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1 Introduction

One of Petr Hájek’s great endeavours in logic was the development of first-order fuzzy logic
BL∀ in [15]: this work unified some earlier conceptions of many-valued semantics and their
calculi, but it also technically prepared the ground for a natural next step, that being an
attempt at employing BL∀ or its extensions as background logics for non-classical axiomatic
theories of fuzzy mathematics. Hájek initiated this study in the late nineties, in parallel with
a continued investigation of the properties of BL∀ itself. Considering his previous engage-
ments in set theory and arithmetic, and also the key rôles these disciplines play in logic, it
seems natural that he focused primarily on these theories, from both mathematical and meta-
mathematical points of view. With time passing, other authors have contributed to the area;
other parts of axiomatic fuzzy mathematics based on fuzzy logic have been explored; and
the work of several predecessors turned out to be important. Nevertheless, Hájek’s (and his
co-authors’) elegant results stand out as a fundamental contributions to the aforementioned
axiomatic theories of fuzzy mathematics, and for a large part coincide with the state of the
art in these fields of research.

In this paper we survey Hájek’s contributions to arithmetic and set theory over fuzzy
logic, in some cases slightly generalizing the results. Our generalizations always concern the
underlying fuzzy logic: Hájek, as the designer of the logic BL∀, naturally worked in this logic
or in one of its three prominent extensions— Lukasiewicz, Gödel, or product logic. However,
Esteva and Godo’s similar, but weaker fuzzy logic MTL of left-continuous t-norms can be,
from many points of view, seen as an even more fundamental fuzzy logic; therefore, where
meaningful and easy enough, we discuss or present the generalization of Hájek’s results to
MTL.

The paper is organized as follows: after the necessary preliminaries given in Section 2, we
address three areas of axiomatic fuzzy mathematics—a ZF-style fuzzy set theory (Section 3),
arithmetic with a fuzzy truth predicate (Section 4), and näıve Cantor-style fuzzy set theory
(Section 5). The motivation and historical background are presented at the beginning of each
section. Owing to the survey character of this paper, for details and proofs (except for those
which are new) we refer the readers to the original works indicated within the text.

∗Preprint; to appear in F. Montagna (ed.): Petr Hájek on Mathematical Fuzzy Logic, Trends in Logic.
†Institute of Computer Science, Academy of Sciences of the Czech Republic & CE IT4Innovations, Division

University of Ostrava, Institute for Research and Applications of Fuzzy Modeling.
‡Institute of Computer Science, Academy of Sciences of the Czech Republic.
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2 Preliminaries

This paper deals with some formal theories axiomatized in several first-order fuzzy logics:
MTL∀, BL∀, and its three salient extensions— Lukasiewicz logic ( L∀), Gödel logic (G∀),
and product fuzzy logic (Π∀), with or without the connective 4. We assume the reader’s
familiarity with the basic apparatus of these fuzzy logics; all standard definitions can be found
in the introductory chapter [3], which is freely available online. In this section we only focus
on the definitions and theorems needed further on which cannot be found in [3].

Of the first-order variants of a fuzzy logic L (see [3, Def. 5.1.2]), throughout the paper
we employ exclusively that first-order variant L∀ which includes the axiom (∀x)(χ ∨ ϕ) →
χ ∨ (∀x)ϕ (for x not free in χ) ensuring strong completeness with respect to (safe) models
over linearly ordered L-algebras.

Convention 2.1. Let us fix the following notational conventions:

• The conjunction ϕ& . . .& ϕ of n identical conjuncts ϕ will be denoted by ϕn.

• The exponents ϕn take the highest precedence in formulae, followed by prefix unary
connectives. The connectives → and ↔ take the lowest precedence.

• The chain of implications ϕ1 → ϕ2, ϕ2 → ϕ3, . . . , ϕn−1 → ϕn can be written as ϕ1 −→
ϕ2 −→ . . . −→ ϕn, and similarly for ←→.

• We use the abbreviations (∀xPt)ϕ and (∃xPt)ϕ, respectively, for (∀x)(xPt → ϕ) and
(∃x)(xPt & ϕ), for any infix binary predicate P , term t, formula ϕ, and variable x.

• Negation of an atomic formula can alternatively be expressed by crossing its (usually
infix) predicate: x /∈ y =df ¬(x ∈ y), and similarly for 6=, 6⊆, 6≈, etc.

As usual, by an extension of a logic L we mean a logic which is at least as strong as L and
has the same logical symbols as L. (Thus, e.g., BL is an extension of MTL, but BL4 is not.)

Definition 2.2. Let L be a logic extending MTL∀ or MTL∀4. Let T be a theory over L, M
a model of T , and ϕ a formula in the language of T .

We say that ϕ is crisp in M if M |= ϕ ∨ ¬ϕ, and that ϕ is crisp in T if it is crisp in all
models of T .

Taking into account the semantics of L, one can observe that ϕ is crisp in M iff it only
takes the values 0 and 1 in M ; the linear completeness theorem for L yields that ϕ is crisp in
T iff T `L ϕ∨¬ϕ. By convention we will also say that an n-ary predicate P is crisp in M or
T if the formula P (x1, . . . , xn) is crisp in M or T .

Definition 2.3. Let L extend MTL∀ or MTL∀4. By L= we shall denote the logic L with
the identity predicate = that satisfies the reflexivity axiom x = x and the intersubstitutivity
schema x = y → (ϕ(x)↔ ϕ(y)).

Remark 2.4. It can be observed that the identity predicate = is symmetric and transitive,
using suitable intersubstitutivity axioms. The crispness of = can be enforced by the additional
axiom x = y ∨ x 6= y. However, the latter axiom is superfluous in all extensions of MTL∀4=,
and also in those extensions of MTL∀= that validate the schema (ϕ→ ϕ2)→ (ϕ ∨ ¬ϕ), e.g.,
in  L∀= and Π∀=, since over all these logics the predicate = comes out crisp anyway (the proof
is analogous to that of [18, Cor. 1]).
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Later on we will need the following lemmata, formulated here just for the variants of MTL,
but valid as well for any stronger logic (as they only assert some provability claims).

Lemma 2.5. The following are theorems of propositional MTL:

1. (ϕ→ ϕ& ϕ) & (ϕ→ ψ)→ (ϕ ∧ ψ → ϕ& ψ)

2. (ϕ→ ϕ& ϕ) & (ψ → ψ & ψ)→ (ϕ ∧ ψ → ϕ& ψ)

Proof. 1. ϕ ∧ ψ −→ ϕ −→ ϕ& ϕ −→ ϕ& ψ (the antecedents of the theorem are used in the
second and third implication).

2. By prelinearity, we can take the cases ϕ→ ψ and ψ → ϕ. The former case follows by
weakening from Lemma 2.5(1); the latter is proved analogously: ϕ ∧ ψ −→ ψ −→ ψ & ψ −→
ϕ& ψ.

Lemma 2.6 (cf. [24]). MTL∀4 proves:

1. (∃x)4ϕ→4(∃x)ϕ

2. (∀x)4ϕ↔4(∀x)ϕ

3. (∀x)4(ϕ& ψ)→ (∀x)4ϕ& (∀x)4ψ

4. 4(ϕ ∨ ¬ϕ)↔4(ϕ→4ϕ)

Proof. By inspection of the BL∀4-proofs [24] we can observe that the theorems are valid in
MTL∀4, too.

Lemma 2.7. Let ϕ(x, y, . . . ) be a formula of MTL∀ and ψ(x, . . . ) a formula of MTL∀=,
and t be a term substitutable for both x and y in ϕ and for x in ψ. Then:

1. MTL∀ proves: ϕ(t, t)→ (∃x)ϕ(x, t)

2. MTL∀= proves: (∀x = t)(ψ(x))↔ ψ(t)

3. MTL∀= proves: (∃x = t)(ψ(x))↔ ψ(t)

Proof. 1. Immediate by the MTL∀-axiom of dual specification.
2. Left to right: (∀x)(x = t → ψ(x)) −→ (t = t → ψ(t)) ←→ ψ(t), by specification and

the reflexivity of =. Right to left: ψ(t)→ (x = t→ ψ(x)) by the intersubstitutivity of equals;
generalize on x and shift the quantifier to the consequent.

3. Left to right: x = t & ψ(x)→ ψ(t) by the intersubstitutivity of equals; generalize on x
and shift the quantifier (as ∃) to the antecedent. Right to left: ψ(t) −→ (t = t & ψ(t)) −→
(∃x)(x = t & ψ(t)), by the reflexivity of =, dual specification, and Lemma 2.7(1).

Lemma 2.8. In MTL∀=, any formula is equivalent to a formula in which function symbols are
applied only to variables and occur only in atomic subformulae of the form y = F (x1, . . . , xk).

Proof. Using Lemma 2.7, we can inductively decompose nested terms s(t) by ϕ(s(t)) ↔
(∃x = t)ϕ(s(x)) and finally by ϕ(F (x1, . . . , xk)) ↔ (∃y = F (x1, . . . , xk))ϕ(y) for all function
symbols F .

