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Abstract

This paper studies fuzzy relations in the graded framework of Fuzzy Class Theory (FCT).
This includes (i) rephrasing existing work on graded properties of binary fuzzy relations
in the framework of Fuzzy Class Theory and (ii) generalizing existing crisp results on
fuzzy relations to the graded framework. Our particular aim is to demonstrate that Fuzzy
Class Theory is a powerful and easy-to-use instrument for handling fuzzified properties of
fuzzy relations. This paper does not rephrase the whole theory of (fuzzy) relations; instead,
it provides an illustrative introduction showing some representative results, with a strong
emphasis on fuzzy preorders and fuzzy equivalence relations.
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1 Introduction

Fuzzy relations are of fundamental importance in almost all sub-fields of fuzzy
logic and fuzzy set theory, including particularly fuzzy preference modeling, fuzzy
mathematics, fuzzy inference, and many more. In the most general setting, fuzzy
relations are mappings from the Cartesian product of non-empty domainsU1×·· ·×
Un (usually withn≥ 2) to the unit interval or a more general lattice of truth values
L (see e.g. [38, 41, 42, 47, 51]). Clearly the motivation behind fuzzy relations is to
allow more flexibility by admitting intermediate degrees of relationship [12,36,57,
59,60,69].
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An important class are the so-calledbinary fuzzy relations that are used to express
graded relationships between two objects coming from the same domain. Techni-
cally, they are defined asU ×U → L mappings, whereU is some non-empty set
andL is again the lattice of truth values we consider. There are many important
sub-classes, such as, fuzzy preorders [18, 67, 69], fuzzy orders [12, 15, 47, 69], and
fuzzy equivalence relations [12,20,50,51,66,67,69]. Interestingly, however, the tra-
ditional characterizing properties of these important types of fuzzy relations, such
as, reflexivity, symmetry, transitivity, and so forth, are defined in a strictly crisp way,
i.e., as properties that either hold fully or do not hold at all. One may be tempted
to argue that it is somewhat peculiar to fuzzify relations by allowing intermediate
degrees of relationships, but, at the same time, to still enforce strictly crisp prop-
erties on fuzzy relations. This particularly implies that all results are effective only
if some assumptions are fulfilled, but say nothing at all if the assumptions are not
fulfilled (even if they arealmostfulfilled).

To illustrate our point, let us shortly consider a toy example. It is common in the
theory of fuzzy relations to call a fuzzy relationR: U ×U → [0,1] reflexiveif
R(x,x) = 1 holds for allx∈U . From the reflexivity of a fuzzy relationR, we can
infer

Rv R◦∗R,

wherev is the traditional crisp inclusion of fuzzy sets or relations [68]

R1v R2 if and only if R1(x,y)≤ R2(x,y) for all x,y∈U,

and R◦∗ R is the composition ofR with itself (with respect to some triangular
norm∗), i.e.,

(R◦∗R)(x,y) = sup{R(x,z)∗R(z,y) | z∈U}.
What, however, happens if a given fuzzy relationR is not reflexive, butalmost
reflexive? Let us considerU = {1,2,3} and the fuzzy relation (in convenient matrix
notation)

R=

 1 1 1
0 1 1
0 0 a

 ,

wherea∈ [0,1]. Using the Łukasiewicz t-normx∗Ł y = max(0,x+y−1), routine
calculations show that

R◦Ł R=

 1 1 1
0 1 1
0 0 a′

 ,

wherea′ = max(0,2a− 1). So we confirm that only ifa = 1, we also havea′ =
1, and only in this caseRv R◦Ł R holds. What is also apparent, however, is the
fact that, the closer the valuea is to 1, the lessR exceedsR◦Ł R. Actually, in this
example, this degree is

a−a′ = a−max(0,2a−1) = min(a,1−a).
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For example, ifa = 0.99, we obtaina′ = 0.98, andR exceedsR◦Ł R only by 0.01.
So we see that, even if some assumptions are not fully satisfied, we may obtain
some meaningful results. The classical theory of fuzzy relations, however, does not
offer any concepts for handling this kind of “gradedness”. We only know that the
classical result is not applicable, sinceR is not reflexive.

It was actually S. Gottwald who first attempted to eliminate this eyesore by intro-
ducing what he called “graded properties of fuzzy relations” [39–41]. Let us shortly
recall these ideas in the light of the above example. For instance, Gottwald defined
thedegree of reflexivityof a fuzzy relationRas

Refl(R) = inf{R(x,x) | x∈U}

and thedegree of inclusionwith respect to a left-continuous t-norm∗ as

R1⊆∗ R2 = inf{R1(x,y)⇒∗ R2(x,y) | x,y∈U},

where(x⇒∗ y) = sup{u∈ [0,1] | x∗u≤ y} is theresidual implicationof ∗. Then
it is straightforward to prove the following result

Refl(R)≤ (R⊆∗ R◦∗R) (1.1)

which perfectly confirms the results that we obtained for the above example, as we
have Refl(R) = a and (byx⇒Ł y = min(1,1−x+y))

(R⊆Ł R◦Ł R) = min(1,1−a+a′) = min(1,1−a+2a−1) = a.

Even though these ideas seem obvious and meaningful, Gottwald’s approach unfor-
tunately found only little resonance (exceptions are, for instance, [12, 48]). What
may be the reasons? In our humble opinion, the following facts may have con-
tributed to the reluctance of the research community to adopt and advance Gottwald’s
ideas: although Gottwald’s syntax is geared to classical mathematics for better read-
ability, he is not using a full-fledged axiomatic framework and is not strictly sep-
arating syntax from semantics. As in our example above, he has to refer to the
operations used (t-norms, etc.) explicitly. For this reason, proofs are complicated
and difficult. Finally, the results that he obtains are already quite difficult to prove,
but still too basic to provide solid argumentation in favor of a full-fledged graded
theory of fuzzy relations.

This paper aims at reviving and advancing Gottwald’s highly valuable ideas. To
overcome the difficulties sketched above, we take a slightly different approach.
We use the formal axiomatic framework of Fuzzy Class Theory (FCT), introduced
in [4]. Fuzzy Class Theory is a powerful and expressive, yet easy-to-read and easy-
to-handle, framework for fuzzy mathematics in which it is just natural to consider
properties of fuzzy relations in a graded manner. In Fuzzy Class Theory, most
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notions are inspired by (and derived from) the corresponding notions of classi-
cal mathematics [5]; the syntax of Fuzzy Class Theory is close to the syntax of
classical mathematical theories; and the proofs in Fuzzy Class Theory resemble the
classical proofs of the corresponding classical theorems. Therefore, in FCT it is
technically easier to handle graded properties of fuzzy relations than in Gottwald’s
previous works. Thus we are able to access deeper results than what was possible
in Gottwald’s framework.

This paper is organized as follows. In Section 2, we first highlight how to read
results in FCT, as the language of Fuzzy Class Theory may be unusual for some
readers. Section 3 is concerned with basic graded properties of fuzzy relations,
which mainly means rephrasing existing results on graded properties of fuzzy re-
lations in the frame of Fuzzy Class Theory. Section 4 deals with images under
fuzzy relations in the graded framework, including closures and opening operators,
whereas Section 5 deals with bounds, maxima, and suprema. Section 6 generalizes
the classical representation theorems due to Valverde [67] to the graded framework.
In Section 7, we finally generalize the well-known links between fuzzy equivalence
relations and fuzzy partitions to the graded framework. Throughout the whole pa-
per, we will highlight links between the graded approach presented here and the
existing results available in the literature. Where possible and meaningful, we pro-
vide concrete non-trivial examples.

The aim of this paper is to demonstrate that Fuzzy Class Theory is a powerful and
easy-to-use instrument for handling fuzzified properties of fuzzy relations. As this
paper has the appellative sub-title “Initial Steps”, we do not aim at rephrasing the
whole theory of fuzzy relations (or the whole existing theory of crisp relations,
which is even much larger). Instead, we attempt to provide a kind of illustrative
kick-off by picking out some representative results, with a strong emphasis on the
most important classes of binary fuzzy relations—fuzzy preorders and fuzzy equiv-
alence relations.

2 Preliminaries

Fuzzy Class Theory aims at axiomatizing the notion of fuzzy set. A brief overview
of FCT can be found in Appendix B, where also all standard defined predicates
of the theory, freely used in the following sections, are introduced. For a detailed
account of the theory we refer the reader to the original paper [4] or a freely avail-
able primer [6]. In the present section we only give a brief dictionary explaining
how formulae of FCT can be translated to a more traditional language of fuzzy
set theory, and highlight some peculiar features of FCT that play a role in formal
reasoning about the graded properties of fuzzy relations.
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2.1 A Brief Dictionary

We aim this paper at researchers in the theory and applications of fuzzy relations to
attract their interest in graded theories of fuzzy relations. In the traditional theory of
fuzzy relations, it is not usual to separate formal syntax from semantics as it is the
case in FCT. So it may be difficult for some readers who are new to FCT to follow
the results. Therefore, we would like to provide the readers with a dictionary that
improves understanding of the results in this paper and that demonstrates how the
results would translate to the traditional language of fuzzy relations.

FCT strictly distinguishes between its syntax and semantics. This feature has two
important consequences:

• To keep the distinction (and also for certain metamathematical reasons, see [6,
Subsection 1.1]), the objects of the formal theory are calledfuzzy classesrather
than fuzzy sets. The namefuzzy setis reserved for membership functions in the
modelsof the theory (see Appendix B). Nevertheless (in virtue of the soundness
of FCT with respect to its models), the theorems of FCT about fuzzy classes
are always valid for fuzzysetsand fuzzy relations. Thus, whenever we speak of
classes, the reader can always safely substitute usual fuzzy sets for our “classes”.
• FCT screens off direct references to truth values; truth degrees belong to the

semanticsof FCT, rather than to its syntax (this ensures that FCT renders fuzzy
sets as a primitive notion instead of modeling them by membership functions).
Thus, there areno variables for truth degreesin the language of FCT. The degree
to which an elementx belongs to a fuzzy classA is expressed simply by the
atomic formulax ∈ A (which can alternatively be written in a more traditional
way asAx).

The algebraic structure behind the semantics of FCT are MTL4-chains [33]. All
results in this paper hold for all MTL4-chains. As noted in Appendix A, if the
domain of truth values is the unit interval[0,1], MTL4-chains are characterized as
algebras

([0,1],∗,⇒,min,max,0,1,4),

where∗ is a left-continuous t-norm,⇒ is its residual implication, and4 is a unary
operation defined as

4x =

{
1 if x = 1,

0 otherwise.

This means that we can translate the results to the language of fuzzy relations in
the following way, where we may specify an arbitrary universe of discourseU , a
left-continuous t-norm∗, its residuum⇒:
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FCT Fuzzy Relations
object variablex elementx∈U
(fuzzy) classA fuzzy setA∈ F (U)
(fuzzy) class of (fuzzy) classesA fuzzy setA ∈ F (F (U))
unary predicate fuzzy subset ofU , F (U), F (F (U)), etc.
n-ary predicate n-ary fuzzy relation onUn, (F (U))n, etc.
strong conjunction & t-norm∗
implication→ residual implication⇒
weak conjunction∧ minimum
weak disjunction∨ maximum
negation¬ the function¬x = (x⇒ 0)
equivalence↔ bi-residuum, i.e., min(x⇒ y,y⇒ x)
universal quantifier∀ infimum
existential quantifier∃ supremum
predicate= crisp identity
predicate∈ evaluation of membership function
class term{x | ϕ(x)} fuzzy set defined asAx= ϕ(x), for all x∈U

Let us now shortly consider some examples of definitions and results. For instance,
the truth degree ofA⊆ B (defined in FCT by the formula(∀x)(x∈ A→ x∈ B), see
Definition B.5) is in an MTL4-chain computed as

inf{Ax⇒ Bx | x∈U}

which is a well-known concept of fuzzy inclusion (see [1, 12, 15, 40] and many
more). The degree of reflexivity Refl(R), defined in Section 3 as(∀x)Rxx, is nothing
else but

inf{Rxx| x∈U}.
As another example (cf. Definition B.4), it is easy to see that Ker(A) for some
fuzzy setA exactly gives the crisp set of all valuesx∈U for which Ax= 1 holds.
Analogously (see Definition B.5), Norm(A) evaluates to 1 if and only if there exists
anx∈U such thatAx= 1 holds and to 0 otherwise.

