . xn | Ax1 & . . . & Axn} Cartesian power

9



In particular, Vn is the class of all n-tuples of atomic objects. Subclasses of Vn are called n-
ary fuzzy relations; the condition that a class R is an n-ary relation is expressed by the formula
R ⊆4 Vn. Instead of “unary relations” we usually speak simply of fuzzy classes, unless we want
to stress the distinction from the general meaning of the term “class”, which includes relations of
arities larger than one.2

Since all classes in FCT are in principle fuzzy, we often omit the word “fuzzy” and speak
simply of classes and relations, meaning “fuzzy (including possibly crisp) classes or relations”.
Since crisp classes are just a special kind of fuzzy classes, we do not distinguish operations on
crisp relations from their counterparts operating on fuzzy relations (unlike certain traditions in
the theory of fuzzy relations), and use the same symbols for both kinds of arguments; if necessary,
the crispness of arguments can explicitly be expressed in the formula by means of the predicate
Crisp introduced in Definition 2.10.

The operation of transposition (see Definition 2.13) applied to R yields its converse relation RT.
The following simple properties of transposition will be needed in subsequent sections:

Proposition 2.14 FCT proves:

1. RTT = R

2. R ⊆4 Id → RT = R

3. For any propositional formula ϕ(p1, . . . , pn),

Rel∀ϕ(RT
1 , . . . , RT

n ) ↔ Rel∀ϕ(R1, . . . , Rn)

Rel∃ϕ(RT
1 , . . . , RT

n ) ↔ Rel∃ϕ(R1, . . . , Rn)

In particular, R ⊆ S ↔ RT ⊆ ST and R = S ↔ RT = ST.

4. (Opϕ(R1, . . . , Rn))T = Opϕ(RT
1 , . . . , RT

n ) for any propositional formula ϕ(p1, . . . , pn).

In particular, (R ∩ S)T = RT ∩ ST, (−R)T = −(RT), ∅T = ∅, etc.

5.
⋃

R∈A
RT =

( ⋃

R∈A
R

)T

,
⋂

R∈A
RT =

( ⋂

R∈A
R

)T

Proof: 1. By definition, xy ∈ RTT ←→ yx ∈ RT ←→ xy ∈ R; therefore, by the axiom of
extensionality, RTT = R.

2. For arbitrary x, y we take the following crisp cases:3 if x = y, then Rxy ↔ Ryx by the axiom
of identity (=2); if x 6= y, then 4¬Rxy &4¬Ryx by the assumption R ⊆4 Id, hence Rxy ↔ Ryx
by Lemma 2.3(2). In both cases we have Rxy ↔ RTxy, so by 4-necessitation, generalization, and
the axiom of extensionality we get R = RT.

3. By renaming bound variables we get (∀xy)ϕ(R1yx, . . . , Rnyx) ↔ (∀yx)ϕ(R1xy, . . . , Rnxy),
and similarly for Rel∃ϕ.

4. By expanding the definitions we get xy ∈ (Opϕ(R1, . . . , Rn))T ←→ ϕ(R1yx, . . . , Rnyx) ←→
ϕ(RT

1 xy, . . . , RT
nxy) ←→ xy ∈ Opϕ(RT

1 , . . . , RT
n ).

5. xy ∈ ⋃
R∈ART ←→ (∃R ∈ A)(yx ∈ R) ←→ yx ∈ ⋃

R∈AR ←→ xy ∈ (⋃
R∈AR

)T, and
analogously for

⋂
. QED

2Formally, we should explicitly mark the arities of variables in all formulae. We omit the arity marks for better
readability, since usually the arities are either immaterial or determined by the context. If needed, the arity of a
variable can be expressed by the formula x ∈ Vn if x is a variable just for n-tuples of objects, or x ∈ V if x is a
variable for objects of any arity. The lowercase variables in Definitions 2.8–2.13 are universal (i.e., represent any
tuples of objects), the defined notions can therefore be applied to fuzzy relations as well as classes.

3Recall that the soundness of proofs by cases follows from the provability of (ϕ → χ)∧ (ψ → χ) → (ϕ∨ψ → χ)
in MTL.
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3 Representation of fuzzy classes and truth values by fuzzy
relations

Fuzzy classes and truth values can be represented as fuzzy relations of a certain form, as de-
scribed below. This representation will allow us straightforwardly to apply the properties of fuzzy
relational compositions to many derived concepts which involve fuzzy classes or truth values.

The identification of fuzzy classes and truth values with certain fuzzy relations will in this
paper be described only informally. It can, nevertheless, be carried out in a rigorous formal
way by means of syntactic interpretations of formal theories in FCT. We do not elaborate the
apparatus of interpretations here as it would make the paper too much loaded with formalism, and
simpler methods are sufficient for theorems stated in this paper. Technical details on syntactic
interpretations in FCT, including the interpretations used for the identifications made in this
paper, can be found in [9].

Convention 3.1 Let 0 be an arbitrarily chosen, but fixed, atomic object (i.e., an element of V1).
The fuzzy class {0} (i.e., the crisp singleton of the urelement 0) will be denoted by 1.

Convention 3.2 A fuzzy class A ⊆4 V1 will be identified with the fuzzy relation A×1 = {〈x, 0〉 |
x ∈ A}. When representing the fuzzy class A, the fuzzy relation A× 1 will be written as A (the
same letter in boldface).

Obviously, the relation A×1 is isomorphic in a very natural sense to the original fuzzy class A:
each of the original elements x got replaced by a pair x0, but its membership degree has not
changed (Ax0 ≡ Ax); thus the structure of the fuzzy class has been preserved. Consequently, all
of its properties that do not refer to the actual names of its elements have been preserved as well
under this identification. Furthermore, the original class A can uniquely be reconstructed from
the relation A× 1 as A = {x | 〈x, 0〉 ∈ A× 1}. Also the identity of classes is preserved under the
translation, since A = B iff A× 1 = B × 1 (which follows easily from 〈x, 0〉 = 〈y, 0〉 ↔ x = y, one
of the axioms for tuples). The relations of the form A × 1 thus faithfully represent fuzzy classes
among fuzzy relations.4

This identification is quite natural and well-known. If the universe of discourse is finite, con-
sisting of elements x1, . . . , xn, fuzzy relations can be represented by (n × n)-matrices of truth
values, R = (Rxixj)ij :

R =




Rx1x1 Rx1x2 · · · Rx1xn

Rx2x1 Rx2x2 · · · Rx2xn

...
...

. . .
...

Rxnx1 Rxnx2 · · · Rxnxn




Assume that 0 denotes the element x1. The fuzzy class A is then identified with the relation

A =




A0 0 · · · 0
Ax2 0 · · · 0

...
...

. . .
...

Axn 0 · · · 0




4In the language of formal interpretations we can describe this fact rigorously by observing that A 7→ A × 1 is
a faithful interpretation of the theory of fuzzy classes FCT2,2 (i.e., a fragment of FCT containing only variables
for atomic individuals and fuzzy classes) in the theory of binary fuzzy relations FCT2,3 (i.e., a fragment of FCT
containing only variables for atomic individuals, pairs of atomic individuals, and fuzzy classes). The interpretation
provides a faithful translation between the properties of fuzzy classes and the corresponding fuzzy relations. For
details see [9].
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which by the usual convention of linear algebra can be written as the (file) vector n× 1,

A =




A0
Ax2

...
Axn




Notice that Convention 3.2 just extends this representation in a formal way to arbitrary (not only
finite) fuzzy classes.

A similar trick will allow us to represent truth values as certain relations. First observe that
truth values can be internalized in FCT as subclasses of an arbitrary crisp singleton, e.g., of 1, in
the following way:

• The truth value of a formula ϕ is represented by the class ϕ =df {0 | ϕ}. Then by definition,
ϕ ⊆4 1 and ϕ ↔ (0 ∈ ϕ).

• Vice versa, every α ⊆4 1 represents the truth value of a formula—e.g., of 0 ∈ α, since
(∀α ⊆4 1)(0 ∈ α = α) by Proposition 3.4(1) below.

The truth values are thus represented by subclasses of 1, where the truth value represented is the
degree of membership of 0 in the subclass. We shall therefore call the elements of Ker Pow 1 the
inner (or formal) truth values and denote them by lowercase Greek letters α, β, . . . The system
of formal truth values will for brevity’s sake be denoted by L:

L =df Ker Pow 1

The ordering of truth values is represented by the relation ⊆4 between their formal coun-
terparts: by Proposition 3.4(2) below, (ϕ → ψ) ↔ (ϕ ⊆ ψ) and (ϕ ↔ ψ) ↔ (ϕ ≈ ψ) for any
formulae ϕ and ψ. Furthermore, there is the following correspondence between the propositional
connectives and class operations on L:

ϕ & ψ = ϕ ∩ ψ

ϕ ∧ ψ = ϕ ∩∧ ψ

ϕ ∨ ψ = ϕ ∪∨ ψ

¬ϕ = 1 \ ϕ

0 = ∅, etc., in general:
c(ψ1, . . . , ψn) = 1 ∩Opc(p1,...,pn)(ψ1, . . . , ψn)

for any definable n-ary propositional connective c, by Proposition 3.4(3) below. Using this cor-
respondence, we can also denote the operations ∩,∩∧,∪∨, . . . on L by &,∧,∨, . . . and call them
formal connectives on inner truth values.

Since inner truth values represent the semantical concept of truth value within the theory, we
shall occasionally use the lattice-theoretical notation

∨
α∈A α and

∧
α∈A α instead of (∃α ∈ A)(0 ∈

α) and (∀α ∈ A)(0 ∈ α), respectively, for A ⊆4 L. Proposition 3.4(4) below shows that
∨

α∈A α

and
∧

α∈A α respectively correspond to the union and intersection of the class A ⊆4 L.

Remark 3.3 It should be noticed that in an L-valued model M of FCT (for an MTL4-chain L),
the lattice L of inner truth values need not coincide with the lattice L of semantic truth values,
but can be a proper sublattice of L: in general, only those elements of L are represented in L
which are the truth values of FCT-formulae in M. Thus, for instance, in any standard model of
FCT the system L of semantic truth values is the real unit interval [0, 1]; however, crisp standard
models of FCT (cf. footnote 1 on page 8) have only two inner truth values, ∅ and 1.