We now give a few results on the conservativity of introducing predicate and function
symbols.

3



Definition 2.9. For L a logic, T1 a theory in a language Γ1 and T2 ⊇ T1 a theory in a
language Γ2 ⊇ Γ1, we say that T2 is a conservative extension of T1 if T2 `L ϕ implies T1 `L ϕ
for each Γ1-formula ϕ.

The proofs of the following theorems are easy adaptations of the proofs from [16]. Note
that Theorem 2.11 covers introducing constants, too, for n = 0 (in which case the congruence
axiom becomes trivially provable and need not be explicitly added to the theory).

Theorem 2.10 (Adding predicate symbols, cf. [16]). Let L extend MTL∀ or MTL∀4 and T
be a theory over L in a language Γ. Let P 6∈ Γ be an n-ary predicate symbol and ϕ(x1, . . . , xn)
a Γ-formula. If T ′ results from T by adding P and the axiom

P (x1, . . . , xn)↔ ϕ(x1, . . . , xn)

then T ′ is a conservative extension of T .

Theorem 2.11 (Adding function symbols, cf. [16]). Let L extend MTL∀= or MTL∀4= and T
be a theory over L in a language Γ. Let F /∈ Γ be an n-ary function symbol and ϕ a Γ-formula
with n+1 free variables. Let T ′ result from T by adding the axiom ϕ(x1, . . . , xn, F (x1, . . . , xn))
and the congruence axiom x1 = z1 & . . . & xn = zn → F (x1, . . . , xn) = F (z1, . . . , zn).

1. If L extends MTL∀= and T `L (∃y)ϕ(x1, . . . , xn, y), then T ′ is a conservative extension
of T .

2. If L extends MTL∀4= and T `L (∃y)4ϕ(x1, . . . , xn, y), then T ′ is a conservative ex-
tension of T .

If, in addition, T `L (∃y)(ϕ(x1, . . . , xn, y) & (∀y′)(ϕ(x1, . . . , xn, y
′) → y = y′)), then each

T ′-formula is T ′-equivalent to a T -formula.

3 ZF-style set theories in fuzzy logic

This section intends to give an overview of results on axiomatic set theory developed in fuzzy
logic in the style of classical Zermelo–Fraenkel set theory. It draws primarily on [21], where
a ZF-like set theory is developed over BL∀4. The theory introduced in [21] was called ‘fuzzy
set theory’ for simplicity, and the acronym FST was used; this was not meant to suggest that
FST was the set theory in fuzzy logic, since clearly there are many possible ways to develop
a set theory in fuzzy logic. It was shown that FST theory admitted many-valued models,
and that at the same time it faithfully interpreted classical Zermelo–Fraenkel set theory ZF.
Moreover, some of its mathematics was developed.

Here, for the sake of precision, we shall use FSTBL for the above theory from [21] over
BL∀4, and alongside, we shall consider a theory FSTMTL developed over MTL∀4. The focus
will be on the theory FSTBL.

We start with a short overview of related ZF-style set theories in non-classical logics. A
more comprehensive treatment of the history of the subject can be found in [10] (see also [24]);
these take into account also the interesting story of the full comprehension schema (discussed
in Section 5).

An early attempt is presented in the works of D. Klaua [26, 27, 28], who does not develop
axiomatic theory but constructs cumulative hierarchies of sets, defining many-valued truth
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functions of =, ⊆, and ∈ over a set of truth values that is an MV-algebra. Interestingly, in
[28] he constructs a cumulative universe similar to ours in definition of its elements and the
value of the membership function, but with a non-crisp equality; his universe then validates
extensionality and comprehension, but fails to validate the congruence axioms. Klaua’s works
have been continued and made more accessible in the works of S. Gottwald [7, 8, 9].

It is instructive to study a selection of papers on ZF-style set theory in the intuitionistic
logic. W.C. Powell’s paper [31] defines a ZF-like theory with an additional axiom of double
complement (similar in effect to our support), develops some technical means, such as ordinals
and ranks, and defines a class of stabilized sets, which it proves to be an inner model of classical
ZF. The paper [11] by R.J. Grayson omits double complement but uses collection instead of
replacement, and constructs, within the theory, a Heyting-valued universe over a complete
Heyting algebra. Using a particular Boolean algebra which it constructs, it shows relative
consistency with respect to ZF. This paper also offers examples of how (variants of) axioms of
classical ZFcan strengthen the underlying logic to the classical one. For example, the axiom
of foundation, together with a very weak fragment of ZF, implies the law of the excluded
middle, which yields the full classical logic (both in intuitionistic logic and in the logics we
use here), and thus the theory becomes classical. It also shows—by using ∈-induction instead
of foundation—that some classically equivalent principles are no longer equivalent in a weaker
logical setting.

Inspired by the intuitionistic set theory results, G. Takeuti and S. Titani wrote [35] on
ZF-style set theory over Gödel logic, giving an axiomatization and presenting some nice
mathematics. Later, the authors enhanced their approach to the comprehensive work [36].
Therein, the logical system combines  Lukasiewicz connectives with the product conjunction,
the strict negation and a constant denoting 1

2 on [0, 1] (thus defining the well-known logic of
Takeuti and Titani, a predecessor of the logics  LΠ and  LΠ1

2—see [15, Sect. 9.1]). This logic
contains Gödel logic, and it is Gödel logic that is used in the set-theoretic axioms. Equality
in this system is many-valued. Within their set-theoretic universe, Takeuti and Titani are
then able to reconstruct the algebra of truth values determining the logic, and they also prove
a completeness theorem. In her paper [38], Titani gives analogous constructions, including
completeness, for a set theory in lattice-valued logic. This theory was interpreted in FSTBL

in [20].
We will now start developing our theories FSTBL and FSTMTL. We will not give proofs

for statements that were proved elsewhere, for FSTBL; as for a possible generalization for
FSTMTL, proofs can be obtained by inspection of the FSTBL case. For both theories, we
assume the logic contains a (crisp) equality. The only non-logical symbol in the language is
a binary predicate symbol ∈.

Definition 3.1. In both FSTBL and FSTMTL we define:

• Crispness: Cr(x) ≡df (∀u)4(u ∈ x ∨ u /∈ x)

• Inclusion: x ⊆ y ≡df (∀z ∈ x)(z ∈ y)

Semantically, crisp sets only take the classical membership values. Using Lemma 2.6 one
gets:

Cr(x)←→ (∀u)4(u ∈ x→4(u ∈ x)←→
4(∀u)(u ∈ x→4(u ∈ x))←→44(∀u)(u ∈ x→4(u ∈ x)),
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so crispness itself is a crisp property: one has `MTL∀4 Cr(x)↔4Cr(x). Thus also Cr(x)←→
4Cr(x)←→ (4Cr(x))2 ←→ (Cr(x))2.

Definition 3.2. FSTBL is a theory over BL∀4=, with a basic predicate symbol ∈. (FSTMTL

is defined analogously over MTL∀4=.) The axioms of the theory are as follows:

1. Extensionality: x = y ↔ 4(x ⊆ y) &4(y ⊆ x); the condition on the right is MTL∀4-
equivalent to (∀z)4(z ∈ x↔ z ∈ y)

2. Empty set: (∃x)4(∀y)(y /∈ x); we introduce1 a new constant ∅

3. Pair: (∃z)4(∀u)(u ∈ z ↔ (u = x∨u = y); we introduce the pairing {x, y} and singleton
{x} function symbols

4. Union: (∃z)4(∀u)(u ∈ z ↔ (∃y)(u ∈ y & y ∈ x)); we introduce a unary function
symbol

⋃
x, and we use x ∪ y for

⋃
{x, y}

5. Weak power: (∃z)4(∀u)(u ∈ z ↔ 4(u ⊆ x)); we introduce a unary function symbol
WP(x)

6. Infinity: (∃z)4(∅ ∈ z & (∀x ∈ z)(x ∪ {x} ∈ z))

7. Separation: (∃z)4(∀u)(u ∈ z ↔ (u ∈ x & ϕ(u, x))), if z is not free in ϕ; we introduce a
function symbol {u ∈ z | ϕ(u, x)}, and we use x ∩ y for {u ∈ x | u ∈ y}

8. Collection: (∃z)4((∀u ∈ x)(∃v)ϕ(u, v)→ (∀u ∈ x)(∃v ∈ z)ϕ(u, v)), if z is not free in ϕ

9. ∈-Induction: 4(∀x)(4(∀y ∈ x)ϕ(y)→ ϕ(x))→4(∀x)ϕ(x)

10. Support: (∃z)(Cr(z) &4(x ⊆ z)); we introduce a unary function symbol Supp(x).

Let us remark that making = a crisp predicate is not an altogether arbitrary decision.
Indeed, in particular logics, such as  Lukasiewicz logic or product logic,2 even much weaker
assumptions on equality than those of Definition 2.3 entail its crispness; this was pointed
out by Petr Hájek in an unpublished note. This, together with the fact that a crisp equality
is much easier to handle (while it does not prevent a development of a very rich fuzzy set
theory), makes the crispness of = a universal choice in our theory.