The question remains how the theorems in the following sections can be read in
a graded way (although they do not necessarily look graded at first glance). In
traditional (fuzzy) logic, a theorem is read as follows:

If some (non-graded) assumption is true (i.e., fully true, since non-graded),
thensome (non-graded) conclusion is (fully) true.

If we can prove an implication in FCT, by soundness, this implication always holds
to degree 1. Now take into account that, in all MTL4-chains (comprising all stan-
dard MTL4-chains), the following correspondence holds:

(x⇒ y) = 1 if and only ifx≤ y.
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So an implication that we can prove in FCT can be read as follows:

The moresome (graded) assumption is true (even if partially),
the moresome (graded) conclusion is true (i.e., at least as true as the assumption).

In other words, the truth degree of an assumption is a lower bound for the truth
degree of the conclusion in provable implications.

Thus, for instance, the assertion (R13) of Theorem 3.5 easily translates into our
motivating example (1.1).

Remark 2.1 To motivate and illustrate the results in this paper, we will use a sig-
nificant number of examples. In order to make them compact and readable, we
will, in examples,deviate from our principle to keep formulae separate from their
semantics. Instead of mentioning models over some logics, we will simply say that
we use some standard logic, for instance, standard Łukasiewicz logic (standing
for the standard MTL4-chain induced by the Łukasiewicz t-norm; analogously for
other logics). In examples, we shall furthermore not distinguish between predicate
symbols and the fuzzy sets or relations that model them. Instead of saying that a
certain model of a fuzzy predicateR fulfills reflexivity to a degree of 0.8, we will
simply write Refl(R) = 0.8. This is not the cleanest way of writing it, but it is short
and expressive, and it should always be clear to the reader what is meant.

2.2 Some Precautions

It can be observed that the defining formulae of most notions in FCT are exactly the
same as the definitions of these properties for crisp relations in classical mathemat-
ics. This correlates with the motivation of fuzzy logic as generalization of classi-
cal logic to non-crisp predicates: classical mathematical notions are then fuzzified
in a natural way just by interpreting the classical definitions in fuzzy logic. This
methodology has been foreshadowed in [44, Section 5] by Höhle, much later for-
malized in [4, Section 7], and suggested as a general principle for formal fuzzy
mathematics in [5].

Nevertheless, although such a translation of notions of classical mathematics into
FCT is an important guideline, the method cannot be applied mechanically, as some
classically equivalent definitions may no longer be equivalent in the logic MTL4.
In some cases, the most suitable version of the definition can be chosen; in other
cases, a notion of classical mathematics splits into several meaningful notions in
FCT. This can be exemplified by the notion of equality of fuzzy classes:

Besides the primitive crisp identity= of fuzzy classes, at least two graded notions
of natural fuzzy equality,≈ andu, can be defined (see Definition B.5). Both of
these notions have already appeared in the fuzzy literature. For instance Gottwald
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[41] usesu while Bělohĺavek [12] uses≈ for graded equality of fuzzy classes. The
two notions are not equivalent in FCT, as the following counter-example demon-
strates.

Example 2.2 Let us consider a two-element setU = {x,y} and standard Łukasie-
wicz logic. Let us consider two fuzzy setsA,B∈ F (U) defined asAx= By= 1 and
Ay= Bx= 0.5. Then the truth value ofA≈ B is 0.5, while the truth value ofA u B
is 0.

Only the following relationships hold between these notions.

Theorem 2.3 The following theorems are provable inFCT:

(L1) A≈ B↔ (A⊆ B∧B⊆ A)
(L2) A≈2 B−→ A u B−→ A≈ B
(L3) 4(A≈ B)←→4(A u B)←→ A = B

Proof. We give the proof of this lemma in full detail; proofs in the following sec-
tions will usually be more compressed and easy steps will be omitted.

(L1) By Definition B.5 and the rule of distribution of∀ over∧ (which is prov-
able in MTL4), we have

A≈ B ←→ (∀x)(Ax↔ Bx)←→ (∀x)((Ax→ Bx)∧ (Bx→ Ax))
←→ (∀x)(Ax→ Bx)∧ (∀x)(Bx→ Ax)←→ A⊆ B∧ B⊆ A.

(L2) We have the following:

A≈2 B ←→ (∀x)(Ax↔ Bx) & (∀x)(Ax↔ Bx)
−→ (∀x)(Ax→ Bx) & (∀x)(Bx→ Ax)
←→ A⊆ B & B⊆ A←→ A u B

Moreover,A⊆ B & B⊆ A−→ A⊆ B∧ B⊆ A←→ A≈ B by (L1).
(L3) The first equivalence follows from (L2) by the rule of4-necessitation (see

Appendix A) and distribution of4 over→ and &, which is provable in
propositional MTL4. The second equivalence can be proved as

4(A≈ B)←→4(∀x)(Ax↔ Bx)←→ (∀x)4(Ax↔ Bx)←→ A = B

by the axiom of extensionality (see Definition B.1). 2

Let us add some comments on the meaning of the previous theorem. By definition,
the “strong” bi-inclusionA u B is A⊆ B & B⊆ A; compare it with “weak” bi-
inclusionA≈ B, which by (L1) just uses weak conjunction∧ instead of &. Indeed,
by the second implication of (L2),u is stronger than≈. Notice further that (L2) in
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fact says that the truth value ofA u B is bounded by the truth values ofA≈2 B (a
lower bound) andA≈ B (an upper bound). In traditional non-graded fuzzy math-
ematics both notions coincide, since they are fully true under the same conditions,
as shown by (L3); however, under the graded approach they differ, since in graded
fuzzy mathematics we do not require them to be true to degree 1. This relationship
between two related, but non-equivalent notions is quite common in graded fuzzy
mathematics and will be met several times in this paper.1

Finally, it should be pointed out that, unlike in classical Boolean logic, in fuzzy
logic it does make a difference how many times an assumption is used to prove a
certain conclusion. For instance, if we have to use an assumptionϕ twice to prove
a conclusionψ, this means

ϕ→ (ϕ→ ψ).

So finally, by the axiom (A5a) of MTL4 (see Appendix A), we have provedϕ2→
ψ, but it need not be possible to proveϕ→ψ. Such situations will occur frequently
in this paper. For instance, Example 2.2 shows thatA≈B→Au B indeed does not
hold in FCT, even thoughA≈2 B→ A u B is provable by (L2).

The warnings listed above may appear as eyesores that somehow spoil the beauty
and quality of FCT. Our opinion is, however, that exactly the opposite is the case.
Otherwise, this paper could only reproduce and slightly generalize crisp results
with analogous proofs, without creating really new results. However, due to the
above features, FCT indeed allows to derive new, previously unknown results.

3 Basic Properties of Fuzzy Relations

As announced above, the first item on the agenda of this paper is to embed existing
results on so-called graded properties of fuzzy relations into the framework of FCT.
Such properties were introduced first by S. Gottwald in 1991 [39]. Later on, he
extended this research in his 1993 book [40]; his more recent book [41] contains
an up-to-date review of the topic. Properties of fuzzy relations are studied in the
graded manner also in Bělohĺavek’s book [12]. The idea of graded properties of
fuzzy relations had also been followed by Jacas and Recasens [48]. In this section,
we closely follow the structure and philosophy of [41, Section 18.6].

Definition 3.1 In FCT, we define basic properties of fuzzy relations as follows:

1 It occurs regularly under certain conditions in graded generalizations of non-graded the-
orems, see [7].
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Refl(R) ≡df (∀x)Rxx reflexivity
Irrefl(R) ≡df (∀x)¬Rxx irreflexivity
Sym(R) ≡df (∀x,y)(Rxy→ Ryx) symmetry

Trans(R) ≡df (∀x,y,z)(Rxy& Ryz→ Rxz) transitivity
AntiSymE(R) ≡df (∀x,y)(Rxy& Ryx→ Exy) E-antisymmetry

ASym(R) ≡df (∀x,y)¬(Rxy& Ryx) asymmetry

Note that we slightly deviate from Gottwald in the definition of antisymmetry,
which we generalize by defining it with respect to some relationE (usually a sim-
ilarity). In other words, we follow the ideas of so-called similarity-based orderings
which have turned out to be more suitable concepts of fuzzy orderings [15,47]. Let
us adopt the convention that the indexE is dropped ifE = Id (then it coincides with
the concept of antisymmetry that Gottwald uses).

Obviously, all above properties except AntiSymE remain unchanged if we replace
Rwith its inverse relationR−1. Hence, we can infer the following trivial correspon-
dences:

Refl(R−1)↔ Refl(R) Irrefl(R−1)↔ Irrefl(R)

Sym(R−1)↔ Sym(R) Asym(R−1)↔ Asym(R)

Trans(R−1)↔ Trans(R)

Example 3.2 Let us start with a simple example to illustrate the concepts intro-
duced above. Consider the domainU = {1, . . . ,6} and the following fuzzy relation
(for convenience, in matrix notation):

P1 =


1.0 1.0 0.5 0.4 0.3 0.0
0.8 1.0 0.4 0.4 0.3 0.0
0.7 0.9 1.0 0.8 0.7 0.4
0.9 1.0 0.7 1.0 0.9 0.6
0.6 0.8 0.8 0.7 1.0 0.7
0.3 0.5 0.6 0.4 0.7 1.0


It is easy to see thatP1 is a fuzzy preorder with respect to the Łukasiewicz t-norm
max(x+y−1,0), hence, taking standard Łukasiewicz logic, we obtain Refl(P1) = 1
and Trans(P1) = 1. In this setting, one can easily infer Sym(P1) = 0.4 (note that for
a finite fuzzy relationR, in standard Łukasiewicz logic, Sym(R) is nothing else but
the largest difference between two valuesRxyandRyx) as well as Irrefl(P1) = 0
and Asym(P1) = 0.

Now let us see what happens if we add some disturbances toP1. We added nor-
mally distributed pseudo-random numbers to the above table (with zero mean and
a standard deviation of 0.05) and truncated these values to the unit interval. Finally,
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we rounded the values to two digits and obtained the following fuzzy relation:

P2 =


1.00 1.00 0.56 0.40 0.30 0.00
0.87 1.00 0.33 0.44 0.26 0.02
0.67 0.92 0.93 0.87 0.70 0.39
0.93 1.00 0.64 1.00 0.97 0.67
0.52 0.79 0.82 0.71 1.00 0.59
0.27 0.50 0.61 0.41 0.72 1.00


Then simple computations give the following results: Refl(P2) = 0.93, Irrefl(P2) =
0, Sym(P2) = 0.41, Trans(P2) = 0.85, and Asym(P2) = 0.

Example 3.3 Now considerU = R and let us define the following parametrized
class of fuzzy relations (witha,c > 0):

Ea,cxy= min(1,max(0,a− 1
c
|x−y|))

It is well known that, fora = 1, we obtain fuzzy equivalence relations with respect
to the Łukasiewicz t-norm [25,27,66,67], hence, using standard Łukasiewicz logic
again, Refl(E1,c) = 1, Sym(E1,c) = 1, and Trans(E1,c) = 1 for all c > 0. On the
contrary, it is well-known and easy to see that, fora < 1, reflexivity in the non-
graded manner cannot be maintained. Actually, we obtain

Refl(Ea,c) = min(1,a).

for all a,c > 0. Similarly, it is a well-known fact that, fora > 1, transitivity in the
non-graded sense is violated. This is a fact that, in some sense, has its roots in the
Poincaŕe paradox [61, 62]. Note that relations likeEa,c (for a≥ 1) appear promi-
nently in De Cock and Kerre’s framework ofresemblance relations[28]. Regarding
graded transitivity, we obtain the following:

Trans(Ea,c) = min(1,max(0,2−a))

Observe that Trans(Ea,c) does not depend onc either. This is not surprising, how-
ever, because the parameterc only corresponds to a re-scaling of the domain. Fi-
nally, let us mention the following results (for alla,c > 0):

Irrefl(Ea,c) = max(0,1−a)
Sym(Ea,c) = 1

Asym(Ea,c) = min(1,max(0,2−2a))

We can conclude that the largera, the more reflexive, but less irreflexive, asymmet-
ric, and transitive,Ea,c is. Figure 1 shows two examples.