It can also be observed that by the axioms of comprehension,
∨

α∈A α and
∧

α∈A α exist for
any class A ⊆4 L; thus FCT proves that L is a complete lattice, even though the system L
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of semantic truth values need not in general be complete: recall that only the safeness of the
structure is required in the semantics of first-order fuzzy logic, i.e., the existence of all suprema
and infima that are the truth values of formulae (see [30] for details). The difference is again due
to the fact that the existence of suprema and infima is only ensured for such subsets A of L which
are represented in the model, rather than all subsets of L.

Nevertheless, in the intended full models of FCT, i.e., those formed by all fuzzy subsets, inner
truth values correspond exactly to the semantical ones.

Now we give proofs of the statements mentioned above:

Proposition 3.4 FCT proves:

1. (∀α ⊆4 1)(α = {0 | 0 ∈ α})
2. (ϕ → ψ) ↔ (ϕ ⊆ ψ) for any formulae ϕ and ψ

3. ϕ(ψ1, . . . , ψn) = 1 ∩Opϕ(ψ1, . . . , ψn), for any propositional formula ϕ(p1, . . . , pn)

4.
∨

α∈A
α =

⋃

α∈A
α and

∧

α∈A
α =

⋂

α∈A
α for any A ⊆4 L

Proof: 1. It is sufficient to prove x ∈ α ↔ (x = 0 & 0 ∈ α) from the assumption α ⊆ {0}; the
result then follows by 4-necessitation and generalization. Now (x = 0 & 0 ∈ α) → x ∈ α follows
directly from the identity axioms, and x ∈ α → (x = 0 & 0 ∈ α) follows (by taking crisp cases
x = 0 and x 6= 0) from the assumption (∀x ∈ α)(x = 0).

2. By definitions, ϕ ⊆ ψ ←→ {0 | ϕ} ⊆ {0 | ψ} ←→ {x | x = 0 & ϕ} ⊆ {x | x = 0 & ψ} ←→
(∀x)((x = 0 & ϕ) → (x = 0 & ψ)); thus it is sufficient to prove

(ϕ → ψ) ↔ (∀x)((x = 0 & ϕ) → (x = 0 & ψ)) (9)

Now (ϕ → ψ) → ((x = 0 & ϕ) → (x = 0 & ψ)), from which the left-to-right direction of (9)
follows by generalization; vice versa, by specifying 0 for x in (9) we get: (9) −→ ((0 = 0 & ϕ) →
(0 = 0 & ψ)) ←→ (ϕ → ψ).

3. By definitions,

1 ∩Opϕ(ψ1, . . . , ψn) = {x | (x = 0) & ϕ((x = 0 & ψ1), . . . , (x = 0 & ψn))}

Denote the latter class by A and take crisp cases on x: if x 6= 0, then Ax ↔ 0 since (x = 0) ↔ 0;
if x = 0, then Ax ↔ (x = 0) & ϕ(ψ1, . . . , ψn) since (x = 0 & ψi) ↔ ψi for all i. Thus in both
cases Ax ↔ (x = 0) & ϕ(ψ1, . . . , ψn), i.e., A = {0 | ϕ(ψ1, . . . , ψn)} = ϕ(ψ1, . . . , ψn).

4. If x = 0, then (∃α ∈ A)(x ∈ α) ↔ x = 0 & (∃α ∈ A)(x ∈ α); if x 6= 0, then (∃α ∈ A)(x ∈
α) ↔ 0, since α ∈ A & x ∈ α −→ α ∈ L & x ∈ α −→ x = 0 by A ⊆4 L and (∀α ∈ L)(α ⊆4 {0}).
In both cases we have (∃α ∈ A)(x ∈ α) ↔ x = 0 & (∃α ∈ A)(x ∈ α), thus

⋃
α∈A α = {x | (∃α ∈ A)(x ∈ α)} = {x | x = 0 & (∃α ∈ A)(x ∈ α)} =

∨
α∈A α

The proof for
∧

is analogous. QED

Remark 3.5 Inner truth values are an important construction in FCT (and generally in any
formal theory of fuzzy sets), neither limited to nor motivated by the purposes of the present
paper. The construction presented here is rather standard (cf., e.g., [41]) and shows, i.a., that
FCT is strong enough to internalize its own semantics. By means of inner truth values, usual
semantical notions like membership functions can be defined and investigated within the formal
theory. However, since this is not the aim of the present paper, we leave this topic aside and turn
back to the representation of truth values by fuzzy relations.
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Now as the truth values are represented by special fuzzy classes (viz, the subclasses of 1), they
can be identified with certain fuzzy relations by Convention 3.2. Namely, an inner truth value
α ⊆4 1 is identified with the fuzzy relation α × 1 = {〈0, 0〉 | 0 ∈ α}. By the same convention,
when representing the truth value α, the fuzzy relation α× 1 can be denoted by boldface α.

Again, if the universe of discourse is finite and consists of elements 0, x2, . . . , xn, an inner truth
value α is identified with the relation

α =




α0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 =




α0
0
...
0




which by usual conventions of linear algebra can be identified with the (1× 1)-matrix (or scalar)(
α0

)
. (Recall that α0, i.e., 0 ∈ α, has the truth value that is represented by α. In the informal

matrix expressions, we shall write just α instead of α0 further on.)
It can again be noticed that the apparatus of Fuzzy Class Theory employed here just extends

the usual correspondence between fuzzy relations, sets, and truth values on the one hand and
matrices, vectors, and scalars of truth values on the other hand, to arbitrary (not only finite)
fuzzy relations and classes, and provides a uniform way of formal handling thereof. In particular,
the reduction of fuzzy classes and truth values to fuzzy relations will allow us to extend the
apparatus of sup-T and inf-R compositions of fuzzy relations to fuzzy classes and truth values,
apply the results on compositions to a rich variety of derived notions, and get the proofs of their
properties for free.

We conclude this section with some conventions and observations that will be useful later.

Convention 3.6 Unless explicitly said otherwise, we shall always assume that R, S, or T (possibly
subscripted) denote fuzzy relations ⊆4 V2; A, B, or C (possibly subscripted) denote unary classes
⊆4 V1; and α, β, γ (possibly subscripted) denote inner truth values ⊆4 1.

Proposition 3.7 FCT proves that (∀α ⊆4 1)(α ⊆4 Id); therefore, (∀α ⊆4 1)(αT = α) by
Proposition 2.14(2).

Proof: From (x ∈ α → x = 0) → (x ∈ α & y = 0 → x = y), which follows from the axioms
of identity, we get by generalization and distribution of quantifiers (∀x)(x ∈ α → x = 0) →
(∀xy)(x ∈ α & y = 0 → x = y), i.e., α ⊆ 1 → {x0 | x ∈ α} ⊆ {xy | x = y}. Then 4-necessitation
finishes the proof. QED

4 Sup-T-composition and derived notions

The usual definition of composition of fuzzy relations R and S is as follows:

Definition 4.1 R ◦ S =df {xy | (∃z)(Rxz & Szy)}
Since & is interpreted by a (left-continuous) t-norm and ∃ by the supremum, ◦ is also called
the sup-T-composition of R and S. It generalizes Zadeh’s original definition [42] of max-min-
composition to infinite domains and arbitrary left-continuous t-norms. Notice that the defining
formula is the same as the defining formula of the relational composition in classical mathematics,
the fuzziness being introduced only by the semantics of the logical symbols ∃ and &. This makes
it the “default” definition of fuzzy relational composition according to the methodology of [15].

The following properties of sup-T-compositions are well-known (see, e.g., [21], [18], etc.). We
repeat them here for reference and give their proofs in FCT.

Theorem 4.2 FCT proves the following properties of sup-T-compositions:

1. Transposition: (R ◦ S)T = ST ◦RT
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2. Monotony: R1 ⊆ R2 → R1 ◦ S ⊆ R2 ◦ S

3. Union:
( ⋃

R∈A
R

)
◦ S =

⋃

R∈A
(R ◦ S)

4. Intersection:
( ⋂

R∈A
R

)
◦ S ⊆

⋂

R∈A
(R ◦ S)

(The converse inclusion has well-known crisp counter-examples.)

5. Associativity: (R ◦ S) ◦ T = R ◦ (S ◦ T )

Proof: 1. (R ◦ S)T = {xy | (∃z)(Ryz & Szx)} = {xy | (∃z)(STxz & RTzy)} = ST ◦RT.
2. (R1xz → R2xz) ←→ (R1xz → R2xz) & (Szy → Szy) −→ ((R1xz & Szy) → (R2xz & Szy)),

followed by generalization and distribution of quantifiers.
3. (∃z)[(∃R ∈ A)(Rxz)&Szy] ←→ (∃z)(∃R ∈ A)(Rxz &Szy) ←→ (∃R ∈ A)(∃z)(Rxz &Szy).
4. The claim is proved by the following chain of implications (see Lemma 2.4 for the shifts of

relativized quantifiers needed here):

(∃z)[(∀R ∈ A)(Rxz) & Szy] −→ (∃z)(∀R ∈ A)(Rxz & Szy) −→ (∀R ∈ A)(∃z)(Rxz & Szy) (10)

The existence of crisp counter-examples to the converse inclusion follows from the fact that even
though the first implication in (10) can be converted in classical logic, the second one cannot (the
quantifiers do not commute).

5. {xy | (∃w)((∃z)(Rxz & Szw) & Twy)} = {xy | (∃z)(Rxz & (∃w)(Szw & Twy))} QED

Corollary 4.3 By Theorem 4.2(1) and Proposition 2.14(1, 3, 5), FCT proves the mirror variants
of Theorem 4.2(2,3,4), too:

1. S1 ⊆ S2 → R ◦ S1 ⊆ R ◦ S2

2. R ◦
⋃

S∈A
S =

⋃

S∈A
(R ◦ S)

3. R ◦
⋂

S∈A
S ⊆

⋂

S∈A
(R ◦ S), with crisp counter-examples to the converse inclusion.

By means of the identification of fuzzy classes with fuzzy relations by Convention 3.2, the
statements of Theorem 4.2 and Corollary 4.3 can be transferred to further relational notions
besides sup-T-composition, by the following method.