We consistently use 4 after existential quantifiers3 in axioms in order to be able to define
some of the standard set-theoretic operations like the empty set, a pair, a union, the set ω,
etc., as the Skolem functions of these axioms (i.e., by Theorem 2.11). Notice that if FSTBL

and FSTMTL were defined with the function symbols for these set-theoretic operations in the
primitive language, the corresponding Skolem axioms (i.e., y /∈ ∅, u ∈ {x, y} ↔ u = x ∨ u = y,
etc.) would not contain these 4’s.

In the weak power set axiom, the second 4 weakens the statement.
Further, similarly as in set theory over the intuitionistic logic (see [11]), the axiom

of foundation in a very weak setting implies the law of excluded middle for all formulae.

1At the same time, we add the axiom y /∈ ∅ to the theory; see Theorem 2.11. Henceforth, whenever we add
new constants and function symbols, we also add the corresponding axioms implicitly.

2In fact, in any logic that proves the schema (ϕ→ ϕ2)→ (ϕ ∨ ¬ϕ); cf. Remark 2.4.
3Note the semantics of the existential quantifier: mere validity of a formula (∃x)ϕ(x) in a model M does

not guarantee that there is an object m for which ‖ϕ(m)‖M = 1.
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Therefore, ∈-induction is used instead. For a reader familiar with [21], we point out that
here we employ a different spelling of the ∈-induction schema: originally, the schema read
4(∀x)((∀y ∈ x)ϕ(y) → ϕ(x)) → 4(∀x)ϕ(x). The current form of induction axiom was in-
spired by Titani’s paper [38]. As pointed out in [20], it is an open problem whether the
original ∈-induction implies the current one (the converse is obviously the case).

Given the above sample of possible problems, the first thing one might like to vouchsafe
is that the presented theory really is fuzzy, i.e., that it admits many-valued models. In [21],
this has been done for FSTBL, in the following manner.

Take a complete BL∀4-chain A = 〈A, ∗A,→A,∧A,∨A, 0A, 1A,4A〉 and define a universe
V A by transfinite induction. Take Fnc(x) for a unary predicate stating that x is a function,
and Dom(x) and Rng(x) for unary functions assigning to x its domain and range, respectively.
Set:

V A
0 = {∅}

V A
α+1 = {f : Fnc(f) & Dom(f) = V A

α & Rng(f) ⊆ A} for any ordinal α

V A
λ =

⋃
α<λ

V A
α for a limit ordinal λ

V A =
⋃

α∈Ord

V A
α

Observe that α ≤ β ∈ Ord implies V A
α ⊆ V A

β . Define two binary functions from V A

into A, assigning to any u, v ∈ V A the values ‖u ∈ v‖ and ‖u = v‖ in A:

‖u ∈ v‖ = v(u) if u ∈ Dom(v), otherwise 0A

‖u = v‖ = 1A if u = v, otherwise 0A

and use induction on the complexity of formulae to define for any formula ϕ(x1, . . . , xn) a
corresponding n-ary function from (V A)n into A, assigning to an n-tuple u1, . . . , un the value
‖ϕ(u1, . . . , un)‖:

‖0‖ = 0A

‖ψ & χ‖ = ‖ψ‖ ∗A ‖χ‖, and similarly for →, ∧ and ∨
‖4ψ‖ = 4A‖ψ‖

‖(∀x)ψ‖ =
∧
u∈V A ‖ψ(x/u)‖

‖(∃x)ψ‖ =
∨
u∈V A ‖ψ(x/u)‖

For a sentence ϕ, one says that ϕ is valid in V A iff ‖ϕ‖ = 1A is provable in ZF. We are able
to demonstrate the following soundness result:

Theorem 3.3. Let ϕ be a closed formula provable in FSTBL. Let A be a complete BL∀4-
chain. Then ϕ is valid in V A.

We remark that an analogous construction of an A-valued universe can be performed
for a complete MTL∀4-algebra; based on that, the above result can be stated for FSTMTL

w.r.t. the universe defined over such algebra. In either case, the given construction provides
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an interpretation of the fuzzy set theory in classical ZF. Currently, there is no completeness
theorem available.4

Within FSTBL, one can define a class of hereditarily crisp sets and prove it to be an inner
model of ZF in FSTBL.

Definition 3.4. In FSTBL we define the following predicates:

• HCT(x) ≡df Cr(x) & (∀u ∈ x)(Cr(u) & u ⊆ x); we write x ∈ HCT for HCT(x)

• H(x) ≡df Cr(x) & (∃x′ ∈ HCT)(x ⊆ x′); we write x ∈ H for H(x)

Lemma 3.5. FSTBL proves that HCT and H are crisp classes, and moreover, that H is
transitive.

It was shown in [21] that FSTBL proves H to be an inner model of ZF. In more detail, for
ϕ a formula in the language of ZF (where the language of classical logic is considered with
connectives &, →, 0, and the universal quantifier ∀) one defines a translation ϕH inductively
as follows:

ϕH = ϕ for ϕ atomic

0H = 0

(ψ & χ)H = ψH & χH

(ψ → χ)H = ψH → χH

((∀x)ψ)H = (∀x ∈ H)(ψH)

(Then also (¬ψ)H = ¬(ψH), (ψ ∨ χ)H = ψH ∨ χH, and ((∃x)ψ)H = (∃x ∈ H)(ψH)).
One can show that the law of the excluded middle holds in H:

Lemma 3.6. Let ϕ(x1, . . . , xn) be a ZF-formula whose free variables are among x1, . . . , xn.
Then FSTBL proves (∀x1 ∈ H) . . . (∀xn ∈ H)(ϕH(x1, . . . , xn) ∨ ¬ϕH(x1, . . . , xn)).

Considering classical ZF with the axioms of empty set, pair, union, power set, infinity,
separation, collection, extensionality, and ∈-induction, one can prove their translations in
FSTBL:

Lemma 3.7. For ϕ being the universal closure of any of the abovementioned axioms of ZF,
FSTBL proves ϕH.

This provides an interpretation of ZF in FSTBL (in particular, H is an inner model of ZF
in FSTBL):

Theorem 3.8. Let a closed formula ϕ be a theorem of ZF. Then FSTBL ` ϕH.

Moreover, the interpretation is faithful: if FSTBL ` ϕH, then ZF ` ϕH (since it is formally
stronger), but then ZF ` ϕ.

Again, by inspection of the proof, one arrives at the conclusion that exactly the same
result can be obtained for FSTMTL. This poses the question of a formal difference between

4Clearly, if one chooses the standard MV-algebra [0, 1] L for A, then expectably the set theory with the
above axioms built over  L∀4 will not be complete w.r.t. V A, as V A preserves the logic of A and [0, 1] L is not
recursively axiomatizable.
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FSTBL and FSTMTL: it would be interesting to determine to what degree the two theories,
built in one fashion over two distinct logics, differ.

We now discuss ordinal numbers in FSTBL, along the lines of [20]. In order to obtain a
suitable definition of ordinal numbers in FSTBL, we rely on Theorem 3.8. Recall the classical
definition of an ordinal number by a predicate symbol Ord0:

Ord0(x) ≡df (∀y ∈ x)(y ⊆ x) &

(∀y, z ∈ x)(y ∈ z ∨ y = z ∨ z ∈ y) &

(∀q ⊆ x)(q 6= ∅ → (∃y ∈ q)(y ∩ q = ∅))

If x ∈ H, then Ord0(x) ↔ OrdH
0 (x), and Ord0(x) is crisp. We define ordinal numbers to

be those sets in H for which OrdH
0 is satisfied:

Definition 3.9. In FSTBL we define: Ord(x) ≡df x ∈ H & Ord0(x).

Furthermore, we define in FSTBL:

CrispFn(f) ≡df Rel(f) & Cr(f) & (∀x ∈ Dom(f))(〈x, y〉 ∈ f & 〈x, z〉 ∈ f → y = z)

where the property of being a relation, and the operations of ordered pair, domain, and range
are defined as in classical ZF.

The iterated weak power property is as follows:

ItWP(f) ≡df CrispFn(f) & Dom(f) ∈ Ord & f(∅) = ∅ &

(∀α ∈ Ord)(α 6= ∅ & α ∈ Dom(f)→ f(α) =
⋃
β∈α

WP(f(β)))

The notion is crisp: ItWP(f) ↔ 4ItWP(f). Moreover, ItWP(f) & ItWP(g) & Dom(f) ≤
Dom(g)→4(f ⊆ g).

Lemma 3.10. FSTBL proves: (∀α ∈ Ord)(∃f)(ItWP(f) & Dom(f) = α).