The following lemma provides us with some results that will be helpful in the fol-
lowing. Note that it is actually a corollary of more general theorems appearing in
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Fig. 1. The fuzzy relationsE0.7,2 (left) andE1.4,1 (right). From Example 3.3, we can infer
that Refl(E0.7,2) = 0.7, Trans(E0.7,2) = Refl(E1.4,1) = 1, and Trans(E1.4,1) = 0.6.

an upcoming paper [22]; here we give a direct proof. Some weaker variants can be
obtained from [12, Lemma 4.8].

Lemma 3.4 In FCT, we can prove the following:

(R1) R⊆ S→ (Refl(R)→ Refl(S))
(R2) S⊆ R→ (Irrefl(R)→ Irrefl(S))
(R3) Ru S→ (Sym(R)→ Sym(S))
(R4) R⊆ S& S⊆2 R→ (Trans(R)→ Trans(S))
(R5) S⊆2 R→ (AntiSym(R)→ AntiSym(S))
(R6) S⊆2 R→ (ASym(R)→ ASym(S))

Proof. Here we prove just (R4), the others are analogous. ObviouslyS⊆2 R→
(Sxy& Syz→Rxy& Ryz). So by Trans(R) we getS⊆2 R→ (Sxy& Syz→Rxz), and
R⊆ Scompletes the proof. 2

The following proposition provides us with a few basic results. Most of them
are obvious translations of results that can be found in [41, Proposition 18.6.1],
where (R11) has been extended to the more general concept of antisymmetry with
respect to a fuzzy relationE (as noted above, this is in line with the similarity-based
approach to fuzzy orderings [15,47]) and (R13) is new in the graded framework (yet
well-known in the non-graded theory of fuzzy relations).

Theorem 3.5 The following theorem are provable in FCT:

(R7) Refl(R)↔ Id⊆ R
(R8) Irrefl(R)↔ Id∩R≈ /0
(R9) Trans(R)↔ R◦R⊆ R
(R10) Sym(R)↔ R−1⊆ R
(R11) AntiSymE(R)↔ R∩R−1⊆ E
(R12) Asym(R)↔ R∩R−1≈ /0
(R13) Refl(R)→ R⊆ R◦R

12



Proof. We omit the obvious and concentrate on the following non-trivial issues:

(R9) Obviously,〈x,y〉 ∈ (R◦R)↔ (∃z)(Rxz& Rzy). Then, by Trans(R) we get
(∃z)(Rxy), which is justRxy. Now let us prove the converse direction: for
anyx,y, we have that(∃z)(Rxz& Rzy)→ Rxy. Then the rule of quantifier
shift completes the proof.

(R10) Starting fromR−1xy, i.e.,Ryx, by Sym(R) we getRxy. The other direction
is trivial.

(R13) Rxx& Rxy→ (∃z)(Rxz& Rzy). ThusRxx→ (Rxy→ (∃z)(Rxz& Rzy)). 2

The following theorem collects several results that can be found in [41] as well
(Propositions 18.6.1–18.6.5).

Theorem 3.6 The following theorems are provable in FCT:

(R14) Refl(Rt Id)
(R15) Irrefl(R\ Id)
(R16) Trans(R)→ Trans(Rt Id)
(R17) Trans(R\ Id)→ Trans(R)
(R18) Trans(R) & AntiSym(R)→ Trans(R\ Id)
(R19) AntiSym(R)→ ASym(R\ Id)
(R20) ASym(R\ Id)↔ AntiSym(R\ Id)
(R21) ASym(R)→ AntiSym(Rt Id)
(R22) Trans(R) & Irrefl(R)→ ASym(R)
(R23) Trans(R) & Trans(Q)→ Trans(R∩Q)

Proof. For brevity, we again omit trivial and obvious parts.

(R15) 〈x,x〉 ∈ (R\ Id)←→ Rxx& x 6= x←→ 0.
(R16) Observe that forx 6= y we have〈x,y〉 ∈ (Rt Id)↔ Rxy. We start from

〈x,y〉 ∈ (Rt Id) and〈y,z〉 ∈ (Rt Id) and distinguish four cases: ifx = y
andy = z thenx = z and so〈x,z〉 ∈ (Rt Id). If x = y andy 6= z, then we
haveRxz, thus obviously〈x,z〉 ∈ (Rt Id). The casex 6= y and y = z is
analogous. The last case is just the transitivity ofR.

(R17) We start fromRxy& Ryz. If x 6= y& y 6= z we getRxzusing Trans(R\ Id).
The cases that eitherx = y or y = z are trivial.

(R18) Observe that ifx 6= y we have〈x,y〉 ∈ (R\ Id)↔ Rxy. Start from〈x,y〉 ∈
(R\ Id) and〈y,z〉 ∈ (R\ Id). Again we distinguish four cases: the only non-
trivial one isx 6= y andy 6= z. Thus we haveRxyandRyz, observe that from
AntiSym(R) we get thatz 6= x (becausez= x would givex = y).

(R19) (〈x,y〉 ∈ (R\ Id)) & (〈y,x〉 ∈ (R\ Id))←→ (Rxy& Ryx& x 6= y)−→ (x =
y & x 6= y)←→ 0 (in the second step we used AntiSym(R)).

(R22) From Trans(R) we getRxy& Ryx→Rxx, which leads to¬Rxx→¬(Rxy&
Ryx). As we have¬Rxxfrom Irrefl(R), the proof is done.

13



(R23) FromRxy& Ryz→ RxzandQxy& Qyz→Qxzwe immediately getRxy&
Ryz& Qxy& Qyz→ Rxz& Qxz which is the same as(R∩Q)xy& (R∩
Q)yz→ (R∩Q)xz. 2

Example 3.7 Consider standard Łukasiewicz logic and the following family of
fuzzy relations (witha∈ [0,1] andU = R):

Laxy= min(1,max(0,a−x+y))

Easy computations show that the fuzzy relationsLa are transitive for alla∈ [0,1]
(i.e. Trans(La) = 1). Obviously,L1 is also reflexive, so it is a fuzzy preorder [15],
andL0 is irreflexive, hence a typical fuzzy strict order [19, 36, 60]. Generally, we
obtain Refl(La) = a and Irrefl(La) = 1−a. Therefore, we can conclude by (R22)
that Asym(La)≥ 1−a for all a∈ [0,1]. This is only a lower bound, however. It is
possible to show that

Asym(La) = min(1,max(0,2−2a))

holds (compare with Example 3.3). This demonstrates that under transitivity, ir-
reflexivity is indeed a stronger requirement than asymmetry. In the non-graded
framework, this is an essential fact for simplifying the definition of strict fuzzy
orders [19].

Now we turn our attention to the property of extensionality of a fuzzy class with
respect to a fuzzy relation. Previously, extensionality was defined as a crisp property
that a given fuzzy set either had or had not [18, 50–52]. In FCT, we can generalize
extensionality to the graded framework effortlessly. (See [3] for the changed role
of extensionality in the fully graded theory of fuzzy relations.)

Definition 3.8 In FCT, we define the (degree of) extensionality of a fuzzy classA
with respect to a fuzzy relationE as

ExtE(A) ≡df (∀x,y)(Exy& x∈ A→ y∈ A).

In the non-graded framework, it is well-known that inf-intersections and sup-unions
of families of extensional fuzzy sets are also extensional [18,50–52]. The following
theorem states that a similar result holds in the graded framework.

Theorem 3.9 The following theorems are provable in FCT:

(E1) (J ⊆ J ∩ J ) & (∀A∈ J )ExtE(A)→ ExtE(
⋂

J )
(E2) (J ⊆ J ∩ J ) & (∀A∈ J )ExtE(A)→ ExtE(

⋃
J ).

Proof. By Lemma B.8 (L14) and (L15) we have(∀A∈ J )ExtE(A) −→ (Exy→
(∀A∈ J )(x∈ A→ y∈ A))−→ (Exy→ (∀A∈ J )(x∈ A)→ (∀A∈ J ∩ J )(y∈ A)).
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Now from J ⊆ J ∩ J we getA∈ J → A∈ J ∩ J , and as(∀A∈ J )(x∈ A) is exactly
x ∈

⋂
J , the proof of (E1) is done. The proof of (E2) is analogous, only we use

(L16) instead of (L15). 2

Remark 3.10 It is easy to see that the conditionJ ⊆ J ∩ J in (C28) is satisfied to
degree 1 in models if and only ifA ∈ J only acquires truth values that are idem-
potent with respect to conjunction. In particular, it is always true for crisp classes
J , and in G̈odel logic for all classes. In standard Łukasiewicz logic, the condition
expresses the closeness ofJ to crispness (it gets large truth values if and only if
A ∈ J has only truth values that are close to 0 or to 1). Thus, in Ł, the theorem
expresses the fact that the property of extensionality is “almost closed” under inter-
sections and unions of “almost crisp” families of classes. In standard product logic,
the situation is similar, but the condition is much stricter in smaller truth values: it
gets a large truth value if and only ifA∈ J is either equal to 0, or close to 1.

The condition of the formX ⊆ X ∩X is encountered quite often in graded fuzzy
mathematics (cf. for instance (C28) of Theorem 5.18 below) and we could call
it the (graded)2-contractivenessof X. It can be generalized ton-contractiveness
X ⊆ X∩ n. . .∩X, with similar, but stricter, semantical meaning forn > 2.

In particular, Theorem 3.9 includes the case of crisp two-element families of fuzzy
classes.

Corollary 3.11 The following theorems are provable inFCT:

(E3) ExtE(A)∧ExtE(B)→ ExtE(AuB)
(E4) ExtE(A)∧ExtE(B)→ ExtE(AtB)

Example 3.12 Let us considerU = R, standard Łukasiewicz logic,E1,1 from Ex-
ample 3.3 and the two fuzzy sets

Ax= min(1
2,max(0,−2(x−1))) andBx= min(2

3,max(0,2(x−2))).

Then we obtain ExtE1,1(A) = 3
4 and ExtE1,1(B) = 2

3. The two fuzzy setsA andB
are disjoint, i.e.AuB = /0, hence, ExtE1,1(AuB) = ExtE1,1( /0) = 1. This fact un-
derlines that (E3) and (E4) provide us with lower bounds for the extensionality of
intersections/unions, but these bounds need not always be very helpful.

In classical mathematics, special properties of relations are rarely studied com-
pletely independently of each other. Instead, these properties most often occur in
some combinations in the definitions of special classes of relations—with (pre)orders
and equivalence relations being two most fundamental examples. The same is true
in the theory of fuzzy relations, where fuzzy (pre)orders and fuzzy equivalence
relations are the most important classes. Compound properties of this kind are de-
fined as conjunctions of some of the simple properties of Definition 3.1. In the
non-graded case, the properties are crisp, so the conjunction we need is the classi-
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cal Boolean conjunction. In FCT, however, all properties are graded, so it indeed
matters which conjunction we take. Thus, besides the (more usual) combinations by
strong conjunction & (corresponding to the t-norm in the standard case), we also
define their weak variants combined by weak conjunction (corresponding to the
minimum). In this paper, we restrict ourselves to investigation of basic properties
of fuzzy preorders and similarities.2

Definition 3.13 In FCT we define the following compound properties of fuzzy re-
lations:

Preord(R) ≡df Refl(R) & Trans(R) (strong) preorder
wPreord(R) ≡df Refl(R) ∧ Trans(R) weak preorder

Sim(R) ≡df Refl(R) & Sym(R) & Trans(R) (strong) similarity
wSim(R) ≡df Refl(R) ∧ Sym(R) ∧ Trans(R) weak similarity

Example 3.14 Let us shortly revisit Example 3.2. We can conclude the following:

Preord(P1) = 1 Preord(P2) = 0.78
wPreord(P1) = 1 wPreord(P2) = 0.85

Sim(P1) = 0.4 Sim(P2) = 0.19
wSim(P1) = 0.4 wSim(P2) = 0.41

The values in the second column once more demonstrate why it is justified to
speak of strong and weak properties—the stronger (i.e. smaller) the conjunction,
the harder a property can be fulfilled.

For the class of fuzzy relations defined in Example 3.3, we obtain the interesting
result

Preord(Ea,c) = wPreord(Ea,c) = max(0,1−|1−a|),
from which we can infer that Preord(Ea,c) = wPreord(Ea,c) = 1 if and only if
a = 1. Note that Sym(Ea,c) = 1, so Sim(Ea,c) = Preord(Ea,c) and wSim(Ea,c) =
wPreord(Ea,c) which implies that Sim(Ea,c) = wSim(Ea,c) = 1 if and only ifa= 1.