Comparing, e.g., the (equivalent variant of the) definition of the preimage of a fuzzy class A
under a fuzzy relation R with the definition of relational composition,

R ←A =df {x | (∃z)(Rxz & Az)}
R ◦ S =df {xy | (∃z)(Rxz & Szy)}

one can recognize the same pattern of the defining expression: the only difference is that in the
definition of the preimage, the second argument as well as the result are unary rather than binary
(the variable y is missing). However, our identification of the fuzzy classes A and R←A with the
fuzzy relations A = A×1 and (R←A)×1, respectively, reduces the definition of preimage exactly
to that of composition, by supplying the dummy argument 0 for the missing variable y:

(R ←A)× 1 = {x0 | (∃z)(Rxz & Az)} = {x0 | (∃z)(Rxz & (A× 1)z0)} = R ◦ (A× 1)

Thus B = R ←A iff B = R ◦A.5

5Having adopted Convention 3.6, we could abandon the distinction between A and A altogether and simply
equate R ←A = R ◦ A, since the convention ensures that A is a unary class even if R ◦ A is written out of any
context. We keep the distinction here only for the sake of clarity.
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Consequently, the properties of compositions stated in Theorem 4.2(2–4) and Corollary 4.3
automatically translate to properties of preimages:

R1 ⊆ R2 → R1
←A ⊆ R2

←A

A1 ⊆ A2 → R ←A1 ⊆ R ←A2(⋃
R∈AR

)←A =
⋃

R∈A(R ←A)
R ←⋃

A∈AA =
⋃

A∈A(R ←A)(⋂
R∈AR

)←A ⊆ ⋂
R∈A(R ←A)

R ←⋂
A∈AA ⊆ ⋂

R∈A(R ←A)

Again, the converse inclusions for intersection are not generally valid even for crisp relations and
classes, since there are crisp counter-examples even with relations of the form A× 1.

For a proof of the properties, one only needs to realize that the predicates involved (⊆, =) are
invariant under the transformation ·×1 as well as under its inverse, the operations involved (

⋃
,
⋂

)
commute with both of these transformations, and that (R←A)×1 is R◦A, to which Theorem 4.2
applies. Another proof consists in the observation that the proof of Theorem 4.2 remains sound
when deleting all occurrences of the variable y. A general method for proving the invariance of
theorems of certain forms under translations like our identification of A with A × 1 is available,
in virtue of theorems on formal interpretations of theories over fuzzy logic (cf. footnote 4 and
see [9]). Here we shall take these results for granted, since the method of inspecting the proofs
and verifying their invariance under the substitution of 0 for some variables is always available
and sufficiently simple for all theorems listed in this paper.

In the same manner, the notion of image of a fuzzy class under a fuzzy relation, R →A =df

{y | (∃z)(Az & Rzy)}, is obtained by substituting 0, only this time for x rather than y, in the
definition of fuzzy relational composition, as

(R →A)× 1 = {y0 | (∃z)(Az & Rzy)}
= {y0 | (∃z)(Az0 & Rzy)}
= {y0 | (∃z)(RTyz & Az0)}
= RT ◦A

Thus B = R→A iff B = RT ◦A, so the image of A under R can simply be equated with RT ◦A.
Again the above properties of compositions translate into those of images. (Notice that this time,
we also need to employ Proposition 2.14(5) to get the preservation of unions and intersections
under images, since R is transposed in RT ◦A.)

As mentioned in the Introduction, the method of transferring the results on relational composi-
tions to related notions like images or preimages has already been suggested in [18, Remark 6.16].
In our formal setting we can exploit the method systematically:

There are three variables in the definition of sup-T-composition and each of them can be
replaced by the dummy value 0. This yields seven relational operations derived from sup-T-
composition of fuzzy relations: they are summarized in Table 1.

We shall comment on the notions in the table. The first three lines have been described in
detail above. The image and preimage have also been called the inclusive afterset and inclusive
foreset, respectively, by Bandler and Kohout [5].

The fourth notion, arising from setting z to 0, is the usual Cartesian product of the classes
A and B. Notice that fixing z = 0 makes the quantification over z void, so the comprehension
term indeed equals {xy | Ax & By}. The resulting term A ◦BT just reflects the valid equation
A×B = (A× 1) ◦ (1×B).

Setting both x and y to 0 in the fifth line of Table 1 makes the result a fuzzy singleton—a class
to which only the pair 〈0, 0〉 belongs to the degree (∃z)(Az & Bz). The latter formula expresses
the compatibility A ‖ B of the fuzzy properties (or classes) A and B, i.e., the height of their
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{xy | (∃z)(Rxz & Szy)} = R ◦ S . . . composition R ◦ S
x = 0 {0y | (∃z)(AT0z & Rzy)}T = (AT ◦R)T = RT ◦A . . . image R →A
y = 0 {x0 | (∃z)(Rxz & Az0)} = R ◦A . . . pre-image R ←A
z = 0 {xy | (∃0)(Ax0 & BT0y)} = A ◦BT . . . Cartesian product A×B

x, y = 0 {00 | (∃z)(AT0z & Bz0)} = AT ◦B . . . compatibility A ‖B
x, z = 0 {0y | (∃0)(αT00 & AT0y)}T = (αT ◦AT)T = A ◦α . . . α-resize αA
y, z = 0 {x0 | (∃0)(Ax0 & α00)} = A ◦α . . . α-resize αA

x, y, z = 0 {00 | (∃0)(α00 & β00)} = α ◦ β . . . conjunction α & β

Table 1: Operations derived from the sup-T-composition

intersection. Since fuzzy singletons internalize truth values,6 the resulting expression represents
the truth value of A ‖ B; thus AT ◦ B = A ‖ B = Hgt(A ∩B). We shall denote the operation
‖, since the result is a formal truth value—the fuzzy singleton—rather than the semantical truth
value of A ‖ B.

The sixth notion in Table 1, which for the lack of an established name we call the α-resize of
A and denote by αA, is derived from composition by fixing x, z = 0 (notice that the same notion
is obtained also by fixing y, z = 0). The operation is widely applicable in fuzzy set theory and
often is used implicitly or without notice (see Examples 5.13 and 5.14 below).

Finally, fixing all x, y, z to 0 yields the operation of formal conjunction of two formal truth
values (i.e., the intersection of the two fuzzy singletons that represent them).

Remark 4.4 It has already been observed by Zadeh in [42] that in the finite case, the sup-T-
composition of fuzzy relations is computed in the same manner as the product of the corresponding
matrices, only performing & instead of multiplication and taking the supremum (∃) instead of the
sum: ( ‖(R ◦ S)xixj‖ )ij = ( ‖(∃xk)(Rxixk & Sxkxj)‖ )ij = ( supk(‖Rxixk‖ ∗ ‖Sxkxj‖) )ij . The
calculation is represented by the following diagram:7

◦




Sx1x1 · · · Sx1xn

...
. . .

...
Sxnx1 · · · Sxnxn







Rx1x1 · · · Rx1xn

...
. . .

...
Rxnx1 · · · Rxnxn







(R ◦ S)x1x1 · · · (R ◦ S)x1xn

...
. . .

...
(R ◦ S)xnx1 · · · (R ◦ S)xnxn




Because of this correspondence, the sup-T-composition is by some authors also called the sup-
T-product of fuzzy relations. The correspondence extends to the derived notions (since after all,
file and row vectors as well as scalars are just special cases of matrices). Thus, e.g., taking the
pre-image of a fuzzy class A in a fuzzy relation R can in the finite case be calculated as the

6According to the conventions of Section 3, fuzzy truth values are represented by fuzzy singletons α ⊆4 {0},
which classes we have identified with fuzzy relations α = α × 1 ⊆4 {〈0, 0〉}. Thus among fuzzy relations, formal
truth values are indeed represented by fuzzy singletons of 00.

7The element in the i-th row and j-th file in the resulting matrix is obtained as the supremum over the values (for
all k) of the conjunction of the k-th element in the row and the k-th element in the file, respectively. The diagram
just shows the usual way of calculating the matrix product, in which we now take suprema and conjunctions instead
sums and products.
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sup-T-product of the matrix (Rxixj)ij and the vector (Axj)j :

◦




Ax1

...
Axn







Rx1x1 · · · Rx1xn

...
. . .

...
Rxnx1 · · · Rxnxn







(R←A)x1

...
(R←A)xn




Similarly, the α-resize of a class A is the product of the (n× 1)-vector A and the scalar α:

◦ (
α

)




Ax1

...
Axn







(αA)x1

...
(αA)xn




By the usual convention, we write transposed file vectors as row vectors; thus, e.g., for a fuzzy
class A over a finite domain we can write AT = (Ax1, . . . , Axn). The difference between the
Cartesian product A◦BT and the compatibility AT◦B illustrates the importance of distinguishing
transposed classes from non-transposed ones:

◦ (
Bx1 · · · Bxn

)




Ax1

...
Axn







(A×B)x1x1 · · · (A×B)x1xn

...
. . .

...
(A×B)xnx1 · · · (A×B)xnxn




◦




Bx1

...
Bxn




(
Ax1 · · · Axn

) (
A ‖ B

)

Notice that compatibility corresponds to the scalar (sup-T-)product of the vectors A and B.
Finally, conjunction is the product of two scalars,

◦ (
α

)
(
β

) (
α & β

)

Obviously, infinite matrices can be considered as well as finite ones (matrices of arbitrary
cardinalities have been used, e.g., in [4]). Thus it can be seen that the apparatus of FCT just
formalizes the natural correspondence between fuzzy relations, classes, and truth values on the
one hand and (finite or infinite) matrices, vectors, and scalars on the other hand. This will be
reflected by the following convention:

Convention 4.5 For the sake of convenience, we shall sometimes employ the matrix terminology
and even in the formal theory of FCT call the relations of the form A× 1 (file) vectors, 1×A row
vectors, and fuzzy singletons α ⊆4 {00} scalars, for arbitrary (not only finite) classes A and α.
We shall sometimes speak of the type of a fuzzy relation, meaning one of these four categories
which the relation belongs to.

Remark 4.6 In the graph-theoretical representation of fuzzy relations, a binary fuzzy relation R
is identified with a (possibly infinite) weighted node graph, where nodes represent the elements
of the domain V1 of R, and weighted arrows between the nodes indicate the truth values of the
relation R between pairs of the elements. Our representation A of a fuzzy class A among fuzzy
relations can thus be visualized as a (possibly infinite) graph with arrows from elements x of V1 to
0 weighted by the values of Ax, and all other arrows weighted by 0 (see Figure 1). Similarly, the

18



transposed class AT is represented by a graph with arrows from 0 to the elements of V1 weighted
by Ax. Inner truth values are represented by graphs with the only non-zero arrow between 0 and
itself, weighted with the truth value it represents.