Definition 3.11. For each α ∈ Ord, let V̂α be the unique (crisp) set z such that:

(∃f)(ItWP(f) & α ∈ Dom(f) & f(α) = z)

Then one can show some classical results about ordinal induction and ranks, such as:

Theorem 3.12. FSTBL proves: (∀x)(∃α ∈ Ord)(x ∈ V̂α).

4 Arithmetic and the truth predicate

In this section we focus on theories of arithmetic over fuzzy logic. We recall the results
obtained in [22], taking into account also [32]; these papers muse on the degree to which
considering a logical system formally weaker than the classical one eradicates the paradoxes
one obtains when adding a truth predicate to a theory of arithmetic. Then we briefly visit
the method which Petr Hájek used in order to show that the first-order satisfiability problem
in a standard product algebra is non-arithmetical (in [17]). Interestingly, in all these works,
the theory of arithmetic is a crisp one—enriched, in the respective cases, by new language
elements that admit a many-valued interpretation.
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4.1 Classical arithmetic and the truth predicate

We start with a tiny review of theories of arithmetic in classical first-order logic. The language
of arithmetic has a unary function symbol s for successors, binary function symbols + for
addition and · for multiplication, an object constant 0, and its predicate symbols are = for
equality and ≤ for ordering.5 An arithmetical formula (sentence) is a formula (sentence) in
this language.

We assume = is a logical symbol and the usual axioms for it are implicitly present.
Robinson arithmetic Q has the following axioms:

(Q1) s(x) = s(y)→ x = y

(Q2) s(x) 6= 0

(Q3) x 6= 0→ (∃y)(x = s(y))

(Q4) x+ 0 = x

(Q5) x+ s(y) = s(x+ y)

(Q6) x · 0 = 0

(Q7) x · s(y) = x · y + x

(Q8) x ≤ y ↔ (∃z)(z + x = y)

Peano arithmetic PA adds induction, usually as an axiom schema. Here we will need a
(classically equivalent) rule: for each arithmetical formula ϕ, from ϕ(0) and (∀x)(ϕ(x) →
ϕ(s(x))) derive (∀x)ϕ(x).

The standard model of arithmetic is the structure N = 〈N, 0, s,+, ·,≤〉, where N is the
set of natural numbers and 0, s, +, ·, ≤ are the familiar operations and ordering of natural
numbers (by an abuse that is quite common, the same notation is maintained for the symbols
of the language and for their interpretations on N).

An arithmetization of syntax, first introduced by Gödel, is feasible in theories of arithmetic
such as Q or PA; thereby, in particular, each arithmetical formula ϕ is assigned a Gödel
number, denoted ϕ. Then one obtains a classical diagonal result: for T a theory containing
PA,6 and for each formula ψ in the language of T with exactly one free variable, there is a
sentence ϕ in the language of T such that T ` ϕ↔ ψ(ϕ).

A theory T such as above (i.e., with a Gödel encoding of formulae), has a truth predicate iff
its language contains a unary predicate symbol Tr such that T ` ϕ↔ Tr(ϕ) for each sentence
ϕ of the language. This is what Petr Hájek likes to call the (full) dequotation scheme, with
the following example for its import: the sentence ‘It’s snowing.’ is true if and only if it’s
snowing. Hence another term in usage ‘It’s snowing–“It’s snowing” lemma’. On the margin,
we remark that a per-partes dequotation is native to PA (or indeed, IΣ1): one can define
partial truth predicates for fixed levels of the arithmetical hierarchy and fixed number of free
variables (see [23]). However, here it is required of Tr that it do the same job uniformly for
all formulae.

The juxtaposition of the diagonal result with the requirements posed on a truth predicate
reveals that consistent arithmetical theories (over classical logic) cannot define their own truth
(a result due to Tarski): taking ¬Tr(x) for ψ(x), diagonalization yields a sentence ϕ such that
T ` ϕ↔ ¬Tr(ϕ), so T ` ϕ↔ ¬ϕ, a contradiction.

5One can also take ≤ to be a defined symbol, relying on axiom (Q8).
6An analogous statement can be formed for weaker theories, including Q.
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4.2 Arithmetic with a fuzzy truth predicate

The paper [22] notes that a (crisp) Peano arithmetic might be combined with a (many-valued)
truth predicate over  Lukasiewicz logic (where the existence of a ϕ such that ϕ ↔ ¬ϕ is not
contradictory); it then proceeds to develop the theory. We shall reproduce its main results,
in combination with those from [32].

Definition 4.1. PA L stands for a Peano arithmetic in  Lukasiewicz logic, i.e., a theory with
the axioms and rules of first-order  Lukasiewicz logic  L∀, the congruence axioms of equality
w.r.t. the primitive symbols of the language of arithmetic, the above axioms (Q1)–(Q8), and
the induction rule.

Making PA L crisp is easy: one postulates a crispness axiom for the predicate symbol = as
the only basic predicate symbol of the theory (≤ is definable). In other words, x = y ∨ x 6= y
is adopted as a new axiom. Then one can prove crispness for all arithmetical formulae,
propagating it over connectives and quantifiers.

However, the work [32] of G. Restall (actually earlier than [22]) shows that PA L is provably
crisp even without a crispness axiom.7 The proof is a neat example of weakening operating
hand in hand with the induction rule, showing that:

1. PA L ` x = 0 ∨ x 6= 0

2. If PA L ` ϕ(0, y) and PA L ` ϕ(x, 0) and PA L ` ϕ(x, y) → ϕ(s(x), s(y)), then PA L `
ϕ(x, y).

3. PA L ` (∃x)(x = 0↔ y = z)

4. PA L ` y = z ∨ y 6= z

and consequently:

Theorem 4.2 ([32]). Let ϕ(x1, . . . , xn) be an arithmetical formula. Then

PA L ` ϕ(x1, . . . , xn) ∨ ¬ϕ(x1, . . . , xn).

Crispness pertaining to PA L as the theory of numbers, as Restall goes on to remark, need
not concern additional concepts that one may wish to add to it, such as the truth predicate;
these may be governed by the laws of  Lukasiewicz logic  L∀.

Definition 4.3 ([22]). PA LTr is the theory obtained from PA L by expanding its language
with a new unary predicate symbol Tr (extending the congruence axioms of = to include Tr,
while only arithmetical formulae are considered in the induction rule) and adding the axiom
schema ϕ↔ Tr(ϕ) for each formula ϕ of the expanded language.

Theorem 4.4 ([22]). PA LTr is consistent.8

7In fact, Restall does not prove the crispness axiom in PA L but rather verifies it as a semantic consequence
of the theory PA L in the standard MV-algebra; note that this is a weaker statement since  L∀ is not complete
w.r.t. the standard MV-algebra. Still, each of the steps can be reconstructed syntactically in PA L.

8In fact, [22] proves a stronger statement, for a variant of PA LTr allowing the predicate symbol Tr to occur
in formulae the induction rule is applied to.
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Hence any theory obtained by replacing  L∀ with a weaker logic is consistent too. In
choosing a weaker logic, one might want to retain weakening in order to be able to prove
crispness of the arithmetical part.

The paper then proceeds to show that one cannot go further and demand that Tr as
formalized truth commute with the connectives: such a theory is contradictory.

Theorem 4.5 ([22]). The standard model N cannot be expanded to a model of PA LTr. Thus
PA LTr has no standard model.

Actually, [32] shows that PA L as such is ω-inconsistent over the standard MV-algebra
[0, 1] L. It is yet to be investigated whether Peano arithmetic with a truth predicate developed
in a suitable weaker logic than  L∀ might have standard models.

4.3 Non-arithmeticity of product logic

Now we turn to a different topic, though with the same arithmetic flavour. We recall the
main result of [17], where a particular expansion of a crisp, finitely axiomatizable arithmetic
over first-order product logic Π∀ is considered, in order to show that first-order satisfiability
in standard product algebra [0, 1]Π is non-arithmetical.

Definition 4.6 ([17]).

1. QΠ stands for a crisp theory extending Robinson arithmetic in product logic with finitely
many axioms (such as the theory PA− of [25]).9

2. QΠU expands QΠ with a new unary predicate U and adds the following axioms:

¬(∀x)Ux

¬(∃x)¬Ux
y = s(x)→ (Uy ↔ (Ux)2)

x ≤ y → (Uy → Ux)

Informally speaking, the axioms enforce the truth value of Ux to decrease monotonically
(and exponentially) towards 0, but never reaching it, as x is iteratively incremented by the
successor function s. Hájek has shown that, among all (classical) structures for the language
of arithmetic, exactly those that are isomorphic to the standard model of arithmetic (N ) can
be expanded to a [0, 1]Π-model of QΠU. Hence, one can decide truth in the standard model of
arithmetic in the manner indicated in the next theorem. Take

∧
QΠU to be the ∧-conjunction

of all axioms of QΠU.

Theorem 4.7 ([17]). An arithmetical sentence ϕ is true in N iff the formula∧
QΠU ∧ ϕ

is satisfiable in [0, 1]Π.