For the class of fuzzy relations introduced in Example 3.7, we trivially obtain the
following result: Preord(La) = wPreord(La) = a and Sim(La) = wSim(La) = 0.

Obviously Preord(R)→ wPreord(R) and Sim(R)→ wSim(R). From Lemma 3.4
we further obtain:

Lemma 3.15 FCT proves:

(R24) Ru2 S→ (Preord(R)→ Preord(S))
(R25) R⊆ S& S⊆2 R→ (wPreord(R)→ wPreord(S))

2 In line with Zadeh’s original work [69], we use the termsimilarity (relation) synony-
mously for fuzzy equivalence (relation).
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(R26) Ru3 S→ (Sim(R)→ Sim(S))
(R27) R⊆ S& S⊆2 R→ (wSim(R)→ wSim(S))

4 Images and Dual Images

In this section, we address images of fuzzy relations in the framework of FCT.
Such operations are of central importance in fuzzy inference [9, 70], in the theory
of fuzzy relational equations [23, 65], and in the study of properties of fuzzy rela-
tions, too [12,18]. These concepts are also strongly linked with fuzzy mathematical
morphology [14,16,55,56].3

Definition 4.1 In FCT, we define the following operations:

R↑A =df {y | (∃x)(x∈ A & Rxy)}
R↓A =df {x | (∀y)(Rxy→ y∈ A)}

Let us shortly clear up the terminology. In the literature, the image operatorR↑

A is calledfull image, direct image, conditioned fuzzy set, or simply imageof A
under/with respect toR, while R↓A appears under the namessuperdirect image
andα-operation; its systematic name in [8] (submitted to this issue) issubproduct
preimage. We will simply call both operatorsimages. Where necessary, we refer to
↓ explicitly asdual image. 4

Example 4.2 Let us considerU = R and the fuzzy set

Ax= min(1,max(0, 1
10(x−175))).

Straightforward computations then show the following (with the fuzzy relation
E1.5,10 defined as in Example 3.3):

(E1.5,10
↑A)x = min(1,max(0, 1

10(x−170)))

(E1.5,10
↓A)x = min(1,max(0, 1

10(x−180)))

Figure 2 shows a plot of these three fuzzy sets. Note that De Cock and Kerre use
the two image operators in conjunction with their resemblance relations [28] to
define linguistic hedges like for instanceroughlyandvery[29]. If we considerA as
a model oftall (in the context of European men), we can interpretE1.5,10

↑A as a
model ofroughly tallandE1.5,10

↓A as a model ofvery tallaccording to De Cock’s
and Kerre’s argumentation.

3 Note that the references in this paragraph are just pointers to some important works, but
do not cover all the relevant literature.
4 The relationship between the operations↑ and↓ is in fact an instance of Morsi’s duality
[54] combined with the inversion duality (i.e., the duality betweenRandR−1).
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Fig. 2. The fuzzy setA (middle, solid black) and the result that is obtained when applying
image operators:E1.5,10

↓A (left, light gray) andE1.5,10
↑A (right, medium gray).

The next theorem clarifies some basic properties of images under fuzzy relations.
Their non-graded versions are well-known and easy to prove (see e.g. [18,40,41]).
The graded theorems (I6)–(I14) are also corollaries of more general theorems in
the paper [8] submitted to this issue.

Theorem 4.3 The following properties of images are provable inFCT:

(I1) R↑ /0 = /0
(I2) R↑V = {y | (∃x)(Rxy)}= Rng(R)
(I3) R↑{z}= {y | Rzy}
(I4) R↓( /0) = {x | (∀y)(¬Rxy)}
(I5) R↓V = V
(I6) R↑(AtB) = R↑AtR↑B
(I7) R↓(AuB) = R↓AuR↓B
(I8) R↑(AuB)⊆ R↑AuR↑B
(I9) R↓(AtB)⊇ R↓AtR↓B
(I10) A⊆ B→ R↑A⊆ R↑B
(I11) A⊆ B→ R↓A⊆ R↓B
(I12) R⊆ S→ R↑A⊆ S↑A
(I13) R⊆ S→ S↓A⊆ R↓A
(I14) R↑A⊆ B↔ A⊆ R↓B

Proof.

(I1)–(I5) are trivial to prove.
(I6)–(I9) are simple consequences of Lemma B.8 (L10)–(L13).
(I10) From(Ax→ Bx)→ (Ax& Rxy→ Bx& Rxy) we getA⊆ B→ ((∃x)(Ax&

Rxy)→ (∃x)(Bx& Rxy)).
(I11) We know(Ay→By)→ ((Rxy→Ay)→ (Rxy→By)), whence the required

statement follows by generalization and quantifier shifts.
(I12) (Rxy→ Sxy)→ (Rxy& Ax→ Sxy& Ax). ThusR⊆ S→ (x∈ R↑A→ x∈

S↑A).
(I13) (Rxy→ Sxy)→ ((Sxy→ Ay)→ (Rxy→ Ay)), then use generalization and
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quantifier shifts.
(I14) Left to right:(∀y)((∃x)(Ax& Rxy)→By)−→ (∀y)(Ax→ (Rxy→By))←→

(Ax→ (∀y)(Rxy→ By)). Right to left:(∀x)(Ax→ (∀y)(Rxy→ By)) −→
(∀x)(Ax& Rxy→ By))←→ ((∃x)(Ax& Rxy)→ By). 2

The previous theorem addressed the monotonicity of images of fuzzy relations and
how these images interact with intersections and unions with respect to the weak
conjunction and disjunction, respectively. The question remains how images of
fuzzy relations interact with intersections with respect to the strong conjunction.
The following theorem gives an answer (for its non-graded version, see [40, Propo-
sition 2.16] or [41, Proposition 18.4.1]).

Theorem 4.4 The following properties of relations are provable inFCT:

(I15) (R∩R) ↑(A∩B)⊆ (R↑A)∩ (R↑B)
(I16) (R↓A)∩ (R↓B)⊆ (R∩R) ↓(A∩B)

Proof.

(I15) (∃x)(Rxy& Rxy& Ax& Bx)−→ (∃x)(Rxy& Ax) & (∃x)(Rxy& Bx)
(I15) (∀y)(Rxy→ y∈A) & (∀y)(Rxy→ y∈B)−→ (∀y)((Rxy→ y∈A) & (Rxy→

y∈ B))−→ (∀y)(Rxy& Rxy→ y∈ A & y∈ B) 2

Remark 4.5 Theorem 4.4 intentionally cites only the first two of three assertions
of [41, Proposition 18.4.1] (and, correspondingly, [40, Proposition 2.16]). If we
translate the third assertion to our terminology, we obtain

(R↑GA)∪ (R↑GB)⊆ (R∪R) ↑G(A∪B),

whereR↑GA stands for the image with respect to the weak conjunction, i.e.,

R↑GA =df {y | (∃x)(x∈ A∧ Rxy)}.

First of all, this assertion relies on a certain concept of strong disjunction (a t-
conorm in the standard case) which we cannot define in MTL4 (we can do so only
in FCT over stronger logics with involutive negation like IMTL4 or ŁΠ). Secondly,
we would like to point out that this result actually does not hold. Let us consider
the caseU = {1,2}, standard Łukasiewicz logic (with the Łukasiewicz t-conorm
min(1,x+y) as strong disjunction), and the following fuzzy relation and fuzzy sets
(membership degrees in matrix/vector notation):

R=
(

0.5 0.4
0.5 0.4

)
A =

(
0.5
0.6

)
B =

(
0.3
0.4

)
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Then easy computations show the following:

R↑GA =
(

0.5
0.5

)
andR↑GB =

(
0.4
0.4

)
which implies(R↑GA)∪ (R↑GB) =

(
0.9
0.9

)
.

On the other hand, we obtain

R∪R=
(

1.0 0.8
1.0 0.8

)
andA∪B =

(
0.8
1.0

)
yielding (R∪R) ↑G(A∪B) =

(
0.8
0.8

)
.

So we have got a counter-example. Note that the converse inclusion does not hold
either, as can be seen from the following counter-example (with analogous compu-
tations like above):

R′ =
(

1.0 0.0
0.0 0.5

)
A′ =

(
0.7
0.6

)
B′ =

(
0.0
0.4

)
Since the assertions do not hold in the non-graded case, it makes no sense to try to
generalize them to a graded version.

Now let us turn our attention to how image operations interact with the common
special properties of fuzzy relations and the concept of extensionality.

Theorem 4.6 The following properties of↑ are provable inFCT:

(I17) Refl(R)↔ (∀A)(A⊆ R↑A)
(I18) Trans(R)↔ (∀A)(R↑(R↑A)⊆ R↑A)
(I19) Preord(R)→ R↑(R↑A) u R↑A
(I20) wPreord(R)→ R↑(R↑A)≈ R↑A
(I21) Trans(R)↔ (∀A)(ExtR(R↑A))
(I22) A⊆ B & ExtR(B)→ R↑A⊆ B
(I23) Refl(R) & ExtR(A)→ R↑A u A
(I24) Refl(R) ∧ ExtR(A)→ R↑A≈ A
(I25) R↑A⊆ A↔ ExtR(A)
(I26) Refl(R)→ (ExtR(A)↔ (A≈ R↑A)
(I27) Refl(R)→ (ExtR(A)↔ (A u R↑A))

Proof.

(I17) Left to right: obviouslyRxx& Ax→ (∃y)(Rxy& Ax) and generalize as
usual. Right to left:(∀A)(A⊆R↑A)−→ {z} ⊆R↑{z} −→ (z= z→ Rzz);
we used (I3) in the last step.

(I18) Left to right: From(Rxz→Rxy)→ (Ax& Rxz→Ax& Rxy) we get(∀x)(Rxz→
Rxy)→ (z∈R↑A→ y∈R↑A). Next we get(Rzy→ (∀x)(Rxz→Ryx))→
(Rzy→ (z∈R↑A→ y∈R↑A)). Thus(∀x)(Rzy→ (Rxz→Rxy))→ (Rzy&
z∈R↑A→ y∈R↑A)). Right to left:(∀A)(R↑(R↑A)⊆R↑A)−→ (R↑(R↑

20



{z}) ⊆ R↑{z})←→ (R↑{y | Rzy}} ⊆ {y | Rzy} −→ ((∃x)(Rzx& Rxy)→
Rzy), and quantifier shifts complete the proof.

(I19) and (I20)are direct consequences of (I17) and (I18).
(I21) From(∀x)(Ryz→ (Rxy→Ryz)) we get(Ryz→ ((∃x)(Rxy& Ax)→ (∃x)(Rxz&

Ax)). The converse direction:(∀A)(ExtR(R↑A)) −→ ExtR(R↑ {z}) −→
(Rzx& Rxy→ Rzy).

(I22) FromA⊆ B we getAx& Rxy→ Bx& Rxyand from ExtR(B) we getBx&
Rxy→ By. Thus we haveAx& Rxy→ By.

(I23) and (I24)follow directly from (I22) by (I17).
(I25) ((∃x)(Rxy& Ax)→ Ay)↔ (∀x)(Rxy& Ax→ Ay).
(I26) and (I27)then follow trivially. 2

Theorem 4.7 The following properties of↓ are provable inFCT:

(I28) Refl(R)→ R↓A⊆ A
(I29) Trans(R)→ R↓A⊆ R↓(R↓A)
(I30) Preord(R)→ R↓(R↓A) u R↓A
(I31) wPreord(R)→ R↓(R↓A)≈ R↓A
(I32) Trans(R)→ ExtR(R↓A)
(I33) B⊆ A & ExtR(B)→ B⊆ R↓A
(I34) Refl(R) & ExtR(B)→ R↓A u A
(I35) Refl(R) ∧ ExtR(B)→ R↓A≈ A
(I36) A⊆ R↓A↔ ExtR(A)
(I37) Refl(R)→ (ExtR(A)↔ (A≈ R↓A))
(I38) Refl(R)→ (ExtR(A)↔ (A u R↓A))

Proof.

(I28) (∀y)(Rxy→Ay)→ (Rxx→Ax), thusRxx→ (x∈R↓A→Ax). Generaliza-
tion and quantifier shifts complete the proof.