Sup-T-compositions of the derived notions then work as expected in such node graphs. For
instance it can be seen in Figure 1 that the composition of AT and B is an arrow from 0 to 0
aggregating all values Ax & Bx, which indeed represents the compatibility of A and B, while the
composition of A and BT is a relation between all pairs xy weighted by Ax & By (as the only
non-zero path from x to y goes through 0), which represents the Cartesian product A×B.
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Figure 1: Graph representations of A, AT, α, A ◦ BT, and AT ◦ B (zero-weighted arrows not
indicated)

Besides the operations listed in Table 1, further important relational operations are definable
from compositions—e.g., by taking the universal class V for an argument in some of the derived
notions. Some of such derived notions are listed in Table 2.

domain Dom R = R ←V . . . R ◦V
range Rng R = R →V . . . RT ◦V
height HgtA = A ‖V = V ‖A . . . AT ◦V = VT ◦A

Table 2: Further operations derived from sup-T-compositions

Indeed, our conventions identify the domain DomR = {x | (∃z)Rxz} of a fuzzy relation R
with the vector {x0 | (∃z)(Rxz & 1)} = {x0 | (∃z)(Rxz & Vz0)} = R ◦V, and similarly for Rng.

The third operation in Table 2 yields the formal truth value of the height HgtA ≡df (∃z)Az of
a fuzzy class A, which our conventions indeed identify with the scalar {00 | (∃z)(Vz0 & Az0)} =
VT ◦A. In other words, (00 ∈ VT ◦A) ↔ HgtA, and therefore we can equate the height of A with
the scalar VT ◦A. Like with ‖ or &, we denote the operation by Hgt (overlined) as it yields an
inner truth value (i.e., a fuzzy singleton) and needs to be formally distinguished from Hgt (which
is a defined predicate and evaluates to semantic truth values in a model).

The point of the reduction of the above notions to compositions is of course that the properties
of sup-T-compositions automatically transfer to all of them. Thus we now get dozens of theorems
on fuzzy relational operations entirely for free.

First we apply Theorem 4.2(2) and Corollary 4.3(1) to the derived notions:

Corollary 4.7 FCT proves the monotony of all notions listed in Tables 1 and 2 w.r.t. inclusion.
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In particular,

R1 ⊆ R2 → R1 ◦ S ⊆ R2 ◦ S
R1 ⊆ R2 → R1

→A ⊆ R2
→A

R1 ⊆ R2 → R1
←A ⊆ R2

←A
A1 ⊆ A2 → A1 ×B ⊆ A2 ×B
A1 ⊆ A2 → (A1 ‖ B → A2 ‖ B)
A1 ⊆ A2 → αA1 ⊆ αA2

(α1 → α2) → (α1 & β → α2 & β)

S1 ⊆ S2 → R ◦ S1 ⊆ R ◦ S2

A1 ⊆ A2 → R →A1 ⊆ R →A2

A1 ⊆ A2 → R ←A1 ⊆ R ←A2

B1 ⊆ B2 → A×B1 ⊆ A×B2

B1 ⊆ B2 → (A ‖ B1 → A ‖ B2)
(α1 → α2) → α1A ⊆ α2A
(β1 → β2) → (α & β1 → α & β2)

R1 ⊆ R2 → Rng R1 ⊆ Rng R2

R1 ⊆ R2 → DomR1 ⊆ Dom R2

A1 ⊆ A2 → (HgtA1 → Hgt A2)

Some comments (which apply to subsequent corollaries as well) are in order here:

Remark 4.8 Notice that, as usual in FCT, the theorems have the form of provable implications.
Thus they are effective even if the antecedent is only partially valid: due to the semantics of
implication, they express the fact that the consequent is at least as true as the antecedent. There-
fore the theorems are stronger than the assertions of the form “if the antecedent is fully true (to
degree 1), then so is the consequent”, which are more usual in traditional fuzzy mathematics.
The traditional theorems, which in formal fuzzy logic would have the form 4ϕ → 4ψ rather
than ϕ → ψ, follow from those proved in FCT as their special cases with the antecedents true
to degree 1. Recall further that in FCT, not only the membership predicate ∈, but all defined
predicates are in general fuzzy (unless they are defined as provably crisp). Thus, e.g., A ⊆ B does
not express the fact that the membership function of B majorizes that of A (although this is the
meaning of its being true to degree 1): according to its definition, A ⊆ B yields the truth value
of the formula (∀x)(Ax → Bx), i.e., the infimum of all values Ax → Bx. This kind of gradual
inclusion has already been considered by Klaua in the 1960’s (as reported in [29]) with ÃLukasiewicz
implication; by Bandler and Kohout [3] with a broader class of implicational operators; and by
many authors afterwards.

Remark 4.9 Many of the particular theorems listed here are known, even in their gradual forms
(see esp. [27, 18]), and all of them have rather simple proofs in FCT. Therefore the main contri-
bution of the present approach is rather the systematic method by which these propositions can
be proved all at once, as corollaries of the simple statements of Theorem 4.2.

Remark 4.10 Although we present our methods for homogeneous relations only, they can be
extended to heterogeneous relations in the following way. Heterogeneous fuzzy relations R ⊆4
X×Y (for crisp X, Y ⊆4 V) can always be understood as homogeneous fuzzy relations R ⊆4 V×V
by taking for V the disjoint union of the two domains X, Y and defining Rxy as 0 outside the
domain X × Y of R. Since 0 is neutral w.r.t. ∃, the values of sup-T-compositions are not changed
by this extension to V2. The result of composition R ◦ S ⊆4 V2 of heterogeneous fuzzy relations
R ⊆4 X × Y and S ⊆4 Y × Z can then again be interpreted as the heterogeneous fuzzy relation
R◦S ⊆4 X×Z, since it is easily proved in FCT that R ⊆4 X×Y & S ⊆4 Y×Z → R◦S ⊆4 X×Z.
Although the theory of heterogeneous relations is not exhausted by this reduction to homogeneous
relations (as, i.a., the domains of relations are lost by the reduction), at least it enables to apply
the results of the present paper to heterogeneous fuzzy relations.

The following two remarks regard formal and notational aspects of the presented results. Read-
ers that are not interested in formalistic details can safely skip them.

Remark 4.11 We translate the theorems directly into their variants with fuzzy classes A and
inner truth values α rather than their relational counterparts A, α, although the latter are more
direct corollaries of Theorem 4.2. The translation is made possible by the “isomorphism” of A
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and A × 1 mentioned in Section 3 and can be made precise by the methods of faithful formal
interpretations described in [9]. We do not elaborate on these details here since for the theorems
listed in the present paper, their preservation under the translation is perspicuous enough in each
particular case.

Remark 4.12 We use the operations Hgt, ‖ in Corollary 4.7, although more direct corollaries of
Theorem 4.2 would contain their counterparts operating on inner truth values (Hgt, ‖). This is
allowed by the fact that they directly correspond to each other, as (00 ∈ HgtA) ↔ HgtA, and
similarly for other scalar notions. Consequently, by Proposition 3.4(2), the inclusion HgtA1 ⊆
HgtA2 translates to implication HgtA1 → Hgt A2 (and similarly for ‖ and other scalar operations).

In particular, formal conjunction (i.e., the intersection of fuzzy singletons, α ∩ β) translates
into usual conjunction (as 00 ∈ α ∩ β ↔ ϕ & ψ for α = ϕ and β = ψ), and similarly inclusion of
formal truth values translates into implication (both by Proposition 3.4). The monotony of α ◦β
w.r.t. inclusion thus expresses the monotony of conjunction w.r.t. implication—a theorem that
can of course be proved in a much simpler way (even propositionally). We include it here for the
sake of completeness, and to show that FCT “knows” the formal counterpart of this propositional
law (i.e., that its internalization operating on inner truth values is provable in FCT).

Now we shall continue listing (some of) the corollaries of Theorem 4.2 and Corollary 4.3 for
the derived notions.

Corollary 4.13 FCT proves the following relational properties w.r.t. unions and intersections:
(⋃

R∈AR
) ◦ S =

⋃
R∈A(R ◦ S)(⋃

R∈AR
)→A =

⋃
R∈A(R →A)(⋃

R∈AR
)←A =

⋃
R∈A(R ←A)(⋃

A∈AA
)×B =

⋃
A∈A(A×B)(⋃

A∈AA
) ‖ B ↔ (∃A ∈ A)(A ‖ B)

α
⋃

A∈AA =
⋃

A∈A(αA)(∨
α∈A α

)
& β ↔ ∨

α∈A(α & β)

R ◦⋃
S∈A S =

⋃
S∈A(R ◦ S)

R →⋃
A∈AA =

⋃
A∈A(R →A)

R ←⋃
A∈AA =

⋃
A∈A(R ←A)

A×⋃
B∈AB =

⋃
B∈A(A×B)

A ‖ ⋃
B∈AB ↔ (∃B ∈ A)(A ‖ B)(∨

α∈A α
)
A =

⋃
α∈A(αA)

α &
∨

β∈A β ↔ ∨
β∈A(α & β)

Dom(
⋃

R∈AR) =
⋃

R∈ADom R

Rng(
⋃

R∈AR) =
⋃

R∈ARng R

Hgt(
⋃

A∈AA) ↔ (∃A ∈ A)(Hgt A)

(⋂
R∈AR

) ◦ S ⊆ ⋂
R∈A(R ◦ S)(⋂

R∈AR
)→A ⊆ ⋂

R∈A(R →A)(⋂
R∈AR

)←A ⊆ ⋂
R∈A(R ←A)(⋂

A∈AA
)×B ⊆ ⋂

A∈A(A×B)(⋂
A∈AA

) ‖ B → (∀A ∈ A)(A ‖ B)
α

⋂
A∈AA ⊆ ⋂

A∈A(αA)(∧
α∈A α

)
& β → ∧

α∈A(α & β)

R ◦⋂
S∈A S ⊆ ⋂

S∈A(R ◦ S)
R →⋂

A∈AA ⊆ ⋂
A∈A(R →A)

R ←⋂
A∈AA ⊆ ⋂

A∈A(R ←A)
A×⋂

B∈AB ⊆ ⋂
B∈A(A×B)

A ‖ ⋂
B∈AB → (∀B ∈ A)(A ‖ B)(∧

α∈A α
)
A ⊆ ⋂

α∈A(αA)
α &

∧
β∈A β → ∧

β∈A(α & β)

Dom(
⋂

R∈AR) ⊆ ⋂
R∈ADom R

Rng(
⋂

R∈AR) ⊆ ⋂
R∈ARng R

Hgt(
⋂

A∈AA) → (∀A ∈ A)(Hgt A)

The converse inclusions and implications have (well-known) crisp counter-examples, except those
with the Cartesian product, resize, and conjunction, which only have fuzzy counter-examples in
MTL and do hold in stronger fuzzy logics like Gödel or ÃLukasiewicz.
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Proof: Since all of the inclusions and implications are direct corollaries of Theorem 4.2(3,4) and
Corollary 4.3(2,3), we only need to prove the claim about counter-examples to converse inclusions
and implications:

As can be seen from the proof of Theorem 4.2(4), the crisp counter-examples can be found
whenever the quantification over z in formula (10) in the proof is not void, which (by definitions
in Tables 1–2) is the case for all operations in Tables 1–2 except the resize, ×, and &. For the
latter three operations, the second implication in (10) can be converted (thus they do not have
crisp counter-examples), but still the converse to the first implication of (10) is not generally valid
in MTL.8 The first implication of (10) is nevertheless convertible (and so the converse inclusions
and implications do hold for the resize, ×, and &) in stronger logics like ÃLukasiewicz or Gödel.