Hence, first-order satisfiability in [0, 1]Π is a non-arithmetical decision problem. This
technique inspired Franco Montagna to prove that also first-order tautologousness in the
standard product algebra [0, 1]Π, as well as in all standard BL-algebras, are non-arithmetical;
these results are to be found in [29], actually in the volume containing also Hájek’s paper [17].

9The authors thank V. Švejdar for providing this reference.
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5 Cantor– Lukasiewicz set theory

Another first-order mathematical theory to which Hájek has significantly contributed is näıve
set theory over  Lukasiewicz logic. As is well known, the rule of contraction (or equivalently
the validity of ϕ→ ϕ&ϕ in sufficiently strong logics) is needed to obtain a contradiction from
the existence of Russell’s set by the usual proof. Indeed, the consistency of the unrestricted
comprehension schema has been established over several contraction-free logics, including the
logic BCK [30] and variants of linear logic [37, 12].  Lukasiewicz logic, which is closely related
to the latter logics and like them disvalidates the contraction rule, is thus a natural candidate
for the investigation of whether or not it can support a consistent and viable näıve set theory.

The consistency of the unrestricted comprehension schema over  Lukasiewicz logic was
first conjectured by Skolem [33] in 1957. In the 1960’s, Skolem [34], Chang [5], and Fenstad
[6] obtained various partial consistency results for the comprehension schema restricted to
certain syntactic classes of formulae. A proof of the full consistency theorem was eventually
published in 1979 by White [39]. Unlike its predecessors, White’s proof was based strictly on
proof-theoretical methods and did not attempt at constructing a model for the theory.

White’s proof of the consistency of unrestricted comprehension over  Lukasiewicz logic
prompted Hájek to elaborate the theory, for which he coined the name Cantor– Lukasiewicz
set theory. With the consistency of Cantor– Lukasiewicz set theory supposedly established, its
non-triviality was questioned: i.e., whether the theory is strong enough to reconstruct reason-
ably large parts of mathematics (as conjectured already by Skolem). Hájek’s contributions
[18, 13, 14], dealing mainly with arithmetic and decidability in Cantor– Lukasiewicz set the-
ory, gave a partially negative answer to this question. Näıve comprehension over (standard)
 Lukasiewicz logic has also been developed by Restall [32], some of whose earlier results Hájek
independently rediscovered in [18], and by Yatabe [40, 41] who extended some of Hájek’s
results. We survey the results on Cantor– Lukasiewicz set theory in Sections 5.1–5.2.

In 2009 Terui (pers. comm.) found what appears to be a serious gap in White’s consis-
tency proof. Consequently, the consistency status of Cantor– Lukasiewicz set theory remains
unknown. It is therefore worth asking which of Hájek’s and Yatabe’s results survive in weaker
fuzzy logics, such as IMTL or MTL.10 This problem is addressed in Section 5.3 below, giving
some initial positive results and indicating the main problems that such enterprize has to
face.

5.1 Basic notions of Cantor– Lukasiewicz set theory

Definition 5.1 ([18]). Cantor– Lukasiewicz set theory, denoted here by C L,11 is a theory in
first-order  Lukasiewicz logic. The language of C L is the smallest language L such that it
contains the binary membership predicate ∈ and for each formula ϕ of L and each variable x
contains the comprehension term {x | ϕ}. (Thus, comprehension terms in C L can be nested.)
The theory C L is axiomatized by the unrestricted comprehension schema:

y ∈ {x | ϕ(x)} ↔ ϕ(y),

10The consistency status of näıve comprehension over these logics is not known, either. Still, being weaker,
they have better odds of consistency even if näıve comprehension turns out to be inconsistent over  Lukasiewicz
logic.

11In [18] and subsequent papers, the theory was denoted by C L0, whereas C L denoted an inconsistent
extension of C L0. In this paper we shall use a systematic symbol CL for näıve set theory over the logic L. The
corresponding theory over standard [0, 1] L-valued  Lukasiewicz logic is called H in [39, 40].
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for each formula ϕ of C L and any variables x, y.

Remark 5.2. An alternative way of axiomatizing näıve set theory is to use the comprehension
schema of the form:

(∃z)(∀x)(x ∈ z ↔ ϕ) (1)

for any formula ϕ in the language containing just the binary membership predicate ∈ and not
containing free occurrences of the variable z. The latter restriction is partly alleviated by the
fixed-point theorem (see Theorem 5.9 below), which makes it possible to introduce sets by
self-referential formulae (though not uniquely). The comprehension terms of Definition 5.1
are then the Skolem functions of the comprehension axioms (1), conservatively introduceable,
eliminable, and nestable by Theorems 5.6 and 2.11 and Lemma 2.8.

Remark 5.3. Clearly, no bivalent or even finitely-valued propositional operator can be ad-
mitted in the propositional language of näıve set theories over fuzzy logics on pain of con-
tradiction, as Russell’s paradox could easily be reconstructed by means of such an operator.
Unrestricted comprehension is thus inconsistent in any fuzzy logic with 4 (incl.  L4) as well
as in any fuzzy logic with strict negation (e.g., Gödel logic, product logic, and the logics SBL
and SMTL). For further restrictions on the fuzzy logic underlying näıve comprehension see
Corollary 5.26 below.

Cantor– Lukasiewicz set theory is in many respects similar to other näıve set theories over
various logics, esp. substructural. In particular, the shared features include the distinction
between intensional and extensional equality, the fixed-point theorem, the existence of the
universal and Russell’s set, non-well-foundedness of the universe, etc. The reason for these
resemblances is the fact that the proofs of these theorems are mainly based on instances of the
comprehension schema and involve just a few logical steps, all of which are available in most
usual non-classical logics. Moreover, the comprehension schema ensures the availability of the
constructions provided by the axioms of ZF-style set theories, such as pairing, unions, power
sets, and infinity. We shall give a brief account of these features of C L. Unless a reference is
given, the proofs are easy or can be found in [18] or [4].

First observe that by the comprehension schema, the usual elementary fuzzy set operations
are available in C L:

Definition 5.4. In C L, we define:12

∅ =df {q | ⊥} rx =df {q | q /∈ x}
x ∩ y =df {q | q ∈ x & q ∈ y} x ∪ y =df {q | q ∈ x⊕ q ∈ y}
x u y =df {q | q ∈ x ∧ q ∈ y} x t y =df {q | q ∈ x ∨ q ∈ y}

The usual properties of these fuzzy set operations are provable in C L.13 Notice, however,
that the notions of kernel and support of a fuzzy set are undefinable in C L, as they would

12See Theorems 2.10–2.11 for the conservativeness of these (and subsequent similar) definitions in C L. The
symbol ⊕ denotes the ‘strong’ disjunction of  Lukasiewicz logic, defined in  L as ϕ⊕ ψ ≡df ¬(¬ϕ& ¬ψ).

13The schematic translation of propositional tautologies into theorems of elementary fuzzy set theory pre-
sented in [2] only relies on certain distributions of quantifiers, and so works for C L (as well as CMTL introduced
in Section 5.3). The converse direction (disproving theorems not supported by propositional tautologies), how-
ever, cannot be demonstrated in the same way as in the higher-order fuzzy logic of [2] (namely, by constructing
a model from the counterexample propositional evaluation), since no method of constructing models of C L or
CMTL is known. In fact, it is well possible (esp. for CMTL) that the comprehension schema does strengthen
the logic of the theory (as it does exclude some algebras of semantic truth values, see comments following
Theorem 5.19 and preceding Corollary 5.26 in Section 5.3 below).
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make the connective 4 definable (by setting 4ϕ(y) ≡ y ∈ Ker{x | ϕ(x)}). Thus unlike ZF-
style fuzzy set theories (such as FST of Section 3), näıve fuzzy set theories can hardly serve
as axiomatizations of Zadeh’s fuzzy sets, as some of the basic concepts of fuzzy set theory
cannot be defined in theories with unrestricted comprehension.14

Definition 5.5. In C L, we define the following binary predicates:

• Inclusion: x ⊆ y ≡df (∀u)(u ∈ x→ u ∈ y).

• Extensional equality (or co-extensionality):15 x ≈ y ≡df (∀u)(u ∈ x↔ u ∈ y).

• Leibniz equality: x = y ≡df (∀u)(x ∈ u↔ y ∈ u).

We will use x 6= y, x 6≈ y, x /∈ y, etc., respectively for ¬(x = y), ¬(x ≈ y), ¬(x ∈ y), etc.

As there is a direct correspondence between sets and properties in C L, the definition of
Leibniz equality effectively says that the sets which have the same properties (expressible
in the language of C L) are equal (cf. Leibniz’s principle of identity of indiscernibles). Since
moreover a concept’s intension is often identified with the set of its properties, Leibniz equality
can also be understood as co-intensionality, or intensional equality. Unlike in first-order
fuzzy logics with identity (see Section 2), the predicates = and ≈ are defined predicates
of C L. It turns out that the properties required of the identity predicate (in particular,
the intersubstitutivity of identicals) are satisfied by Leibniz equality, but not by extensional
equality. Since moreover Leibniz equality turns out to be crisp in C L, it can be understood
as the crisp identity of the objects of C L (i.e., each model of C L can be factorized by = salva
veritate of all formulae).