(I29) From (Rzy→ Rxy)→ ((Rxy→ Ay)→ (Rzy→ Ay)) we get(∀x)(Rzy→
Rxy)→ (x∈R↓A→ z∈R↓A). Next we get(Rxz→ (∀x)(Rzy→Rxy))→
(Rxz→ (x∈ R↓A→ z∈ R↓A)). Thus(∀y)(Rxz→ (Rzy→ Rxy))→ (x∈
R↓A→ (Rxz→ z∈ R↓A)).

(I30) and (I31)are direct consequences of (I28) and (I29).
(I32) From(∀y)(Rzx→ (Rxy→Rzy)) we get(Rzx→ ((∀y)(Rzy→Ay)→ (∀y)(Rxy→

Ay)).
(I33) FromB⊆ A we get(Rxy→ By)→ (Rxy→ Ax) and from ExtR(B) we get

Bx→ (Rxy→ By). Thus we haveBx→ (Rxy→ Ay).
(I34) and (I35)follow directly from (I33) using (I28).
(I36) Left to right: (Ax→ (∀y)(Rxy→ Ay))→ (∀y)(Rxy& Ax→ Ay). The con-

verse direction follows from (I32).
(I37) and (I38)then follow trivially. 2
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Inspired by the concepts of fuzzy mathematical morphology [14, 24, 55], Boden-
hofer has introduced a general concept of opening and closure operators with re-
spect to arbitrary fuzzy relations [?]. Now we generalize this concept to the graded
framework.

Definition 4.8 We define the operations ofopeningandclosureof A in Ras

R◦A =df R↑(R↓A)

R•A =df R↓(R↑A)

Furthermore, we define two properties of fuzzy classes,R-opennessandR-closedness:

OpenR(A)≡df R◦A≈ A

ClosedR(A)≡df R•A≈ A

The following lemma provides us with several properties of opening and closure
operators. In particular, the question arises whyR-openness andR-closedness were
defined using≈ rather thanu. A clear answer to this question is given by (I40)
and (I41) which state that it actually does not matter whether we use≈ or u in the
definition of openness and closedness.

Theorem 4.9 The following properties of relations are provable in FCT:

(I39) R◦A⊆ A⊆ R•A
(I40) OpenR(A)↔ R◦A u A
(I41) ClosedR(A)↔ R•A u A
(I42) A⊆ B→ R◦A⊆ R◦B
(I43) A⊆ B→ R•A⊆ R•B
(I44) OpenR(A)↔ (∃B)(A u R↑B)
(I45) ClosedR(A)↔ (∃B)(A u R↓B)
(I46) OpenR(R◦A)
(I47) ClosedR(R•A)

Proof.

(I39) First, we can showy∈ R↑ (R↓A)←→ (∃x)(Rxy& (∀z)(Rxz→ Az)) −→
(∃x)(Rxy& (Rxy→ Ay)) −→ (∃x)Ay←→ Ay. Secondly, we haveAx−→
(Rxy→ Rxy& Ax)−→ (Rxy→ (∃x)(Rxy& Ax)). ThusAx→ (∀y)(Rxy→
y∈ R↑A).

(I40) and (I41)are then direct consequences of (I39).
(I42) and (I43)are direct consequences consequence of (I10) and (I11).
(I44) The left-to-right direction is trivial (takeB= R↓A). The converse direction:

By (I14) and (I10),R↑B⊆ A←→ B⊆ R↓A−→ R↑B⊆ R↑ (R↓A). Thus
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A u R↑B←→ A⊆ R↑B⊆ A−→ A⊆ R↑B⊆ R↑(R↓A) = R◦A. Since by
(I39) alwaysR◦A⊆ A, the proof is done.

(I45) Analogous to the proof of (I44).
(I46) and (I47)are direct consequences of (I44) and (I45), respectively. 2

Note that, from (I44)–(I47), we can easily deduce the following corollaries:

(I48) R◦(R◦A) = R◦A
(I49) R•(R•A) = R•A

Thus, we can conclude that the two operators◦ and• fulfill the most essential prop-
erties we need to require from opening and closure operators (as stated in [?] to
motivate the definition of the two operators). Unlike [?], in classical mathematics
(e.g. in topology), it is more usual to start from an axiomatic framework of open-
ness and closedness (or opening and closure operators, respectively). Such gen-
eral frameworks have been introduced in the fuzzy setting by Bělohĺavek and Fu-
nioková [10, 11, 13]. They require that opening operators always give subsets, that
closure operators always yield supersets, that both operators are monotonic with
respect to the graded inclusion and that both operators are idempotent. Therefore,
we can conclude that our two operators perfectly fit into the axiomatic framework
of Bělohĺavek and Funiokov́a.

In many classical axiomatic frameworks (including topological ones), it is also
common to represent opening and closure operators as unions of all open sub-
sets and intersections of all closed supersets, respectively. This is well-known in
the non-graded framework; the following theorem provides a generalization to the
graded case.

Theorem 4.10 The following properties of relations are provable in FCT:

(I50) R◦A =
⋃
{B |OpenR(B) & B⊆ A}=

⋃
{B | 4(OpenR(B) & B⊆ A)}

(I51) R•A =
⋂
{B | ClosedR(B) & A⊆ B}=

⋂
{B | 4(ClosedR(B) & A⊆ B)}

Proof. To prove (I50), let us denote
⋃
{B |OpenR(B) & B⊆A} asC. Theny∈C↔

(∃B)(y∈ B & OpenR(B) & B⊆ A). SinceR◦A⊆ A and OpenR(R◦A) we get that
y∈R◦A→ y∈C. To prove the converse direction we use Lemma B.8 (L6). We fix
B and show that OpenR(B) & B⊆ A impliesB⊆ R◦A. From OpenR(B) we get that
R◦B≈ B and fromB⊆ A we getR◦B⊆ R◦A. ThusB⊆ R◦A. The proof of the
second equality is almost straightforward. (I51) can be proved analogously.2

From the two representations (I50) and (I51), we can deduce immediately how
opening and closure operators interact with unions and intersections (with respect
to weak conjunction).
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Corollary 4.11 The following properties of relations are provable inFCT:

(I52) R◦(AtB) = R◦AtR◦B
(I53) R•(AuB) = R•AuR•B
(I54) OpenR(A)& OpenR(B)→OpenR(AtB)
(I55) ClosedR(A)& ClosedR(B)→ ClosedR(AuB)

Proof.

(I52) Use (I50) and (L10) of Lemma B.8.
(I53) Use (I51) and (L11).
(I54) and (I55)are then direct consequences of (I52) and (I53), respectively.2

As shown in [?], under the presence of reflexivity and/or transitivity, the results
concerning opening and closure operators can be strengthened. We will see in the
following that, by this way, results for images of fuzzy preorders are obtained that
are well-known in the non-graded framework [18].

Theorem 4.12 The following properties of relations are provable in FCT:

(I56) Preord(R)→ (R•A u R↑A)
(I57) wPreord(R)→ (R•A≈ R↑A)
(I58) Preord(R)→ (R◦A u R↓A)
(I59) wPreord(R)→ (R◦A≈ R↓A)
(I60) Trans(R)→ (OpenR(A)→ ExtR(A))
(I61) Trans(R)→ (ClosedR(A)→ ExtR(A))
(I62) Refl(R)→ (ExtR(A)→OpenR(A))
(I63) Refl(R)→ (ExtR(A)→ ClosedR(A))
(I64) wPreord(R)→ (ExtR(A)↔OpenR(A))
(I65) wPreord(R)→ (ExtR(A)↔ ClosedR(A))
(I66) Preord(R)→ (OpenR(A)↔ ClosedR(A))

Proof.

(I56) and (I57):From (I32) we know Trans(R)→ ExtR(R↓A). Then (I56) follows
from (I23) and (I57) follows from (I24).

(I58) and (I59):From (I21) we know Trans(R)→ ExtR(R↑A). Then (I58) follows
from (I34) and (I59) follows from (I35).

(I60) We start from OpenR(A) (i.e. A≈ R◦A) and Trans(R). Using (I32) we get
ExtR(R↓A), thus by (I22),R↑(R↓A)⊆R↓A. So we obtainA⊆R↓A. Now
we use (I36) and get ExtR(A).

(I61) Analogously to (I60), by (I21), (I33), and (I25).
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Fig. 3. The fuzzy setA from Example 4.13 (light gray),E1.2,1
↑A (medium gray), and

E1.2,1
•A (solid black).

(I62) We start from Refl(R) and ExtR(A). From Refl(R), by (I17), we getR↓A⊆
R↑(R↓A). From ExtR(A), we obtain by (I33) thatA⊆R↓A. So finally, we
can concludeA⊆ R◦A which, with (I39), proves OpenR(A).

(I63) Analogously to (I62), using (I28), (I22), and the second inclusion of (I39).
(I64)–(I66)then follow trivially. 2

Example 4.13 Let us consider standard Łukasiewicz logic and the following fuzzy
set (withU = R):

Ax=



2x−5 if x∈ [2.5,3]
4−x if x∈ ]3,3.5]
0.5 if x∈ ]3.5,5]
10.5−2x if x∈ ]5,5.25]
0 otherwise

Further we consider the fuzzy relationE1.2,1 from Example 3.3 for which we know
Refl(E1.2,1) = 1 and Trans(E1.2,1) = Preord(E1.2,1) = wPreord(E1.2,1) = 0.8. Fig-
ure 3 shows plots ofA, E1.2,1

↑A, and E1.2,1
•A. Basic computations show that

ClosedE1.2,1(A) = 0.5. Moreover, we have that(A≈ E1.2,1
↑A) = 0.3. From (I26)

we can infer, therefore, that ExtE1.2,1(A) = 0.3. It also holds that(E1.2,1
•A≈ E1.2,1

↑

A) = (E1.2,1
•Au E1.2,1

↑A) = 0.8. Figure 4 shows plots ofA, E1.2,1
↓A andE1.2,1

◦A.
We can show that OpenE1.2,1

(A) = 0.5 and(A≈E1.2,1
↓A) = 0.3. Thus, we can infer

ExtE1.2,1(A) = 0.3 also via (I37). Further we can show that(E1.2,1
◦A≈ E1.2,1

↓A) =
(E1.2,1

◦A u E1.2,1
↓A) = 0.8. If we take into account that(0.5→ 0.3) = (0.3↔

0.5) = 0.8, these numbers demonstrate that, in this special case, the estimations
provided by Theorem 4.12 are tight.

Finally, we can formulate representations of images under fuzzy preorders. Note
that the first four assertions (I67)–(I70) of the following theorem are “fuzzy repre-
sentations”, i.e. they do not determine the truth degree ofR↑A or R↓A itself. We
can only infer from the degree to whichR is a (weak) preorder to which degree the
image is guaranteed to resemble to the intersection (resp. union). The “real” (non-
graded) representations (I71)–(I72), known from [?, 18], are their special cases for
Rbeing a preorder to degree 1.

Corollary 4.14 The following properties of relations are provable inFCT:
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Fig. 4. The fuzzy setA from Example 4.13 (light gray),E1.2,1
↓A (medium gray), and

E1.2,1
◦A (solid black).

(I67) Preord(R)→ R↑A u
⋂
{X | A⊆ X & ExtR(X)}

(I68) Preord(R)→ R↓A u
⋃
{X | X ⊆ A & ExtR(X)}

(I69) wPreord(R)→ R↑A u
⋂
{X | A⊆ X ∧ ExtR(X)}

(I70) wPreord(R)→ R↓A u
⋃
{X | X ⊆ A∧ ExtR(X)}

(I71) 4Preord(R)→ R↑A =
⋂
{X | 4(A⊆ X & ExtR(X))}

(I72) 4Preord(R)→ R↓A =
⋃
{X | 4(X ⊆ A & ExtR(X))}

Proof. (I67) For anyX such thatA⊆ X & ExtR(X) we can inferR↑A⊆ X from
(I22). Hence, the first inclusionR↑A⊆

⋂
{X | A⊆ X & ExtR(X)} follows by (L7)

of Lemma B.8. Conversely, (I18) and (I21) imply Preord(R)→ ExtR(R↑A) & A⊆
R↑A. Then (L8) completes the proof.