QED

Relational operations can also be nested, whenever the types of their results permit. The asso-
ciativity and transposition properties of sup-T-compositions proved in Theorem 4.2(1,5), Proposi-
tion 2.14(1), Proposition 3.7, and Lemma 4.15 (below) then yield an infinite number of identities
between expressions composed of the operations from Tables 1 and 2: some of these are listed in
the following corollary. We abandon the distinction between A and A here in order to make the
chains of identities more compact (cf. footnote 5); similarly we do not distinguish scalar operations
from the defined predicates they represent, e.g., Hgt from Hgt (cf. Remark 4.12).

Corollary 4.14 FCT proves the following identities:

(A×B)T = (A ◦BT)T = B ◦AT = B ×A
R ◦ (A×B) = R ◦ (A ◦BT) = (R ◦A) ◦BT = (R ←A)×B
(A×B) ◦R = A ◦BT ◦R = A ◦ (RT ◦B)T = A× (R →B)

A× αB = A ◦ (B ◦ α)T = A ◦ α ◦BT = αA×B
A× Rng R = A ◦ (RT ◦V)T = A ◦VT ◦R = (A×V) ◦R

R → (S →A) = RT ◦ (ST ◦A) = (S ◦R)T ◦A = (S ◦R)→A
R →αA = RT ◦A ◦ α = α(R →A)

R →Rng S = RT ◦ ST ◦V = (S ◦R)T ◦V = Rng(S ◦R)
(A×B)→C = (A ◦BT)T ◦ C = B ◦AT ◦ C = (A ‖ C)B
R ← (S ←A) = R ◦ S ◦A = (S ◦R)←A

R ←αA = R ◦A ◦ α = α(R ←A)
R ←Dom S = R ◦ S ◦V = Dom(R ◦ S)

α(βA) = (A ◦ β) ◦ α = A ◦ (α ◦ β) = (α & β)A
α(Dom R) = R ◦V ◦ α = R →αV
α(Rng R) = RT ◦V ◦ α = R ←αV

Dom(A×B) = A ◦BT ◦V = (Hgt B)A
Rng(A×B) = (A ◦BT)T ◦V = B ◦AT ◦V = (Hgt A)B

A ‖ B = AT ◦B = (AT ◦B)T = BT ◦A = B ‖ A
α & β = (α ◦ β)T = βT ◦ αT = β & α

A ‖ (R →B) = AT ◦RT ◦B = (R ◦A)T ◦B = (R ←A) ‖ B
A ‖ αB = AT ◦B ◦ α = α & (A ‖ B)

A ‖ Dom R = AT ◦R ◦V = (RT ◦A)T ◦V = Hgt(R →A)
A ‖ Rng R = AT ◦RT ◦V = (R ◦A)T ◦V = Hgt(R ←A)

α & (β & γ) = α ◦ β ◦ γ = (α & β) & γ
HgtαA = VT ◦A ◦ α = α & Hgt A

HgtDom R = VT ◦R ◦V = (RT ◦V)T ◦V = Hgt Rng R

8A (well-known) counter-example in MTL is, e.g., a [0, 1]-model with α = 0.5, βn = 0.5 + 1
n

for all natural n,
and the nilpotent minimum [25] for &; then α &

∧
βn is 0, while

∧
(α & βn) is 0.5. (The counter-examples for the

resize and Cartesian product are similar.)
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Corollary 4.14 actually lists provable identities between almost all terms with two nested sup-
T-operations: it only omits some uninteresting cases like (A ‖ B)T = A ‖ B, formal artifacts like
Hgt(Hgt A) = Hgt A, and identities easily reducible to those above by the commutativity of ‖ and
& or the interdefinability R →A = (RT) ←A and Rng R = Dom RT. Identities between more
complex terms composed of sup-T-operations can be derived by similar simple calculations like
those above. For proving some of them, also the following lemma is needed:

Lemma 4.15 FCT proves the following identities:

1. VT ◦V = 1

2. A ◦ 1 = A, α ◦ 1 = α

Proof: 1. VT ◦V = {00 | (∃z)(VT0z & Vz0)} = {00 | (∃z)(Vz & Vz)} = {00 | 1} = 1.
2. follows similarly from the provability in MTL of α & 1 ↔ 1 and (∃z)1 ↔ 1. QED

Example 4.16 By Lemma 4.15 we get (A×V)←αV = A ◦VT ◦V ◦α = A ◦ 1 ◦α = A ◦α = αA.

5 BK-products and derived notions

Besides sup-T-composition, many other products of fuzzy relations have been defined in the lit-
erature. Perhaps the most notable among these is the relational product which can be called
inf-R-composition, as it replaces the supremum in the definition of composition by infimum and
the t-norm by its residuum.9 It has been introduced by Bandler and Kohout in [1] for crisp relations
and generalized to fuzzy relations in [2]; referring to the initials of the authors, inf-R-composition
is also known as the BK-product of fuzzy or crisp relations. Depending on the direction of the
residual implication (left-to-right, right-to-left, or both) we get three variants of BK-products:

Definition 5.1 We define the following three products of fuzzy relations R, S:

R / S =df {xy | (∀z)(Rxz → Szy)} . . . BK-subproduct
R . S =df {xy | (∀z)(Rxz ← Szy)} . . . BK-superproduct
R ¤ S =df {xy | (∀z)(Rxz ↔ Szy)} . . . BK-squareproduct

The prefix BK may be omitted if no confusion can arise. By the BK-product (simpliciter) we shall
mean the BK-subproduct.

For the motivation and utility of BK-products see [35, 36]. In this paper we give further illustra-
tions of their importance and ubiquity in the theory of fuzzy relations.

Remark 5.2 BK-products have some properties that are felt undesirable in certain kinds of
applications of fuzzy relations. As an especially problematic property is by many authors seen
the fact that (R / S)xy is 1 whenever (∃z)(Rxz) is 0. To avoid this particular feature of BK-
products, De Baets and Kerre proposed a redefinition of the same notion in [21]: in our notation,
De Baets and Kerre’s modified definition of R / S reads {xy | (∃z)(Rxz) & (∀z)(Rxz → Szy)},
and similarly for . and ¤. Following De Baets and Kerre’s paper, some authors when speaking
about BK-products refer to the modified definition rather than Bandler and Kohout’s original
definition. As this may lead to confusion, we need to stress that in the present paper, we always
refer to the original definitions by Bandler and Kohout (i.e., those of Definition 5.1), and never
to the modification by De Baets and Kerre.

Our sticking to Bandler and Kohout’s original definition is justified not only by the suitability
for our needs, but also by the fact that De Baets and Kerre’s elimination of the “useless pairs”
from the product is only suitable in certain applications of fuzzy relational products. In other
areas of fuzzy mathematics (e.g., the theory of fuzzy orderings, as shown below), the original

9The relationship between sup-T and inf-R composition is an instance of Morsi’s duality [40].
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notion of BK-product is well-motivated, and the “useless pairs” play important roles in various
manifestations of BK-products throughout the theory. This suggests that the emended definition
by De Baets and Kerre should not replace the original definition by Bandler and Kohout, but
only complement it; from this point of view it seems unfortunate that the authors of [21] chose
to overload the definition and notation of BK-products rather than to use a modified name and
symbols.

In what follows, we shall need the following (well-known) properties of BK-products.

Theorem 5.3 FCT proves the following properties of BK-products:

1. Transposition: (R / S)T = ST . RT

2. Monotony: R1 ⊆ R2 → R2 / S ⊆ R1 / S, S1 ⊆ S2 → R / S1 ⊆ R / S2

3. Intersection:
⋂

R∈A
(R / S) =

( ⋃

R∈A
R

)
/ S,

⋂

S∈A
(R / S) = R /

⋂

S∈A
S

4. Union:
⋃

R∈A
(R / S) ⊆

( ⋂

R∈A
R

)
/ S,

⋃

S∈A
(R / S) ⊆ R /

⋃

S∈A
S

(Converse inclusions have crisp counter-examples.)

5. Residuation: R / (S / T ) = (R ◦ S) / T

6. Exchange: R / (S . T ) = (R / S) . T

7. Interdefinability: R ¤ S = (R / S) ∩∧ (R . S)

Proof: Claims 1–3 are proved similarly as the corresponding statements of Theorem 4.2 (for the
shifts of relativized quantifiers needed here, see [16] and Lemma 2.4). The two inclusions of claim 4
are respectively proved by the following chains of implications:

(∃R ∈ A)(∀z)(Rxz → Szy) −→ (∀z)(∃R ∈ A)(Rxz → Szy) −→ (∀z)[(∀R ∈ A)Rxz → Szy] (11)
(∃S ∈ A)(∀z)(Rxz → Szy) −→ (∀z)(∃S ∈ A)(Rxz → Szy) −→ (∀z)[Rxz → (∃S ∈ A)Szy] (12)

The existence of crisp counter-examples to the converse inclusions follows from the fact that the
first implications in (11)–(12) cannot be converted in classical logic (as the quantifiers do not
commute), while the second implications can.