The following theorem lists basic provable properties of both equalities.

Theorem 5.6. C L proves:

1. Both = and ≈ are fuzzy equivalence relations; i.e.:

x = x, x = y → y = x, x = y & y = z → x = z,

and analogously for ≈. Moreover, ⊆ is a fuzzy preorder whose min-symmetrization is ≈:

x ⊆ x, x ⊆ y & y ⊆ z → x ⊆ z, x ≈ y ↔ x ⊆ y ∧ y ⊆ x.

2. Leibniz equality is crisp, i.e., x = y ∨ x 6= y.

3. Leibniz equality ensures intersubstitutivity: x = y → (ϕ(x) ↔ ϕ(y)), for any C L-
formula ϕ.

4. Leibniz equality implies co-extensionality: x = y → x ≈ y. The converse (i.e., the
extensionality of C L-sets), however, is inconsistent with C L [18].16

14In order to become a full-fledged theory of fuzzy sets, some kind of (preferably, conservative) extension of
näıve fuzzy set theories would be needed: cf. [1] and [14, §3]. Such extensions, however, make the comprehension
axioms restricted to the formulae in the original language, and so lose the intuitive appeal of the unrestricted
comprehension schema. Cf. Remark 5.15 below.

15In [4] as well as [18] and subsequent papers, extensional equality was denoted by =e.
16 In fact, as proved in [13], if C L ` t /∈ t for a term t, then there is a term t′ such that C L ` t ≈ t

′ & t 6= t′.
Moreover, as also proved in [13], if C L ` (∀u)(u ≈ t → u /∈ t) for a term t, then there are infinitely many
terms ti such that C L proves t ≈ ti and ti 6= tj , for each i, j ∈ N. (Thus, for instance, there are infinitely many
Leibniz-different empty sets.) The above terms t′, ti are defined by the fixed-point theorem (i.e., Theorem 5.9
below).
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By means of the crisp identity, (crisp) singletons, pairs, and ordered pairs can be defined
in C L:

Definition 5.7. In C L, we define (for all k ≥ 1):

{x} =df {q | q = x} {x, y} =df {q | q = x ∨ q = y}
〈x, y〉 =df {{x}, {x, y}} 〈x1, . . . , xk, xk+1〉 =df 〈〈x1, . . . , xk〉, xk+1〉

The behavior of these crisp sets is as expected (cf. Theorem 5.18 below). In particular,
C L proves 〈x, y〉 = 〈u, v〉 ↔ x = u ∧ y = v. This makes it possible to employ the following
notation:

Convention 5.8. By {〈x, y〉 | ϕ} we abbreviate the comprehension term {q | (∃x)(∃y)(q =
〈x, y〉 ∧ ϕ)}, and similarly for tuples of higher arities.

Like many other näıve set theories, C L enjoys the fixed-point theorem that makes self-
referential definitions possible:

Theorem 5.9 (The Fixed-Point Theorem). For each formula ϕ(x, . . . , z) of C L there is a
comprehension term ζϕ such that C L proves ζϕ ≈ {x | ϕ(x, . . . , ζϕ)}.

The proof, given in [18], is just a reformulation of the proof from [4], which works well
in C L. The proof is constructive, i.e., yields effectively and explicitly a particular fixed-point
comprehension term ζϕ for each formula ϕ.

Convention 5.10. Let us denote the particular fixed-point comprehension term ζ con-
structed in the proof of Theorem 5.9 by FPz{x | ϕ(x, . . . , z)}. In definitions using the
fixed-point theorem, instead of u =df FPz{x | ϕ(x, . . . , z)} we shall write just u ≈df {x |
ϕ(x, . . . , u)}.

Thus if we define a fixed point u ≈df {x | ϕ(x, . . . , u)}, then by Theorem 5.9, C L proves
q ∈ u ↔ ϕ(q, . . . , u). The fixed-point theorem thus ensures that the “equation” C L ` q ∈
z ↔ ϕ(q, . . . , z) has a solution in z for any formula ϕ(q, . . . , z). Consequently, as usual
in non-classical näıve set theories enjoying the fixed-point theorem, C L proves the (non-
unique) existence of a “Quine atom” u ≈ {u}, a set comprised of its own properties u ≈
{p | u ∈ p}, etc.

5.2 Arithmetic in Cantor– Lukasiewicz set theory

In näıve set theories that enjoy the fixed-point theorem, the set ω of natural numbers can
be defined in a more elegant way than in ZF-like set theories, straightforwardly applying the
idea that a natural number is either 0 or the successor of another natural number. Identifying
0 with the empty set ∅ and the successor s(x) of x with {x}, we define by the fixed-point
theorem:

ω ≈df {n | n = 0 ∨ (∃m ∈ ω)(n = s(m))}. (2)

The definition is not unique w.r.t. Leibniz identity: as shown in [13], there are infinitely many
terms ωi such that ω ≈ ωi (so ωi satisfies the co-extensionality (2) as well), but ωi 6= ωj , for
each (metamathematical) natural numbers i, j ∈ N.17

C L expanded by the constant ω satisfying (2) proves some basic arithmetical properties
of ω (cf. Section 4.1), e.g.:

17This is a corollary of the theorem given in footnote 16, as ω satisfies its conditions.
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Theorem 5.11 ([18]). C L proves:

1. s(x) 6= 0

2. s(x) = s(y)→ x = y

3. x ∈ ω ↔ s(x) ∈ ω

With suitable definitions of addition and multiplication (as given in [13], namely as ternary
predicates, adapting the usual inductive definitions to  Lukasiewicz logic by means of min-
conjunction ∧), further arithmetical properties, amounting in effect to a C L-analogue of
Grzegorczyk’s weakening Q− of Robinson arithmetic, can be proved. The proof of essen-
tial undecidability of the latter weak classical arithmetic can then be adapted for C L, yielding
its essential undecidability and incompleteness. The proof proceeds along the usual lines of
Gödel numbering and self-reference; see [13] for details.

Theorem 5.12 ([13]). The theory C L is essentially undecidable and essentially incomplete;
i.e., each consistent recursively axiomatizable extension of C L is undecidable and incomplete.

Recall, though, that a theory T over first-order  Lukasiewicz logic is considered complete
if for each pair ϕ,ψ of sentences in the language of T , either ϕ→ ψ or ψ → ϕ is provable in T
(see [15]; such theories are also called linear, e.g., in [19]). Incompleteness thus means that for
some pair ϕ,ψ of sentences, neither ϕ → ψ nor ψ → ϕ is provable in T . The self-referential
lemma thus refers to pairs of formulae as well:

Lemma 5.13 ([13]). For each pair ψ1(x1, x2), ψ2(x1, x2) of C L-formulae there is a pair ϕ1, ϕ2

of C L-sentences such that C L proves ϕ1 ↔ ψ1(ϕ1, ϕ2) and ϕ2 ↔ ψ2(ϕ1, ϕ2).

Regarding induction, the situation is tricky:

Theorem 5.14 ([18]). If C L is consistent, then C L extended by the rule

ϕ(0), (∀x)(ϕ(x)↔ ϕ(s(x)))

(∀x ∈ ω)ϕ(x)
,

for any ϕ not containing ω, is consistent as well. However, C L extended by the same rule for
any ϕ (including those containing the constant ω), is inconsistent.

The latter inconsistency claim was demonstrated in [18] by developing arithmetic in the
extended theory, constructing a truth predicate (cf. section 4.2), and showing that it commutes
with connectives, which (as shown in [22]) yields inconsistency.

In the variant of C L over standard [0, 1]-valued  Lukasiewicz logic (called H, see foot-
note 11), the arithmetic of ω can be shown to be ω-inconsistent ([40], cf. [32]); i.e., H ` ϕ(n)
for each numeral n, but also H ` (∃n ∈ ω)¬ϕ(n) for some formula ϕ. It is unclear, though,
whether the result can be extended to C L (see [14]).

It can be shown [13] that in every model of C L, the set ω contains a crisp initial segment
isomorphic to the standard model of natural numbers. However, this segment need not
represent a set of the model (cf. the ω-inconsistency of H).

Remark 5.15. In order to be able to handle such collections of elements that need not be sets,
but are nevertheless present in models of C L, extending C L with classes (which cannot enter
the comprehension schema) has been proposed [14, 1]. Although this move may be technically
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advantageous and can possibly yield an interesting theory, admittedly it destroys the appeal
of unrestricted comprehension by restricting it to class-free formulae. It should be kept in
mind, though, that the tentative consistency of unrestricted comprehension in C L itself is only
admitted by a restriction of its language (see Remark 5.3 above and Corollary 5.26 below),
and therefore does not apply the comprehension principle unrestrictedly anyway. As this
is a common feature of substructural näıve set theories, it suggests that the consistency of
näıve comprehension in certain contraction-free substructural logics (and so the necessity of
contraction for Russell’s paradox) is in a sense “accidental”, and that a truly unrestricted
comprehension principle would require other logical frameworks (such as paraconsistent or
inconsistency-adaptive ones).