The proofs of (I68)–(I70) are analogous. The assertions (I71) and (I72) follow from
(I67) and (I68), respectively, if we take basic properties of4 into account. 2

Remark 4.15 At the beginning of this section, we mentioned the close relationship
of images, closures and openings with concepts in fuzzy mathematical morphol-
ogy. In (crisp) mathematical morphology, images are considered as crisp subsets
of an Abelian group(U,+,0) (more commonly, a linear vector space structure is
assumed). Given a setA (the image) and a setB (the so-calledstructuring ele-
ment), the four standard operations (on the imageA with respect to the structuring
elementB) can be defined as follows:

A⊕B =df {y | (∃x)(Ax& B(y−x))} (dilation)
A	B =df {x | (∀y)(B(y−x)→ Ay)} (erosion)

A•B =df (A⊕B)	B (closure)
A◦B =df (A	B)⊕B (opening)

The language in the definitions above has been chosen intentionally to comply fully
with the language of FCT. Thus, if we consider gray level images asU → L map-
pings (with the standard caseL = [0,1] being the natural choice), we can generalize
the four morphological operations to gray level images and gray level structuring
elements simply by the above formulae. In the standard caseL = [0,1], the well-
known t-norm based fuzzy mathematical morphology is obtained [?, 14, 55, 56].
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This is not at all new, but it demonstrates that the expressive power of FCT allows
rather effortless generalizations—the obvious secret is the commonality of its syn-
tax with classical Boolean logic. As demonstrated in [?], the operations of fuzzy
mathematical morphology can be embedded in the concepts of this section in the
following way:

(1) If we define a fuzzy relationR asRxy= B(y− x) for a given structuring ele-
mentB, then the following four equalities hold:

A⊕B = R↑A (4.1)

A	B = R↓A (4.2)
A•B = R•A (4.3)
A◦B = R◦A (4.4)

(2) If R is a shift-invariant fuzzy relation, i.e. if

(∀x,y,z)(Rxy↔ R(x+z)(y+z))

holds, then the equalities (4.1)–(4.4) hold if we define the structuring element
B asBx= R0x.

This relationship particularly implies that we can transfer all results of this sec-
tion to fuzzy mathematical morphology without any restriction. For the non-graded
case, most of these results are already known [?, 24], but it is worth to mention
that, hereby, we have generalized fuzzy mathematical morphology to the graded
framework almost effortlessly. It may be questionable whether a graded framework
of fuzzy mathematical morphology is useful in image processing practice, but it is
certainly interesting from a theoretical perspective.

5 Bounds, Maxima, and Suprema

The aim of this section is to study the lattice-like structure induced by a fuzzy
relation. We follow the philosophy of Demirci’s approach [31, 32]. Note that this
is not a classical axiomatic approach to lattices; instead, lattice-theoretical notions
are defined on the basis of a given fuzzy relation, where Demirci assumes that
fuzzy relation under consideration is a similarity-based fuzzy ordering [15,47]. As
in the previous sections, we do not restrict ourselves to a particular class of fuzzy
relations in advance, but we infer gradual results from the degrees to which the
relation fulfills some properties (in particular, reflexivity and transitivity).

Throughout this section, assume thatR denotes a binary fuzzy relation that is arbi-
trary, but fixed.
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Definition 5.1 The properties of being anupperor lower classin X with respect
to Rare defined as follows:

UpperXR(A) ≡df (∀x∈ X)(∀y∈ X)[Rxy→ (Ax→ Ay)]
LowerXR(A) ≡df (∀x∈ X)(∀y∈ X)[Rxy→ (Ay→ Ax)]

Let us further make the conventions UpperR(A)≡df UpperVR(A) and LowerR(A)≡df

LowerVR(A). Further, to ease notation, we omit the lower indexRunless we require
special properties ofR or unless a relation different from the default choiceR is
used.

Remark 5.2 Note that UpperR(A) is in fact nothing else but ExtR(A) and that
LowerR(A) is just ExtR−1(A). We make this terminological distinction in order to
increase readability and to make explicit that we have some preorder-related no-
tions in mind.

Remark 5.3 There is an “inversion duality” between the pairs of notions defined
in this section, consisting in the observation that the second notion of each pair is
just the first one applied to the inverse relation. Thus, LowerX

R(A)↔ UpperXR−1(A)
in Definition 5.1 above,R5A = (R−1)4A in Definition 5.7 below, MinR(A) =
MaxR−1(A) in Definition 5.9, and InfR(A) = SupR−1(A) in Definition 5.14. As the
theorems on the dual notions follow trivially by takingR−1 for R, we shall usually
not write them down explicitly.

As a first simple result, we consider the antitony of (degrees of) upperness and
lowerness.

Proposition 5.4 The following properties are provable in FCT:

(C1) (X ⊆Y)2→ (UpperYR(A)→ UpperXR(A))
(C2) (X ⊆Y)2→ (LowerYR(A)→ LowerXR(A))

Proof. (X ⊆Y)2 impliesx∈ X & y∈ X→ x∈Y & y∈Y. Assuming UpperYR(A),
equivalently(∀x)(∀y)(x ∈ X & y ∈ X & Rxy→ (Ax→ Ay)), we can thus infer
(∀x)(∀y)(x∈Y & y∈Y & Rxy→ (Ax→Ay), which proves (C1). Then (C2) follows
trivially by duality. 2

Note that in Proposition 5.4 we need to require an assumption twice. The following
simple example demonstrates that the proof of Proposition 5.4 cannot be improved
in the sense that the “doubled assumption” could only be used once.

Example 5.5 Let us consider standard Łukasiewicz logic andU = {x,y} and define
fuzzy setsA,X,Y by Xx= Xy= Ax= 1, Yx= Yy= 0.9 andAy= 0.8. Using the
fuzzy relationRdefined asRxx= Ryy= Ryx= 0 andRxy= 1, we obtain thatX⊆Y
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is true to a degree of 0.9. Furthermore, we have UpperX
R(A) = 0.8 and UpperYR(A) =

1; thus the truth degree ofX ⊆Y→ (UpperYR(A)→ UpperXR(A)) is only 0.9.

AsX⊆V is always true to a degree of 1, we can infer the following simple corollary
on upperness from Proposition 5.4 (by the duality of Remark 5.3, we omit the same
result for lowerness).

Corollary 5.6 UpperR(A)→ (∀X)UpperXR(A)

Like in classical mathematics, we can define the classes of all upper (and dually,
lower) bounds of a class:

Definition 5.7 Theupper coneand thelower coneof a classA (with respect toR)
are defined as follows:

R4A =df {x | (∀a∈ A)Rax}
R5A =df {x | (∀a∈ A)Rxa}

If we do not suppose any special conditions involvingR, we write just4A and5A
instead ofR4A andR5A, respectively.

Note thatR4A appears in some literature as an image operator in its own right.
It is called sub-direct imageby some authors (e.g. [29]). In [8], the systematic
names of the operators4 and5aresubproduct imageandsuperproduct preimage,
respectively.

Theorem 5.8 The following properties of cones are provable inFCT for an arbi-
trarily fixed R:

(C3) Trans(R)→ UpperR(R4A)
(C4) A⊆ B→ 4B⊆ 4A
(C5) A⊆ 54A
(C6) 454A = 4A
(C7) 4(A∪B)⊆ 4A∩4B
(C8) 4A∪4B⊆ 4(A∩B)
(C9)

⋂
A∈A

4A = 4
( ⋃

A∈A
A
)

(C10)
⋃

A∈A

4A⊆ 4
( ⋂

A∈A
A
)

(Converse inclusions and implications have crisp counter-examples.)

Proof.

(C3) Trans(R) implies Rxy→ (Rax→ Ray), which impliesRxy→ ((a∈ A→
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Rax)→ (a ∈ A→ Ray)), whence we get the required assertionRxy→
((∀a∈ A)Rax→ (∀a∈ A)Ray) by generalization and quantifier shifts.

(C4) The required(∀x∈ A)(x ∈ B)→ (∀y)[(∀x∈ B)Rxy→ (∀x∈ A)Rxy] fol-
lows by generalization and distribution of the quantifiers from(Ax→
Bx)→ [(Bx→ Rxy)→ (Ax→ Rxy)].

(C5) The requireda∈A→ (∀x)((∀y∈ A)Ryx→Rax) follows by generalization
from a∈A→ ((∀y∈ A)Ryx→Rax), which is a variant of the specification
axiom(∀y)(y∈ A→ Ryx)→ (a∈ A→ Rax).

(C6) By (C5) it is proved that4A⊆ 45(4A). By (C5) and (C6), it is proved that
4(54A)⊆ 4A. By the axiom of extensionality, we are done.

(C7) and (C8)follow directly from the antitony of cones: by (C4),4(A∪B) ⊆ 4A
and4(A∪B)⊆ 4B, therefore4(A∪B)⊆ 4A∩4B; analogously for4(A∩
B).

(C9) This assertion can be proved as follows:

x∈
⋂

A∈A

4A←→ (∀A∈ A)(∀a∈ A)Rax

←→ (∀a)[(∃A∈ A)(a∈ A)→ Rax]←→ x∈ 4
( ⋃

A∈A
A
)

(C10) Similarly to (C9), we can infer the following:

x∈
⋃

A∈A

4A←→ (∃A∈ A)(∀a∈ A)Rax

−→ (∀a)[(∀A∈ A)(a∈ A)→ Rax]←→ x∈ 4
( ⋂

A∈A
A
)
,

where the middle implication follows from Lemma B.8 (L5) by general-
ization and appropriate quantifier shifts. 2

It is worth mentioning that the following two corollaries can be inferred directly
from (C9) and (C10):

(C11) 4(AtB) = 4Au4B
(C12) 4At4B⊆ 4(AuB)

Theorems (C4)–(C12) as well as their duals are also corollaries of more general
theorems found in [8] (submitted to this issue). Now let us move closer to the
lattice-theoretical notions at which this section aims. First of all, we define maxima
and minima.

Definition 5.9 The classes of allmaximaandminimaof a classA with respect to
Rare defined as follows:

MaxRA =df A∩ (R4A)
MinRA =df A∩ (R5A)
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Fig. 5. The fuzzy setA from Example 4.13 (light gray), its upper coneL1
4A (medium

gray), and its maximum MaxL1 A (solid black).

The indexR is dropped under the same conditions as noted above.

Remark 5.10 Observe that Definition 5.9 is just a more compact way of expressing
the usual definition of maxima and minima as those elements ofA that are larger
resp. smaller than all elements inA, i.e.,

(C13) MaxRA = {x∈ A | (∀y∈ A)Ryx}
(C14) MinRA = {x∈ A | (∀y∈ A)Rxy}

Notice further that since the property of being an upper (or lower) bound is graded
in FCT, maxima (minima) have to be defined as fuzzy classes (unlike in classical
mathematics, where they are determined uniquely and therefore can be defined as
single elements).

Example 5.11 Let us consider the fuzzy setA from Example 4.13 and standard
Łukasiewicz logic again. Further consider the fuzzy relationL1 from Example 3.7
which is a fuzzy preorder [15]. Figure 5 showsA, L1

4A and MaxL1 A, while Fig-

ure 6 showsA, L1
5A and MinL1 A. The results we obtain for the lower cone and the

minimum are what one may expect intuitively. Similarly intuitive results are always
obtained for (unions of) fuzzy intervals. The results we obtain for the upper cone
and the maximum in this case demonstrate, however, that quite peculiar results may
be obtained for more unusual fuzzy sets.5

As the above example suggests, cones, minima and maxima may not be as intuitive
and simple concepts as in classical mathematics. The following theorem demon-
strates that still properties hold that one would expect intuitively.

Theorem 5.12 The following properties of maxima are provable inFCT:

(C15) A⊆ B & x∈MaxRA & y∈MaxRB→ Rxy

5 Although unusual, the results are nevertheless not counter-intuitive and in Figure 5 they
can be explained by the shape of the membership function ofA: the gradual decrease of
A to the right makes the maximum subnormal (compare it with right-open crisp intervals
which have no maximum at all), and the increase of the membership function in the left part
induces a second peak of the maximum (as theα-cuts ofA for largeα have their maxima
exactly there).
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Fig. 6. The fuzzy setA from Example 4.13 (light gray), its lower coneL1
5A (medium

gray), and its minimum MinL1 A (solid black).

(C16) x∈MaxRA & y∈MaxRA→ Rxy& Ryx
(C17) x∈MaxRA & y∈MaxRA & AntiSymE R→ Exy

Proof.

(C15) We have to prove

(A⊆ B) & (x∈ A & x∈ R4A) & (y∈ B & y∈ R4B)→ Rxy.