5. xy ∈ R / (S / T ) ←→ (∀z)(Rxz → (∀t)(Szt → Tty)) ←→ (∀zt)(Rxz → (Szt → Tty)) ←→
(∀zt)(Rxz & Szt → Tty) ←→ (∀t)((∃z)(Rxz & Szt) → Tty) ←→ xy ∈ (R ◦ S) / T , and similarly
for 6.

7. xy ∈ R ¤ S ←→ (∀z)(Rxz ↔ Szy) ←→ (∀z)[(Rxz → Szy) ∧ (Rxz ← Szy)] ←→
(∀z)(Rxz → Szy) ∧ (∀z)(Rxz ← Szy) ←→ xy ∈ (R / S) ∩∧ (R . S). QED

By transposition of the statements of Theorem 5.3 we get the following properties of BK-
products:

Corollary 5.4 FCT proves:

1. Transposition: (R . S)T = ST / RT, (R ¤ S)T = ST ¤ RT

2. Monotony: R1 ⊆ R2 → R1 . S ⊆ R2 . S, S1 ⊆ S2 → R . S2 ⊆ R . S1

3. Intersection:
⋂

R∈A
(R . S) =

( ⋂

R∈A
R

)
. S,

⋂

S∈A
(R . S) = R .

⋃

S∈A
S

4. Union:
⋃

R∈A
(R . S) ⊆

( ⋃

R∈A
R

)
. S,

⋃

S∈A
(R . S) ⊆ R .

⋂

S∈A
S

(Converse inclusions have crisp counter-examples.)
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5. Residuation: (R . S) . T = R . (S ◦ T )

Applying the identifications of the previous section to BK-products in the same way as we did
to sup-T-products, we get the derived notions listed in Tables 3–5. We write just ⊆,→,↔,Plt,
instead of the more correct ⊆,→,↔,Plt (cf. Remark 4.12).

{xy | (∀z)(Rxz → Szy)} = R / S . . . /-product R / S
x = 0 {0y | (∀z)(AT0z → Rzy)}T = (AT / R)T = RT . A . . . /-image R /→A
y = 0 {x0 | (∀z)(Rxz → Az0)} = R / A . . . /-pre-image R ←/ A
z = 0 {xy | (∀0)(Ax0 → BT0y)} = A / BT . . . Cartesian /-product A×/ B

x, y = 0 {00 | (∀z)(AT0z → Bz0)} = AT / B . . . inclusion A ⊆ B
x, z = 0 {0y | (∀0)(αT00 → AT0y)}T = (αT / AT)T = A . α . . . left α-resize α→A
y, z = 0 {x0 | (∀0)(Ax0 → α00)} = A / α . . . right α-resize A→α

x, y, z = 0 {00 | (∀0)(α00 → β00)} = α / β . . . implication α → β

/-range Rng/ R = R /→V . . . RT . V
plinth Plt A = V ⊆ A . . . VT / A

Table 3: Operations derived from the BK-subproduct

{xy | (∀z)(Rxz ← Szy)} = R . S . . . .-product R . S
x = 0 {0y | (∀z)(AT0z ← Rzy)}T = (AT . R)T = RT / A . . . .-image R .→A
y = 0 {x0 | (∀z)(Rxz ← Az0)} = R . A . . . .-pre-image R ←. A
z = 0 {xy | (∀0)(Ax0 ← BT0y)} = A . BT . . . Cartesian .-product A×. B

x, y = 0 {00 | (∀z)(AT0z ← Bz0)} = AT . B . . . converse inclusion A ⊇ B
x, z = 0 {0y | (∀0)(αT00 ← AT0y)}T = (αT . AT)T = A / α . . . right α-resize A→α
y, z = 0 {x0 | (∀0)(Ax0 ← α00)} = A . α . . . left α-resize α→A

x, y, z = 0 {00 | (∀0)(α00 ← β00)} = α . β . . . converse implication α ← β

.-domain Dom. R = R ←. V . . . R . V

Table 4: Operations derived from the BK-superproduct

{xy | (∀z)(Rxz ↔ Szy)} = R ¤ S . . . ¤-product R ¤ S
x = 0 {0y | (∀z)(AT0z ↔ Rzy)}T = (AT ¤ R)T = RT ¤ A . . . ¤-image R ¤→A
y = 0 {x0 | (∀z)(Rxz ↔ Az0)} = R ¤ A . . . ¤-pre-image R ←¤ A
z = 0 {xy | (∀0)(Ax0 ↔ BT0y)} = A ¤ BT . . . Cartesian ¤-product A×¤ B

x, y = 0 {00 | (∀z)(AT0z ↔ Bz0)} = AT ¤ B . . . weak bi-inclusion A ≈ B
x, z = 0 {0y | (∀0)(αT00 ↔ AT0y)}T = (αT ¤ AT)T = A ¤ α . . . left-right α-resize α↔A
y, z = 0 {x0 | (∀0)(Ax0 ↔ α00)} = A ¤ α . . . left-right α-resize α↔A

x, y, z = 0 {00 | (∀0)(α00 ↔ β00)} = α ¤ β . . . equivalence α ↔ β

Table 5: Operations derived from the BK-squareproduct

Remark 5.5 Notice that some of the analogues of notions based on sup-T-compositions are omit-
ted from Tables 3–5 due to their triviality. The BK-subdomain Dom/ R = R ←/ V, i.e., R / V, is
always equal to V (similarly for .-range) and the superproduct analogue of height or plinth always
equals 1. Therefore, by Theorem 5.3(7), the squareproduct analogue of Dom is in fact Dom., the
squareproduct analogue of Rng is Rng/ R, and the squareproduct analogue of plinth is just plinth.

Remark 5.6 Unlike in sup-T-compositions, where the behavior of 0 w.r.t. & ensured the right
type (in the sense of Convention 3.6) of the result of products for subclasses of V × 1 and 1 × 1
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(e.g., that R◦A ⊆4 V×1), in BK-products this is not automatic (since 0 → 0 is 1 rather than 0).
For BK-compositions, the right type of the result has to be explicitly controlled by intersecting
it with V × 1 or 1 × 1, according to the types of operands: for instance, the correct definition
of R /→A is (RT / A) ∩ (V × 1) rather than just RT / A, and for Plt A it is (VT / A) ∩ (1 × 1)
rather than just VT /A. We omit the intersection in the definitions, since the right type is already
indicated by Convention 3.6 and the properties studied in this paper are obviously preserved by the
intersection controlling the type; thus the values of BK-compositions outside their target domain
V × 1 or 1 × 1 can safely be ignored. A similar adjustment (by defining Rxy as 1 rather than 0
outside the domain X × Y of R) has to be made when using BK-compositions of heterogeneous
rather than homogeneous relations (cf. Remark 4.10).

Corollary 5.7 By Theorem 5.3(1) and the definitions of Tables 3 and 4 we have the following
interdefinability between derived BK-notions:

A×. B = A . BT = (B / AT)T = (B ×/ A)T

R ←.A = R . A = RTT . A = RT /→A
Dom. R = R . V = RTT . V = Rng/ RT

Corollary 5.8 By Theorem 5.3(7), the squareproduct notions are definable in terms of the corre-
sponding subproduct and superproduct notions by means of min-intersection (or min-conjunction):

R ¤→A = (R /→A) ∩∧ (R .→A)
R ←¤ A = (R ←/A) ∩∧ (R ←.A)
A×¤ B = (A×/ B) ∩∧ (A×. B)
A ≈ B = (A ⊆ B) ∧ (B ⊆ A)
α↔A = (α→A) ∩∧ (A→α)

α ↔ β = (α → β) ∧ (β → α)

The importance of the ten sup-T-based operations studied in the previous section is beyond
doubt. The following examples show that the BK-related notions abound in fuzzy mathematics
as well. Thus the present section can also be viewed as the systematization of these miscellaneous
notions and their properties.

Example 5.9 The operation of subproduct preimage R ←/ A appears frequently in the theory of
fuzzy relations [27, 18, 19]. In [26], R←/ is called the right backward strong powerset operator
of R; the operation is denoted by ↓ in [27]. It is also a quantifier construction in fuzzy description
logic [31], where it is written as (∀R.A). Further graded properties of this operation besides those
studied here can be found in [27, 11]. The superproduct image R.→ is studied, e.g., in [26] where
it is called the right forward strong powerset operator of R.

Example 5.10 In the theory of fuzzy orderings, the subproduct image R /→A and superproduct
preimage R ←. A denote the fuzzy set of all upper resp. lower bounds of the fuzzy set A w.r.t. a
fuzzy ordering R (also called the upper and lower cone of A w.r.t. R). The operations R/→ and
R←., respectively, are called the exclusive image and exclusive preimage in [5] and the left forward
and left backward strong powerset operator of R in [26]. The operation /→ has also appeared in
[22] and has been used for fuzzy inference in [20].

Example 5.11 For some applications of BK-products /, ., ¤ themselves see [35, 36]. Besides the
practically oriented applications, their theoretical importance comes from the fact that many other
relational notions can be expressed by means of BK-products. For example, fuzzy preorders can
be characterized in terms of BK-products [7] by

Refl R ↔ RT / R ⊆ R

Trans R ↔ R ⊆ RT / R

The operation RT / R and its dual R / RT are sometimes called the left resp. right trace of R and
are of their own importance [24, 11].
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Figure 2: Fuzzy sets A and B and their Cartesian squareproduct A×¤ B under the ÃLukasiewicz
t-norm

Example 5.12 The Cartesian products ×,×/,×.,×¤ are used to model sets of fuzzy rules:

{(x is Ai) and (y is Bi)}i∈I . . .
⋃

i∈I(Ai ×Bi)
{if (x is Ai) then (y is Bi)}i∈I . . .

⋂
i∈I(Ai ×/ Bi)

{(x is Ai) whenever (y is Bi)}i∈I . . .
⋂

i∈I(Ai ×. Bi)
{(x is Ai) iff (y is Bi)}i∈I . . .

⋂
i∈I(Ai ×¤ Bi)

The first three operations are used in many applications of fuzzy control theory, even though ×
is often misinterpreted as “implication” [38] rather than the Cartesian product based on strong
conjunction. The Cartesian squareproduct ×¤ is rather neglected in the fuzzy literature, even
though in many approximation problems it is more appropriate than ×/ and ×., as it captures
fuzzy equivalence between input and output fuzzy sets, expressing that “x is A to a similar degree
as y is B” (see Figure 2).