5.3 C L over MTL

In this section we shall discuss which of Hájek’s results in C L can survive the weakening of
the underlying logic to the logic MTL. We will only give an initial study, hinting at the main
problems of this transition.

Näıve set theory over the first-order logic MTL axiomatized in the same way as in Defini-
tion 5.1 will be denoted by CMTL. The basic set operations as well as inclusion and the two
equalities can be conservatively introduced in CMTL in the same way as in Definitions 5.4–5.5.
The proof from [4, 18] of the fixed-point theorem (Theorem 5.9) works well in CMTL; conse-
quently, the set ω of natural numbers can be introduced in CMTL in the same self-referential
way as in C L (see Section 5.2).

It can be easily observed that similarly as in C L (cf. Theorem 5.6), both equalities =,≈
are fuzzy equivalence relations, inclusion ⊆ is a fuzzy preorder whose min-symmetrization is
≈, and Leibniz equality implies intersubstitutivity (and therefore also co-extensionality). It
will also be seen later that ≈ is provably fuzzy and differs from = (so the extensionality of
all sets is inconsistent with CMTL, too), although these facts need be proved in a different
manner than in [18].

In [18], the crispness of =, or the provability of (x = y) ∨ (x 6= y), is inferred from the
fact that C L proves contraction (or &-idempotence) for the Leibniz equality, i.e., (x = y) →
(x = y)2. Hájek’s proof of the latter fact works well in CMTL, too. However, since MTL-
algebras (unlike MV-algebras for  Lukasiewicz logic) can have non-trivial &-idempotents, crisp-
ness in MTL does not generally follow from &-idempotence. Consequently, in CMTL Hájek’s
proof only ensures the &-idempotence of the Leibniz identity.

Whether the crispness of = can be proved in CMTL by some additional arguments appears
to be an open problem. Below we give some partial results which further restrict the possible
truth values of Leibniz identity; the complete solution is, however, as yet unknown. The
question is especially pressing since so many proofs of Hájek’s advanced results in [18, 13]
utilize the crispness of = in C L. In some cases, the results can be reconstructed in CMTL

by more cautious proofs; examples of such theorems (though mostly simple ones) are given
below. Since, however, many proofs in [18, 13] seem to use the crispness of = in a very
essential manner, it is currently unclear which part of Hájek’s results on C L described in
Sections 5.1–5.2 can still be recovered in CMTL.

For reference in further proofs, let us first summarize the properties of ⊆, =, and ≈ that
translate readily into CMTL:

Theorem 5.16 (cf. [18]). CMTL proves:
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1. x = x, x = y → y = x, x = y & y = z → x = z, and analogously for ≈

2. x ⊆ x, x ⊆ y & y ⊆ z → x ⊆ z, x ≈ y ↔ x ⊆ y ∧ y ⊆ x

3. x = y → (ϕ(x)↔ ϕ(y)), for any CMTL-formula ϕ.

4. x = y → x ≈ y

5. x = y → (x = y)2

Now let us reconstruct in CMTL some basic theorems of C L, without relying on the crisp-
ness of Leibniz equality. First it can be observed that the &-idempotence of = makes it
irrelevant which of the two conjunctions is used between equalities. Consequently, = is not
only &-transitive (see Theorem 5.16(1)), but also ∧-transitive, so the notation x = y = z can
be used without ambiguity.

Theorem 5.17. CMTL proves:

1. a = b ∧ c = d↔ a = b & c = d

2. x = y ∧ y = z → x = z

Proof. The claims follow directly from Theorem 5.16(5) and Lemma 2.5.

Even without assuming the crispness of =, singletons and pairs (defined as in Defini-
tion 5.7) behave as expected. Unlike C L, where crisp cases can be taken due to the crispness
of = and the proofs are thus essentially classical, CMTL requires more laborious proofs of
these facts.

Theorem 5.18. CMTL proves:

1. {a} = {b} ↔ a = b

2. {a, b} = {c, d} ↔ (a = c ∧ b = d) ∨ (a = d ∧ b = c)

3. {a, b} ⊆ {c} ↔ a = b = c; in particular, {a, b} ≈ {a} ↔ a = b

4. 〈a, b〉 = 〈c, d〉 ↔ a = c ∧ b = d

5. 〈x′, y′〉 ∈ {〈x, y〉 | ϕ(x, y, . . . )} ↔ ϕ(x′, y′, . . . )

6. y ≈ y ∪ {x} ↔ x ∈ y

Proof. 1. Right to left: by intersubstitutivity. Left to right: {a} = {b} −→ {a} ≈ {b} ←→
(∀x)(x ∈ {a} ↔ x ∈ {b})←→ (∀x)(x = a↔ x = b) −→ a = a↔ a = b←→ a = b.

2. Right to left: Both disjuncts imply the consequent by intersubstitutivity. Left to right:

{a, b} = {c, d} −→ {a, b} ≈ {c, d} ←→ (∀x)(x = a ∨ x = b↔ x = c ∨ x = d)←→
(∀x)(x = a ∨ x = b→ x = c ∨ x = d) ∧ (∀x)(x = c ∨ x = d→ x = a ∨ x = b)←→
(∀x)(x = a→ x = c ∨ x = d) ∧ (∀x)(x = b→ x = c ∨ x = d) ∧

(∀x)(x = c→ x = a ∨ x = b) ∧ (∀x)(x = d→ x = a ∨ x = b) −→
(a = c ∨ a = d) ∧ (b = c ∨ b = d) ∧ (c = a ∨ c = b) ∧ (d = a ∨ d = b)
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Distributivity then yields max-disjunction of 16 min-conjunctions, of which 14 are equivalent
to a = b = c = d, one to a = c ∧ b = d, and one to a = d ∧ b = c.

3. Right to left: x ∈ {a, b} −→ x = a ∨ x = b←→ x = c ∨ x = c←→ x = c←→ x ∈ {c};
intersubstitutivity is used in the second step. Left to right:

{a, b} ⊆ {c} ←→ (∀x)(x = a ∨ x = b→ x = c)←→
(∀x)(x = a→ x = c) ∧ (∀x)(x = b→ x = c) −→ a = c ∧ b = c.

4. Right to left: by Theorems 5.18(1)–(2). Left to right: By Theorem 5.18(2),

〈a, b〉 = 〈c, d〉 ↔ ({a} = {c} ∧ {a, b} = {c, d}) ∨ ({a} = {c, d} ∧ {a, b} = {c}).

Thus it is sufficient to show the following two implications:

{a} = {c} ∧ {a, b} = {c, d} ←→ by Th. 5.18(1) and 5.18(2)

a = c ∧ ((a = c ∧ b = d) ∨ (a = d ∧ b = c))←→ by distributivity

(a = c ∧ a = c ∧ b = d) ∨ (a = d ∧ b = c ∧ a = c) −→ by min-transitivity of =

a = c ∧ b = d, and

{a} = {c, d} ∧ {a, b} = {c} −→ by Theorem 5.16(2)

{c, d} ⊆ {a} ∧ {a, b} ⊆ {c} −→ by Theorem 5.18(3)

a = b = c = d −→ a = c ∧ b = d.

5. The claim is proved by the following chain of equivalences:

(∃x)(∃y)(〈x′, y′〉 = 〈x, y〉 & ϕ(x, y, . . . ))←→ by Theorems 5.18(4) and 5.17

(∃x)(∃y)(x = x′ & y = y′ & ϕ(x, y, . . . ))←→ in first-order MTL

(∃x = x′)(∃y = y′)(ϕ(x, y, . . . ))←→ by Lemma 2.7(3)

ϕ(x′, y′, . . . )

6. The claim is proved by the following chain of equivalences (where the last one follows
from Lemma 2.7(2)):

y ≈ y ∪ {x} ←→ (∀q)(q ∈ y ↔ q ∈ y ∨ q = x)←→
(∀q)(q ∈ y → q ∈ y ∨ q = x) ∧ (∀q)(q ∈ y → q ∈ y) ∧ (∀q)(q = x→ q ∈ y)←→
(∀q)(q = x→ q ∈ y)←→ x ∈ y.

Several useful facts about the Leibniz equality can be derived from considering Russell’s
set, r =df {x | x /∈ x}. The following observation is instrumental for these considerations:

Theorem 5.19. CMTL proves: (r ∈ r)2 ↔ ⊥.

Proof. By comprehension, r ∈ r↔ r /∈ r; thus r ∈ r & r ∈ r←→ r ∈ r & r /∈ r←→ ⊥.