Now A⊆ B & y ∈ R4B implies y ∈ R4A by (C1) which, together with
x∈ A, impliesRxy.

(C16) To prove this, we simply have to combine the antecedents and consequents
of the following two trivial assertions

x∈ A & y∈ R4A→ Rxy

y∈ A & x∈ R4A→ Ryx

and the proof is completed.
(C17) follows directly from (C16). 2

A nonchalant interpretation of (C15) is that the larger (with respect to inclusion)A
is, the larger (with respect toR) MaxRA is. The property (C16) can be interpreted
as the fact that MaxRA is unique up to the symmetrization ofR. In the case that,
in a non-graded setting,R is a fuzzy preorder, it is easily possible to show that its
symmetrization is a similarity [15, 67]. Then (C16) means nothing else than that
MaxRA is a fuzzy point[52]. The property (C16) generalizes this to any relationR
antisymmetric (to some degree) with respect toE.

The following theorem shows that maxima are upper classes inside the fuzzy class
that is considered (to the degreeR is transitive).

Theorem 5.13 The following property of maxima is provable inFCT:

(C18) Trans(R)→ UpperAR(MaxRA)

32



Proof. By (C3), Trans(R) impliesx∈ R4A & Rxy→ y∈ R4A which implies the
requiredx∈ A & y∈ A & Rxy& (x∈ A & x∈ R4A)→ (y∈ A & y∈ R4A). 2

Now we can finally define suprema and infima. Not surprisingly, the suprema are
defined as the least upper bounds, i.e., the minima of the upper cone. Again the
condition of being a supremum is graded, as the notion of a bound itself is graded.
Dually, the infima are defined as the greatest lower bounds.

Definition 5.14 The classes of allsupremaandinfimaof a classA with respect to
Rare defined as follows:

SupRA =df MinR(R4A)
InfRA =df MaxR(R5A)

The indexR is dropped under the same conditions as noted above.

Obviously, we can rewrite the definitions in the following way:

(C19) SupA = 4A∩54A
(C20) Inf A = 5A∩45A

As shown by the following theorem, suprema and infima are interdefinable.

Theorem 5.15 The following property of maxima is provable inFCT:

(C21) SupA = Inf4A

Proof. By (C20) and (C6), Inf4A = 54A∩454A = 54A∩4A = Min4A = SupA.
2

Since suprema are a special kind of minima, the general properties of the latter hold
for suprema as well; further properties of suprema hold by virtue of the properties
of cones. Some of such properties of suprema are summarized in the following
theorem.

Theorem 5.16 The following properties of maxima are provable inFCT:

(C22) A⊆ B & x∈ SupRA & y∈ SupRB→ Rxy
(C23) x∈ SupRA & y∈ SupRA→ Rxy& Ryx
(C24) x∈ SupRA & y∈ SupRA & AntiSymE R→ Exy
(C25) Trans(R)→ UpperAR(SupRA)
(C26) Trans(R)→ LowerR

4A
R (SupRA)
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Fig. 7. The fuzzy setA from Example 4.13 (light gray), its infimum InfL1 A (dashed black),
and its supremum SupL1

A (solid black).

Proof.

(C22) Follows from (C4) and the dual of (C15).
(C23) and (C24)follow respectively from the duals of (C16) and (C17).
(C25) By (C3), Trans(R) impliesx∈4A & Rxy→ y∈4A. Furthermore, by (C5),

y ∈ A→ y ∈ 54A. Combining the antecedents and consequents of these
implications we get the requiredx ∈ A & y ∈ A & Rxy& (x ∈ 4A & x ∈
54A)→ (y∈ 4A & y∈ 54A).

(C26) Follows from the dual of (C18). 2

Suprema differ from maxima already in crisp sets. The following example shows
how the difference may look like in fuzzy sets.

Example 5.17 Let us revisit Example 5.11. Figure 7 shows the fuzzy setA along
with InfL1 A and SupL1

A. (Compare with Figures 5 and 6.)

The following theorem provides us with two results on how suprema and maxima
are related to each other. For the preconditionA⊆ A∩A in (C28) see Remark 3.10.

Theorem 5.18 The following interrelations between maxima and suprema are prov-
able inFCT:

(C27) A∩MaxA⊆ A∩SupA⊆MaxA
(C28) A⊆ A∩A→MaxA u A∩SupA

Proof.

(C27) Using (C5), we can inferA∩4A∩A⊆ A∩4A∩54A⊆ A∩4A.
(C28) A⊆A∩A→A∩4A⊆A∩4A∩A which, together with the proof of (C27),

yields the converse implication toA∩SupA⊆MaxA of (C27). 2

By means of suprema and infima, the notion of lattice completeness can be de-
fined [32]. A systematic study of complete lattices and fuzzy lattice completions in
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FCT will be part of a subsequent paper. For some particular cases, see [2].

6 Valverde-Style Characterizations of Preorders and Similarities

This section aims at generalizing some of the most important and influential theo-
rems in the theory of fuzzy relations to FCT—Valverde’s representation theorems
for fuzzy preorders and similarities [67]. In the tradition of Cantor [21], Valverde
uses score functions to represent relations. Actually, he uses score functions that
map into the unit interval, so these functions can also be considered as fuzzy sets.
This interpretation facilitates an easy reformulation of these results in FCT.

Let us first consider the fuzzy relationR̀ defined as

R`xy≡df (∀z)(Rzx→ Rzy)

(for a given fuzzy relationR). This is called theleft traceof R [35,36]. Analogously
we define theright trace(which will be used in Section 7) as

Rrxy≡df (∀z)(Ryz→ Rxz).

Observe the meaning of the following expressions:

R` ⊆ R↔ (∀x,y)[(∀z)(Rzx→ Rzy)→ Rxy] (6.1)

R⊆ R`↔ (∀x,y)[Rxy→ (∀z)(Rzx→ Rzy)] (6.2)

R≈ R`↔ (∀x,y)[Rxy↔ (∀z)(Rzx→ Rzy)] (6.3)

Now we can formulate another characterization of graded reflexivity and transitiv-
ity besides those of Theorem 3.5.

Theorem 6.1 The following properties hold inFCT:

(V1) Refl(R)↔ R̀ ⊆ R
(V2) Trans(R)↔ R⊆ R̀

Proof.

(V1) To prove the first implication, we need to show thatRxy is implied by
Refl(R) and(∀z)(Rzx→Rzy). Specifyingx for z in the latter, we getRxx→
Rxy, which impliesRxy by Refl(R). To prove the converse implication,
we can specifyx for y in (6.1) and get(∀x)[(∀z)(Rzx→ Rzx) → Rxx],
i.e. (∀x)(1→ Rxx), i.e.(∀x)Rxx.

35



(V2) Trans(R)←→ (∀z,x,y)(Rzx& Rxy→Rzy)←→ (∀x,y)(∀z)[Rxy→ (Rzx→
Rzy)]←→ (∀x,y)[Rxy→ (∀z)(Rzx→ Rzy)] 2

Corollary 6.2 The following is provable inFCT:

(V3) wPreord(R)↔ R≈ R̀
(V4) Preord(R)↔ Ru R̀ ,
(V5) R≈2 R̀ −→ Preord(R)−→ R≈ R̀ .

So we have obtained graded versions of Fodor’s characterizations [35, Theorems
4.1, 4.3, and Corollary 4.4]. Note that, regardless of the symmetry ofR, we can
replaceR̀ in the above characterizations by the right trace as well.

Remark 6.3 Observe that the following holds obviously (cf. Definitions B.7 and 5.7):

R←{x}= {z | (∃y∈ {x})Rzy}= {z | Rzx}
R5{x}= {z | (∀a∈ {x})Rza}= {z | Rzx}

So we can rewrite (V3) as follows:

wPreord(R)↔ (∀x,y)
(
Rxy↔ R←{x} ⊆ R←{y}

)
wPreord(R)↔ (∀x,y)

(
Rxy↔ R5{x} ⊆ R5{y}

)
In words, a relationR is a weak preorder to the degree it coincides with graded
inclusion between the cones (or preimages) of crisp singletons.

Now we have all prerequisites for formulating and proving a graded version of
Valverde’s representation theorem for preorders. In order to make notations more
compact, let us define two properties ofValverde preorder representability(a strong
one and a weak one) for a given fuzzy relationRas

ValP(R)≡df (∃A)(Ru {〈x,y〉 | (∀A∈ A)(Ax→ Ay)})
wValP(R)≡df (∃A)(R≈ {〈x,y〉 | (∀A∈ A)(Ax→ Ay)})

Then we can prove the following essential result for preorders and weak preorders.

Theorem 6.4 FCT proves the following:

(V6) ValP2(R)−→ Preord(R)−→ ValP(R)
(V7) wValP3(R)−→ wPreord(R)−→ wValP(R)

Proof. We prove just (V6), the proof of (V7) is analogous. To show the first impli-
cation we defineSA = {〈x,y〉 | (∀A∈ A)(Ax→ Ay)}. If we show Preord(SA), then
the application of (R24) and some quantifier shifts complete the proof.
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Obviously, Refl(SA) is a theorem, now we show Trans(SA): SAxy & SAyz←→
(∀A∈ A)(Ax→Ay)& (∀A∈ A)(Ay→Az)−→ [(Ax→Ay)& (Ay→Az)]−→ (Ax→
Az). By generalization we get:SAxy& SAyz−→ (∀A∈ A)(Ax→ Az)←→ SAxz.

To prove the second implication just takeA =
{

A | (∃z)(A = {x | Rzx})
}

and
use (V4). 2

Obviously, (V6) is more complicated than Valverde’s original result; it is an ex-
ample where the graded framework does not provide us with just a plain copy of
the non-graded (or crisp) result. The following corollary gives us a result that is
comparable with Valverde’s original theorem.

Corollary 6.5 FCT proves the following:

(V8) 4Preord(R)←→4wPreord(R)←→ R= R̀
←→4ValP(R)←→4wValP(R)
←→ (∃A) (R= {〈x,y〉 | (∀A∈ A)(Ax→ Ay)})
←→ (∃A)(Crisp(A)& (R= {〈x,y〉 | (∀A∈ A)(Ax→ Ay)}))

Proof. The first four equivalences are trivial consequences of results above, to
prove the last two we prove three implications: clearly the seventh formula implies
the sixth one and that the sixth one implies the fifth one. To complete the proof we
show that

4Preord(R)→ (∃A)(R= {〈x,y〉 | (∀A∈ A)(Ax→ Ay)}).

TakeA =
{

A | (∃z)(A = {x | Rzx})
}

and apply4-necessitation to (V4). 2

Although the last formula in (V8) is a perfect copy of Valverde’s non-graded repre-
sentation, the corollary still has graded elements—note that in the sixth equivalent
formula, the classA may be a fuzzy class of fuzzy classes (unlike Valverde’s the-
orem, in which a crisp family of functions is used). The degree ofA∈ A may be
considered as a weighting factor that controls the influence of a specificA on the
final result.

Example 6.6 Let us shortly revisit Example 3.2 (in which we use standard Łukasie-
wicz logic). The fuzzy relationP1 was actually constructed from the following crisp
family of three fuzzy setsA = {A1,A2,A3} that are defined as follows (for conve-
nience, in vector notation):

A1 = (0.7,0.8,0.2,0.5,0.4,0.6)
A2 = (0.3,0.5,0.6,0.4,0.7,1.0)
A3 = (1.0,1.0,0.6,0.4,0.3,0.0)
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Fig. 8. Plots of fuzzy preorders that are obtained if we interpret (6.4) in standard Gödel
logic (left), in standard product logic (middle), and in standard Łukasiewicz logic (right).

Example 6.7 In [17], some Valverde-style constructions are investigated. For il-
lustrative purpose, let us quote the following example withU = R. We consider a
one-element crisp familyB = {B}, where the fuzzy setB is defined as follows:

Bx=


0 if x∈ [0,1[
0.4· (x−1) if x∈ [1,2[
0.7+0.3· (x−2) if x∈ [2,3[
1 if x∈ [3,5]

Figure 8 shows the three fuzzy preorders that are obtained if we interpret the defi-
nition

R= {〈x,y〉 | (∀C∈ B)(Cx→Cy)}= {〈x,y〉 | Bx→ By} (6.4)

respectively in standard G̈odel logic, standard product logic, and standard Łukasiewicz
logic.