Example 5.13 The α-resizes αA,α→A,A→α, α↔A occur in fuzzy control applications. There
are two competing approaches to approximate inference over a knowledge base formalized as a set
of fuzzy rules. The classical approach is FATI (first aggregate then infer). The FITA (first infer
then aggregate) method of activation degrees was first used by Holmblad and Ostergaard [33] in
a fuzzy control algorithm for a cement kiln. It can briefly be described as follows [28]:

For each actual input fuzzy set A and each input–output data pair (Ak, Bk) one determines a
modification B∗

k of the “local” output Bk, and aggregates the modified “local” outputs into one
global output: B∗ =

⋃
i∈I B∗

i . The particular choice by Holmblad and Ostergaard for B∗
k was

B∗
k(y) = Hgt(A ∩∧ Ak) ·Bk(y), which is in fact the Hgt(A ∩∧ Ak)-resize of Bk under the product

t-norm.
To take another example, if Zadeh’s compositional rule of inference is applied to a knowledge

formalized by ×, which in our formalism reads
(⋃

i∈I(Ai ×Bi)
)→A, it can be simplified by using

α-resizes in virtue of the identity
(⋃

i∈I(Ai ×Bi)
)→A =

⋃
i∈I(A ‖ Ai)Bi

which follows from Corollaries 4.13 and 4.14. Analogously, the authors of [39] speak about the
consequent dilatation rule proposed in [37], where the degrees of subsethood A ⊆ Ai for i ∈ I are
used to compute the final output which is in our notation written as B∗ =

⋂
i∈I(A ⊆ Ai)→Bi

(cf. the appropriate identities from Corollaries 5.16 and 5.17).
The main argument in favor of practical applications of α-resizes is the speed of computations.

It is much faster to resize and then aggregate than to use the FATI approach because the values
for the resizes are computed only once and then used multiple times.

Example 5.14 In theoretical investigation of fuzzy relations, α-resizes appear for instance in the
following contexts: closedness under SK-intersections for a set K of designated truth values [18,
Def. 7.4] is equivalent [18, Th. 7.6] to closedness under intersections of “K-shifted” sets (α→A);
furthermore, A→α and αA have been used to characterize a system of closed sets of a similarity
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space in [18, Th. 7.62]; the system of all extensional fuzzy sets can be characterized by means
of α→A, A→α and αA [34, Th. 3.2]; the α-properties of binary fuzzy relations studied in [6] are
related to α-resizes of a relation [6, Th. 4.24]; etc.

The above list of applications of inf-R-compositional notions is by no means exhaustive. Like
with the notions based on the sup-T-composition, the point of our construction is the possibility
of applying Theorem 5.3 and Corollary 5.4 to all notions defined in Tables 3–5. Thus we are given
the following corollaries entirely for free (Remarks 4.8–4.12 apply to these corollaries as well):

Corollary 5.15 In consequence of Theorem 5.3(2) and Corollary 5.4(2), FCT proves:

R1 ⊆ R2 → R1
/→A ⊆ R2

/→A A1 ⊆ A2 → R /→A2 ⊆ R /→A1

R1 ⊆ R2 → R2
←/A ⊆ R1

←/A A1 ⊆ A2 → R ←/A1 ⊆ R ←/A2

A1 ⊆ A2 → A2 ×/ B ⊆ A1 ×/ B B1 ⊆ B2 → A×/ B1 ⊆ A×/ B2

A1 ⊆ A2 → (A2 ⊆ B → A1 ⊆ B) A1 ⊆ A2 → (B ⊆ A1 → B ⊆ A2)
A1 ⊆ A2 → α→A1 ⊆ α→A2 (α1 → α2) → (α2)→A ⊆ (α1)→A
A1 ⊆ A2 → (A2)→α ⊆ (A1)→α (α1 → α2) → (A→α1 → A→α2)

(α1 → α2) → [(α2 → β) → (α1 → β)] (β1 → β2) → [(α → β1) → (α → β2)]

R1 ⊆ R2 → Rng/ R1 ⊆ Rng/ R2

A1 ⊆ A2 → (Plt A1 → Plt A2)

R1 ⊆ R2 → R2
.→A ⊆ R1

.→A A1 ⊆ A2 → R .→A1 ⊆ R .→A2

R1 ⊆ R2 → R1
←.A ⊆ R2

←.A A1 ⊆ A2 → R ←.A2 ⊆ R ←.A1

A1 ⊆ A2 → A1 ×. B ⊆ A2 ×. B B1 ⊆ B2 → A×. B2 ⊆ A×. B1

R1 ⊆ R2 → Dom. R1 ⊆ Dom. R2

Corollary 5.16 By Theorem 5.3(3, 4) and Corollary 5.4(3, 4), FCT proves:
⋂

R∈A(R /→A) =
(⋂

R∈AR
)

/→A
⋂

A∈A(R /→A) = R /→⋃
A∈AA⋂

R∈A(R ←/A) =
(⋃

R∈AR
)←/A

⋂
A∈A(R ←/A) = R ←/

⋂
A∈AA⋂

A∈A(A×/ B) =
(⋃

A∈AA
)×/ B

⋂
B∈A(A×/ B) = A×/

⋂
B∈AB

(∀A ∈ A)(A ⊆ B) ↔ (⋃
A∈AA

) ⊆ B (∀B ∈ A)(A ⊆ B) ↔ A ⊆ ⋂
B∈AB⋂

α∈A(α→A) =
(∨

α∈A α
)
→A

⋂
A∈A(α→A) = α→

⋂
A∈AA⋂

A∈A(A→α) =
(⋃

A∈AA
)
→α

⋂
α∈A(A→α) = A→

∧
α∈A α∧

α∈A(α → β) ↔ (∨
α∈A

) → β
∧

β∈A(α → β) ↔ (
α → ∧

β∈A β
)

⋂
R∈ARng/ R = Rng/ ⋂

R∈AR

(∀A ∈ A)(Plt A) ↔ Plt
⋂

A∈AA

⋂
R∈A(R .→A) =

(⋃
R∈AR

)
.→A

⋂
A∈A(R .→A) = R .→⋂

A∈AA⋂
R∈A(R ←.A) =

(⋂
R∈AR

)←.A
⋂

A∈A(R ←.A) = R ←.
⋃

A∈AA⋂
A∈A(A×. B) =

(⋂
A∈AA

)×. B
⋂

B∈A(A×. B) = A×.

⋃
B∈AB

⋂
R∈ADom. R = Dom. ⋂

R∈AR

⋃
R∈A(R /→A) ⊆ (⋃

R∈AR
)

/→A
⋃

A∈A(R /→A) ⊆ R /→⋂
A∈AA⋃

R∈A(R ←/A) ⊆ (⋂
R∈AR

)←/A
⋃

A∈A(R ←/A) ⊆ R ←/
⋃

A∈AA⋃
A∈A(A×/ B) ⊆ (⋂

A∈AA
)×/ B

⋃
B∈A(A×/ B) ⊆ A×/

⋃
B∈AB

(∃A ∈ A)(A ⊆ B) → (⋂
A∈AA

) ⊆ B (∃B ∈ A)(A ⊆ B) → A ⊆ ⋃
B∈AB⋃

α∈A(α→A) ⊆ (∧
α∈A α

)
→A

⋃
A∈A(α→A) ⊆ α→

⋃
A∈AA⋃

A∈A(A→α) ⊆ (⋂
A∈AA

)
→α

⋃
α∈A(A→α) ⊆ A→

∨
α∈A α∨

α∈A(α → β) → ((∧
α∈A α

) → β
) ∨

β∈A(α → β) → (
α → ∨

β∈A α
)
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⋃
R∈ARng/ R ⊆ Rng/ ⋃

R∈AR

(∃A ∈ A)(Plt A) → Plt
⋃

A∈AA

⋃
R∈A(R .→A) ⊆ (⋂

R∈AR
)

.→A
⋃

A∈A(R .→A) ⊆ R .→⋃
A∈AA⋃

R∈A(R ←.A) ⊆ (⋃
R∈AR

)←.A
⋃

A∈A(R ←.A) ⊆ R ←.
⋂

A∈AA⋃
A∈A(A×. B) ⊆ (⋃

A∈AA
)×. B

⋃
B∈A(A×. B) ⊆ A×.

⋂
B∈AB

⋃
R∈ADom. R ⊆ Dom. ⋃

R∈AR

The converse implications and inclusions have crisp counter-examples.

Proof: We only need to prove the claim about converse inclusions and implications, as the rest
are direct corollaries of the indicated theorems. The existence of crisp counter-examples follows
from the fact that neither of implications in the proof of Theorem 5.3(4) is in general convertible
in classical logic. In the case of ×/, ×., →, and →, for which the quantification over z in formulae
(11)–(12) in the proof is void, the only crisp counter-examples are with A = ∅. For non-empty A,
the latter converses hold in those extensions of MTL in which the law of double negation ¬¬ϕ → ϕ
is valid (i.e., the extensions of IMTL, e.g., ÃLukasiewicz logic), since the second implications in
formulae (11)–(12) are convertible under double negation (but not generally in MTL). QED

Corollary 5.17 By Theorem 5.3(5, 6) and Corollary 5.4(5), FCT proves, i.a., the following iden-
tities:

(R ←A)×/ B = R / (A×/ B) by (R ◦A) / BT = R / (A / BT)
(Dom R)×/ A = R / (V ×/ A) (R ◦V) / AT = R / (V / AT)

(αA)×/ B = A×/ (α→B) (α ◦A) / BT = A / (α / BT)
A×/ (R .→B) = (A×/ B) . R A / (RT / B)T = A / (BT . R) = (A / BT) . R
A×/ (R /→B) = (A×B) / R A / (RT . B)T = A / (BT / R) = (A ◦BT) / R
A×/ (Rng/ R) = (A×V) / R A / (RT . V)T = A / (VT / R) = (A ◦VT) / R

A×/ (B→α) = (A→α)×. B A / (B / α)T = A / (α . BT) = (A / α) . BT

(R ◦ S)←/A = R ←/ (S ←/A) by (R ◦ S) / A = R / (S / A)
(R / S) /→A = S /→ (R →A) (R / S)T . A = (ST . RT) . A = ST . (RT ◦A)
(R . S) /→A = S .→ (R /→A) (R . S)T . A = (ST / RT) . A = ST / (RT . A)