Since r ∈ r ↔ r /∈ r, the truth value of the formula r ∈ r is the fixed point % of negation
in the MTL-algebra of semantic truth values in any model of CMTL. Consequently, CMTL

has models only over MTL-algebras possessing the fixed point (e.g., there is no model of
CMTL over Chang’s MV-algebra). Moreover, Theorem 5.19 makes it possible to establish the
inconsistency of extensionality in CMTL without the assumption of the crispness of =:
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Corollary 5.20. CMTL plus the extensionality axiom x ≈ y → x = y is inconsistent.

Proof. Since x = y → x ≈ y is a theorem (Th. 5.16(4)), under extensionality the equality
relations = and≈ would coincide. Thus by Theorems 5.16(5) and 5.18(6), the relation ∈ would
have to yield idempotent values. However, by Theorem 5.19, r ∈ r is not idempotent.

Theorem 5.19 shows that the fixed point % of negation is nilpotent; consequently, there are
no non-trivial idempotents smaller than %. As a corollary, the truth value of Leibniz identity
cannot lie between 0 and %:

Corollary 5.21. CMTL proves: x 6= y ∨ (r ∈ r→ x = y).

Proof. By Theorems 5.16(5) and 5.19, and the strong linear completeness of MTL.
A direct proof in CMTL can easily be given as well: By prelinearity we can prove that

(x = y → r ∈ r)2 ∨ (r ∈ r→ x = y).

Thus to prove Cor. 5.21 it is sufficient to prove (x = y → r ∈ r)2 → (x = y → ⊥). Now,
x = y ←→ (x = y)2 −→ (r ∈ r)2 ←→ ⊥, respectively by Theorem 5.16(5), the assumption
(x = y → r ∈ r)2, and Theorem 5.19.

Thus, only sufficiently large truth values (namely, those larger than the truth value % of
r ∈ r) can be non-trivial idempotents in any model of CMTL. This result can be extended by
considering the following sets:

Definition 5.22. For each n ≥ 1, we define rn =df {x | (x /∈ x)n}

By definition, rn ∈ rn ↔ (rn /∈ rn)n. Consequently, the semantic truth value %n of rn ∈ rn
satisfies %n = (¬%n)n. Clearly, %n > 0 for each n, since otherwise 0 = %n = (¬%n)n = (¬0)n =
1n = 1 6= 0, a contradiction. The values %n form a non-increasing chain:

Theorem 5.23. For each n ≥ 1, CMTL proves: rn+1 ∈ rn+1 → rn ∈ rn.

Proof. We shall prove that (rn ∈ rn → rn+1 ∈ rn+1)n → (rn+1 ∈ rn+1 → rn ∈ rn), whence the
theorem follows by prelinearity.

First, by (rn ∈ rn → rn+1 ∈ rn+1)n we have (rn+1 /∈ rn+1 → rn /∈ rn)n. Then we obtain:

rn+1 ∈ rn+1 ←→ (rn+1 /∈ rn+1)n+1 by definition

−→ (rn+1 /∈ rn+1)n by weakening

−→ (rn /∈ rn)n by (rn+1 /∈ rn+1 → rn /∈ rn)n

←→ rn ∈ rn by definition.

As a corollary to Theorems 5.19 and 5.23, the truth values %n are nilpotent for each n:

Corollary 5.24. (rn ∈ rn)2 ↔ ⊥

Proof. By Theorems 5.19 and 5.23, (rn ∈ rn)2 −→ (r1 ∈ r1)2 ←→ ⊥.

The sequence of truth values %n is in fact strictly decreasing, and the sequence of ¬%n
strictly increasing:
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Theorem 5.25. In any model of CMTL, the truth values %n of rn ∈ rn form a strictly
decreasing chain and the truth values ¬%n of rn /∈ rn form a strictly increasing chain.

Proof. By Theorem 5.23 we know that %n+1 ≤ %n, so ¬%n ≤ ¬%n+1. Suppose ¬%n = ¬%n+1.
Then %n+1 = (¬%n+1)n+1 = (¬%n)n+1 = ((¬%n)n&¬%n) = (%n&¬%n) = 0, but we have already
observed that %n+1 > 0 for all n—a contradiction. Thus ¬%n+1 6= ¬%n, so ¬%n+1 > ¬%n and
%n+1 < %n.

As a corollary we obtain that the theory CMTL is infinite-valued, as each model’s MTL-
algebra contains an infinite decreasing chain of truth values below the fixed point of ¬ and an
infinite increasing chain of truth values above the fixed point of ¬. Moreover, since (¬%n)n =
%n, which by Corollary 5.24 is not idempotent, ¬%n is not n-contractive.18 Consequently,
there are no models of CMTL over n-contractive MTL-algebras, for any n ≥ 1:

Corollary 5.26. Näıve comprehension is inconsistent in all logics CnMTL of n-contractive
MTL-algebras (i.e., in MTL plus the axiom ϕn−1 → ϕn), for any n ≥ 1. Consequently, it
is also inconsistent in any extension of any CnMTL, which class includes all logics SnMTL
of n-nilpotent MTL-algebras (i.e., MTL plus the axiom ϕn−1 ∨ ¬ϕ) as well as the logics NM
and WNM of (weak) nilpotent minima.19

By Theorem 5.25, the truth values ¬%n of rn /∈ rn form an increasing sequence. By
Corollary 5.24, each ¬%n is nilpotent, since (¬%n)2n = ((¬%n)n)2 = %2

n = 0. Non-trivial
idempotents can thus only occur among truth values larger than all ¬%n:

Corollary 5.27. In any model of CMTL, all non-trivial idempotents are larger than all truth
values ¬%n of rn /∈ rn. (In particular, they are larger than the fixed point %1 of negation).

This fact is internalized in the theory by the following strengthening of Corollary 5.21:

Corollary 5.28. For all n ≥ 1, CMTL proves: x 6= y ∨ (rn /∈ rn → x = y).

Proof. The proof is analogous to that of Corollary 5.21: by prelinearity, it is sufficient to
prove (x = y → rn /∈ rn)2n → x 6= y, which obtains by x = y ←→ (x = y)2n −→ (r ∈ r)2n ←→
(rn ∈ rn)2 ←→ ⊥, using the previous observations.

By Corollary 5.27, the truth values of the Leibniz equality can only be 0 or sufficiently
large (namely, larger than all %n). At present it is, however, unclear whether they have to
be crisp or not. As we have seen in Theorems 5.16–5.18, some basic properties of Leibniz
equality known from C L can be proved in CMTL by more laborious proofs even without the
assumption of the crispness of =. However, since most of Hájek’s results on arithmetic in C L

rely heavily on the crispness of identity, it is unclear whether they can be reconstructed in
CMTL or not.

18Recall that an element x of an MTL-algebra is called n-contractive if xn−1 = xn. Equivalently, x is n-
contractive if xn−1 is idempotent. An MTL-algebra is called n-contractive if all its elements are n-contractive.

19Owing to the existence of a fixed point %1 of negation, näıve comprehension is furthermore inconsistent in
logics with strict negation, i.e., in SMTL and any of its extensions, which include ΠMTL, SBL, Π, and G.
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6 Conclusions

In this paper we have surveyed (and on a few occasions slightly generalized) the work in ax-
iomatic fuzzy mathematics connected with Petr Hájek. A recurring pattern could be observed
in Hájek’s work in this area: even in a non-classical setting of mathematical fuzzy logic, he
made a point of employing the knowledge and methods he mastered during earlier stages of
his career, for example, in comparing axiomatic theories using syntactic interpretations, or in
relying on strong independence results in arithmetic.

Even though Hájek’s results remain a landmark of these investigations, it could also be seen
from our exposition of them that the theories in question (as well as their metamathematics)
are still at initial stages of their development, and many interesting questions remain still
open. Hájek’s investigation into these theories opened the way for interesting research and
demonstrated that some intriguing results can be achieved. One of the aims of this paper
was to gather the results in this field of research scattered in several papers and present them
in a synoptic perspective, in order to promote further research in this area of axiomatic non-
classical mathematics. We therefore conclude it with a list of open problems mentioned or
alluded to in this paper:

• Can a completeness theorem be proved for the ZF-style fuzzy set theory FST over MTL?

• What is the difference between FSTBL and FSTMTL?

• Can Peano arithmetic with a truth predicate over MTL (or some intermediate logic
between MTL and  L) have standard models?

• Is C L (or at least CMTL) consistent (relative to a well-established classical theory)?

• Is the Leibniz equality = crisp in CMTL?

• Is ω crisp in C L (CMTL)?

• Is CMTL (essentially) undecidable and incomplete?

• Is there a method of constructing models of C L or CMTL, so that the models would
satisfy some required properties?
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[3] Libor Běhounek, Petr Cintula, and Petr Hájek. Introduction to mathematical fuzzy logic.
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[19] Petr Hájek and Petr Cintula. On theories and models in fuzzy predicate logics. Journal
of Symbolic Logic, 71(3):863–880, 2006.

24
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