(A×B)←/C = A→(B ⊆ C) (A ◦BT) / C = A / (BT / C)
(A×/ B) /→C = (A ‖ C)→B (A / BT)T . C = (B . AT) . C = B . (AT ◦ C)
(A×. B) /→C = B→(C ⊆ A) (A . BT)T . C = (B / AT) . C = B / (AT . C)

R ←/ (A→α) = (R ←A)→α R / (A / α) = (R ◦A) / α
α→(Rng/ R) = R /→ (αV) α / (RT . V) = (RT . V) . α = RT . (α ◦V)
α→(R /→A) = R /→ (αA) α / (RT . A) = (RT . A) . α = RT . (α ◦A)
α→(R ←/A) = R ←/ (α→A) α / (R / A) = R / (α / A)

α→(β→A) = (α & β)→A α / (β / A) = (α ◦ β) / A
α→(A→β) = A→(α → β) α / (A / β) = A / (α / β)

A→(α → β) = (αA)→β A / (α / β) = (A ◦ α) / β
Rng/(R / S) = S /→ (Rng R) (R / S)T . V = (ST . RT) . V = ST . (RT ◦V)
Rng/(R . S) = S .→ (Rng/ R) (R . S)T . V = (ST / RT) . V = ST / (RT . V)

Rng/(A×/ B) = (Hgt A)→B (A / BT)T . V = (B . AT) . V = B . (AT ◦V)
Rng/(A×. B) = B→(PltA) (A . BT)T . V = (B / AT) . V = B / (AT . V)
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A ⊆ (R ←/B) = (R →A) ⊆ B by AT / (R / B) = (AT ◦R) / B = (RT ◦A)T / B
A ⊆ (R /→B) = B ⊆ (R ←.A) AT / (RT . B) = (AT / RT) . B = (R . A)T . B

(αA) ⊆ B = α → (A ⊆ B) (α ◦A)T / B = (α ◦AT) / B = α / (AT / B)
A ⊆ (α→B) = α → (A ⊆ B) AT / (α / B) = α / (AT / B)
A ⊆ (B→α) = (A ‖ B) → α AT / (B / α) = (AT ◦B) / α

α → (β → γ) = (α & β) → γ α / (β / γ) = (α ◦ β) / γ
α → (β → γ) = β → (α → γ) α / (β / γ) = (α ◦ β) / γ = (β ◦ α) / γ = β / (α / γ)
Plt(R /→A) = A ⊆ (Dom. R) VT / (RT . A) = (VT / RT) . A = (R . V)T . A
Plt(R ←/A) = (Rng R) ⊆ A VT / (R / A) = (VT ◦R) / A = (RT ◦V)T / A

Plt(α→A) = α → Plt A VT / (α / A) = α / (VT / A)
Plt(α→A) = αV ⊆ A VT / (α / A) = (VT ◦ α) / A = (α ◦V)T / A
Plt(A→α) = (Hgt A) → α VT / (A / α) = (VT ◦A) / α

Plt(Rng/ R) = Plt(Dom. R) VT / (RT . V) = (VT / RT) . V = (R . V)T . V

Remark 5.18 Some of the identities of Corollary 5.17 express important theorems on fuzzy re-
lations. For instance, the identity (A ⊆ (R ←/ B)) ↔ ((R →A) ⊆ B) entails the equivalence of
two characterizations of the property of extensionality of a fuzzy class A w.r.t. a fuzzy relation R
defined as ExtR A ≡df (∀xy)(Rxy & Ax → Ay), since the latter can be expressed as (R→A) ⊆ A.
The next identity (A ⊆ (R/→B)) ↔ (B ⊆ (R←.A)) expresses a graded theorem on fuzzy preorders
(cf. Example 5.10) that all elements of A are upper bounds of B iff all elements of B are lower
bounds of A. These theorems are well-known in the non-graded setting; here we get their graded
variants (i.e., also for partially valid inclusions) for free.

Corollary 5.19 Furthermore, by Corollary 5.7, FCT proves the following identities dual to Corol-
lary 5.17 for superproduct notions:

(R ◦ S) .→A = S .→ (R .→A)
(R . S)←.A = R ←. (S ←A)
(R / S)←.A = R ←/ (S ←.A)

(A×B) .→C = B→(A ⊆ C)
(A×/ B)←.C = A→(C ⊆ B)
(A×. B)←.C = (B ‖ C)→A

R .→ (A→α) = (R →A)→α
α→(R .→A) = R .→ (α→A)
α→(R ←.A) = R ←. (αA)

α→(Dom. R) = R ←. (αV)
Dom.(R / S) = R ←/ (Dom. S)
Dom.(R . S) = R ←. (Dom S)

Dom.(A×/ B) = A→(PltB)
Dom.(A×. B) = (HgtB)→A

A×. (R →B) = (A×. B) . R
A×. (Rng R) = (A×. V) . R

A×. (αB) = (α→A)×. B
(R ←/A)×. B = R / (A×. B)
(R ←.A)×. B = R . (A×B)

(Dom. R)×. B = R . (V ×B)

A ⊆ (R .→B) = (R ←A) ⊆ B
Plt(R .→A) = (Dom R) ⊆ A
Plt(R ←.A) = A ⊆ (Rng/ R)

Although not used in the previous corollaries, the following lemma is needed for some more
complex identities between BK-based terms:

Lemma 5.20 FCT proves:

1. V / AT = V ◦AT, V / α = V ◦α

2. A / 1 = V, A . 1 = A, α / 1 = 1, α . 1 = α

Proof: V / AT = {xy | Vx0 → A0y} = {xy | A0y} = {xy | Vx0 & A0y} = V ◦ AT, and
analogously for the other identities. QED
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Example 5.21 The following identities are among corollaries of Lemma 5.20:

R ←/V = V by R / V = R / (V / 1) = (R ◦V) / 1
(A ⊆ V) = 1 AT / V = AT / (A / 1) = (AT ◦A) / 1

α→V = V V . α = (V / 1) . α = V / (1 . α) = V / 1
(V ×V)←.A = V (V ◦VT) . A = (V / VT) . A = V / (VT . A) = V / (AT / V)T = V / 1

Remark 5.22 The corollaries in this and the previous section show that a fairly large fragment
of the elementary theory of fuzzy relations can be reduced to identities provable by several simple
equational rules, namely those of Propositions 2.14(1) and 3.7, Theorems 4.2(1,5) and 5.3(1,5,6),
and Lemmata 4.15 and 5.20. These rules can be viewed as axioms of an equational calculus for
proving identities between fuzzy relational operations. It seems to be an open problem if there are
elementary theorems on fuzzy relations expressible as identities in the language of ◦, T, V, 1, BK-
products, and the notions listed in Tables 1–4, which are not provable from these equational rules
(possibly extended by some missing identities), though provable in FCT (and, for that matter, if
there are any such identities in which the elementary theories of fuzzy and crisp relations differ).

Remark 5.23 Sup-T-compositions and BK-products operate on binary fuzzy relations, i.e., fuzzy
classes of ordered pairs of elements xy. The inner structure of these elements x, y can be arbitrary:
if they are, for instance, themselves ordered pairs x1x2 and y1y2, then relational products are in
fact operating on ordered quadruples. Composition-based notions with class operands (e.g., ⊆) are
thus applicable to binary fuzzy relations as well. In this way, inclusion of fuzzy relations R ⊆ S can
be regarded as the BK-product (R′)T / S′, where for a binary relation R and quaternary relations
P,Q we define

P / Q =df {x1x2y1y2 | (∀z1z2)(Px1x2z1z2 → Qz1z2y1y2)}
PT =df {y1y2x1x2 | Px1x2y1y2}
R′ =df {xy00 | Rxy}

The corollaries shown above thus apply to inclusion, compatibility, Cartesian products, etc., not
only of unary fuzzy classes, but also fuzzy relations of arbitrary arities. In this way, many further
notions of the theory of fuzzy relations are reducible to sup-T- and BK-compositions: e.g., sym-
metry of a fuzzy relation R is expressible as (R′)T / (RT)′; cf. also Example 5.11 for transitivity
and reflexivity and Remark 5.18 for extensionality. The machinery demonstrated above thus can
be used also for proving properties of such relational notions.

6 Conclusions

We have shown a method for mass proofs of theorems of certain forms in the theory of fuzzy
relations. Its soundness is based on the notion of relative interpretation between theories over
fuzzy logics, which allows a representation of fuzzy classes and formal truth values as certain kinds
of fuzzy relations. This expands the applicability of simple properties of sup-T-compositions and
BK-products of fuzzy relations to a larger language (of more than 30 operations) which includes
many important concepts of the theory of fuzzy sets and fuzzy relations. Consequently, a large
number of theorems of the latter theory are reduced to corollaries of a few simple properties of
relational products, thus becoming verifiable by simple equational computations.

Among all possible kinds of fuzzy relational compositions, in this paper we have restricted
our attention only to the sup-T-composition and BK-products, because they generate the most
interesting families of derived notions, which occur most often in fuzzy mathematics. Similar
investigation of notions based on other kinds of relational products is a topic left for future work.

Besides the practical consequences (e.g., for automated proofs of relational theorems) the
results show that using a suitable formal apparatus provided by first-order and higher-order fuzzy
logic enables exploitation of formal syntactic methods that can trivialize a large part of fuzzy
mathematics. Together with the metatheorems of [12, §3.4] on fuzzy class operations, the methods
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presented here effectively reduce elementary fuzzy set theory and a large part of fuzzy relational
theory to calculations in propositional fuzzy logic and simple relational algebra. Moreover they
show that for a certain class of results, the fuzziness of fuzzy relations does not present an additional
difficulty to the usual theory of crisp relations: it can be observed that Theorems 4.2 and 5.3,
upon which all of the corollaries are based, hold equally for fuzzy and crisp relations. Thus a large
part of the theory of crisp relations generalizes straightforwardly to fuzzy relations if a suitable
framework of formal fuzzy logic is employed.
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[15] Libor Běhounek and Petr Cintula. From fuzzy logic to fuzzy mathematics: A methodological
manifesto. Fuzzy Sets and Systems, 157(5):642–646, 2006.
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