In his landmark paper [67], Valverde not only considers fuzzy preorders, but also
similarities (as obvious from the title of this paper). So the question naturally arises
how we can modify the above results in the presence of symmetry. As will be seen
next, the modifications are not as straightforward as in the non-graded case. Let us
first define the fuzzy relationR̀ s as

R`sxy=df (∀z)(Rzx↔ Rzy)

(for a given fuzzy relationR). This is called theleft symmetric traceof R.

The following lemma demonstrates how this notion is related to the defining prop-
erties of similarity. More or less unexpectedly, the result is not that straightforward
for symmetry.

Theorem 6.8 The following are theorems ofFCT:

(V9) R̀ s⊆ R↔ Refl(R)
(V10) R⊆ R̀ s→ Trans(R)
(V11) Ru R̀ s→ Sym(R)
(V12) Sym(R)& Trans(R)→ R⊆ R̀ s
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Proof.

(V9) Analogous to the proof of (V1).
(V10) Follows from (V2) by observation thatR̀ s⊆ R̀ .
(V11) Obviously we can getR⊆ R̀ s −→ (Rxy→ (Ryx↔ Ryy)) −→ (Rxy→

(Ryy→ Ryx)). So R⊆ R̀ s & Refl(R)→ (∀y)(Rxy→ Ryx). Finally (V9)
completes the proof.

(V12) We need to show thatRzx↔ Rzy is implied by Sym(R), Trans(R), and
Rxy. First by Trans(R) andRxywe getRzx→ Rzy; secondly, by Sym(R)
andRxywe getRyx, whence by Trans(R) we getRzy→ Rzx. 2

The following theorem provides us with an analogue of Corollary 6.2, unfortu-
nately, with looser bounds on the left-hand side.

Corollary 6.9 FCT proves:

(V13) R≈4 R̀ s−→ Ru2 R̀ s−→ Sim(R)−→ Ru R̀ s−→ R≈ R̀ s

(V14) R≈2 R̀ s−→ Ru R̀ s−→ wSim(R)
(V15) wSim2(R)−→ R≈ R̀ s

The question arises whether it is really necessary to requireu rather than≈ in
(V11). The following example tells us that this is indeed the case. It also implies
thatR≈ R̀ s→ wSim(R) doesnothold in general.

Example 6.10 ConsiderU = {1,2}, standard Łukasiewicz logic, and the following
fuzzy relation:

R=
(

0.5 1.0
0.0 0.5

)
It is obvious that Refl(R) = 0.5 and Sym(R) = 0. Moreover, routine calculations
show that Trans(R) = 1. To computeRu R̀ s, we have to consider the truth values
of Rxy↔ (∀z)(Rzx↔ Rzy) for all x,y∈U :

x = 1,y = 1: min(

z=1︷ ︸︸ ︷
0.5↔ (0.5↔ 0.5) ,

z=2︷ ︸︸ ︷
0.5↔ (0.0↔ 0.0)) = 0.5

x = 1,y = 2: min(1.0↔ (0.5↔ 1.0) ,1.0↔ (1.0↔ 0.5)) = 0.5
x = 2,y = 1: min(0.0↔ (1.0↔ 0.5) ,0.0↔ (0.5↔ 0.0)) = 0.5
x = 2,y = 2: min(0.5↔ (1.0↔ 1.0) ,0.5↔ (0.5↔ 0.5)) = 0.5

So, we finally obtainR≈ R̀ s = 0.5 andRu R̀ s = 0.

Now we can formulate a graded version of Valverde’s representation theorem for
similarities. Analogously to the above considerations, let us define the property of
Valverde similarity representability(strong one and weak one) for a given fuzzy
relationRas
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ValS(R)=df (∃A)(Ru {〈x,y〉 | (∀A∈ A)(Ax↔ Ay)}),
wValS(R)=df (∃A)(R≈ {〈x,y〉 | (∀A∈ A)(Ax↔ Ay)}).

In the same way as for preorders, we can prove Valverde’s representation theorem
of similarities and weak similarities.

Theorem 6.11 FCT proves the following:

(V16) ValS3(R)−→ Sim(R)−→ ValS(R)
(V17) wValS3(R)→ wSim(R)
(V18) wSim2(R)→ wValS(R)

Again, (V16) is more complicated than Valverde’s original representation of simi-
larities. In the following corollary, analogously to preorders, we can infer a result
very similar to Valverde’s original theorem in case that the corresponding properties
are fulfilled to degree 1.

Corollary 6.12 FCT proves the following:

(V19) 4Sim(R)←→4wSim(R)←→ R= R̀ s

←→4ValS(R)←→4wValS(R)
←→ (∃A) (R= {〈x,y〉 | (∀A∈ A)(Ax↔ Ay)})
←→ (∃A)(Crisp(A)& (R= {〈x,y〉 | (∀A∈ A)(Ax↔ Ay)}))

Again, like in the case of preorders, (V19) has a graded ingredient—the classA
may be a fuzzy class of fuzzy classes.

Example 6.13 ConsiderU = [0,3], standard Łukasiewicz logic, and the following
four fuzzy sets:

A1x = max(0,min(1,x))
A2x = max(0,min(1,x−1))
A3x = max(0,min(1,x−2))
A4x = max(0,min(1,x−3))

Figure 9 shows plots of two fuzzy similarities that we obtain by the construction
that is provided by (V19):

E1xy= (∀A∈ A1)(Ax↔ Ay)
E2xy= (∀A∈ A2)(Ax↔ Ay)

whereA1 = {A1,A2,A3,A4}, i.e. a crisp finite family of fuzzy sets. Hence,E1 is the
fuzzy relation obtained from Valverde’s original construction. The fuzzy classA2,
however, is defined such thatA2A1 = A2A3 = A2A4 = 1 andA2A2 = 0.6, i.e. we
assign a lower weight of 0.6 to the second fuzzy set.
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Fig. 9. Plots of the two fuzzy relationsE1 (left) andE2 (right) from Example 6.13.

7 Similarities and Partitions

The one-to-one correspondence between equivalence relations and partitions is one
of the most fundamental correspondences in classical mathematics. It is clear, there-
fore, that fuzzy partitions have been studied intensively in connection with sim-
ilarity relations. The first approach to fuzzy partitions by Ruspini [63] does not
facilitate a direct correspondence with similarity relations. Only more logically ori-
ented approaches to fuzzy partitions that were introduced more recently are able
to provide a smooth interplay with similarity relations. In this section, we demon-
strate how the well-accepted (non-graded) approach by De Baets and Mesiar [26]
(for similar or complementary studies, see also [12, 30, 41, 42, 45, 51, 52]) can be
transferred to our graded framework.

Definition 7.1 Consider a fuzzy relationR. For a given elementx, we define the
aftersetof x (with respect toR) as

[x]R =df {y | Rxy}.

It is clear that, ifR is a similarity,[x]R can be understood as theequivalence class
of x. Note that Gottwald, in his studies [40, 41], defines the equivalence class ofx
inversely as theforeset{y | Ryx}. We stick to the afterset-based definition in this
section. The choice is immaterial, since the aftersets ofR are the foresets ofR−1

and vice versa, andRandR−1 satisfy Refl, Sym, and Trans both to the same degrees
(see Section 3).

The following lemma provides us with some easy-to-see links to concepts we have
introduced earlier in this paper.

Lemma 7.2 The following properties of aftersets are provable inFCT:

(P1) [x]R = R4{x}= R↑{x}
(P2) [x]R⊆ [y]R←→ (∀z)(Rxz→ Ryz)←→ Rrxy
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Now we can prove some basic properties of aftersets (note that semantically equiv-
alent results for left-continuous t-norms can be found in [41, Section 18.6]).

Theorem 7.3 The following properties are provable inFCT:

(P3) Refl(R)↔ (∀x)(x∈ [x]R)
(P4) Refl(R)↔ (∀x,y)([x]R⊆ [y]R→ Rxy)
(P5) Refl(R) & Sym(R)→ (∀x,y)([y]R⊆ [x]R→ Rxy)
(P6) Refl(R)→ (∀x,y)([x]R≈ [y]R→ Rxy)
(P7) Refl2(R) & Sym(R)→ (∀x,y)([y]R u [x]R→ R2xy)
(P8) Trans(R)↔ (∀x,y)(Rxy→ [y]R⊆ [x]R)
(P9) Trans(R) & Sym(R)→ (∀x,y)(Rxy→ [x]R⊆ [y]R)
(P10) Trans(R) & Sym(R)→ (∀x,y)(Rxy→ [x]R≈ [y]R)
(P11) Trans2(R) & Sym(R)→ (∀x,y)(R2xy→ [x]R u [y]R)

Proof.

(P3) Follows directly from the definition of Refl(R).
(P4) Follows from Refl(R)↔ Rr ⊆ R (compare with (V1)) and (P2).
(P5) Take (P4) and apply symmetry.
(P6) Trivial consequence of (P4).
(P7) Use (P4) and (P5).
(P8) Follows from Trans(R)↔ R⊆ Rr (compare with (V2)) and (P2).
(P9) Use (P8) and symmetry.
(P10) and (P11)both follow from (P8) and (P9). 2

From Theorem 7.3, we can now infer a first important result—that similarities can
be represented by their aftersets (i.e., equivalence classes).

Corollary 7.4 The following can be proved inFCT:

(P12) Sim(R)→ (∀x,y)(Rxy↔ [x]R≈ [y]R)
(P13) Sim2(R)→ (∀x,y)(R2xy↔ [x]R u [y]R)

In classical mathematics, the notion of quotient set is essential for the study of the
correspondence between equivalence relations and partitions. As also in previous
literature, we define quotient classes in perfect analogy to the crisp case.

Definition 7.5 For a given fuzzy relationR, we define thequotient classV/R as
the class of all aftersets (equivalence classes):

V/R =df {A | (∃x)(A = [x]R)}
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It is clear that the namequotient classis best justified ifR is a similarity. LetA be a
class of (fuzzy) classes resulting from some similarity in this way. By investigating
properties ofA , we found four constituting properties: crispness, normality of its
elements, covering, and disjointness (in a wider sense). They are defined as follows.

Definition 7.6 Let A be a fuzzy class of fuzzy classes. We define the following
properties ofA :

NormM(A) ≡df (∀A∈ A)(∃x)4Ax
Cover(A) ≡df (∀x)(∃A∈ A)4Ax

Disj(A) ≡df (∀A,B∈ A)(A ‖ B→ A≈ B)

Correspondingly, we can define the degree to whichA is a partition as

Part(A) ≡df Crisp(A) & NormM(A) & Cover(A) & Disj(A)

The first three properties are self-explanatory, Disj(A) is a straightforward (graded)
generalization of the disjointness criterion that is well-known from the literature
[26, 45, 51, 52]. Without explicitly referring to this as a notion of fuzzy partition,
some authors [45, 51, 52] study the disjointness property in conjunction with nor-
mality (and crispness, as they are working in a non-graded framework). The cov-
ering property was later introduced by De Baets and Mesiar [26] and similarly
studied by Demirci [30] and B̌elohĺavek [12]. The degree Part(A) to which a class
of classesA is a partition is thus a straightforward (graded) generalization of the
concept ofT-partition introduced by De Baets and Mesiar [26].6

Observe that the properties Crisp(A),NormM(A), and Cover(A) are crisp. Thus,
we have

Part(A)↔ Crisp(A) ∧ NormM(A) ∧ Cover(A) ∧ Disj(A),

i.e. there is no need to define a separate concept of a “weak fuzzy partition”. More-
over, it follows that

(Part(A)↔ 0)∨ (Part(A)↔ Disj(A)).

In other words, the truth value of Part(A) for a givenA is either 0 or equal to the
truth value of Disj(A).

6 An alternative option in Definition 7.5 is taking{A | (∃x)(A≈ [x]R)} for the quotient
class. This would yield a meaningful, fully fuzzified notion of quotient class and the results
of this section would only need a slight adaptation (the4’s in Definition 7.6 could be
dropped in exchange for some more exponents in definitions and proofs). The usage of=
in Definition 7.5 is motivated mainly by keeping the direct correspondence with De Baets
and Mesiar’s notion.
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Theorem 7.7 FCT proves the following properties of the quotientV/R:

(P14) Crisp(V/R)
(P15) 4Refl(R)→ Cover(V/R)
(P16) 4Refl(R)→ NormM(V/R)
(P17) Trans2(R) & Sym(R)→ Disj(V/R)
(P18) Trans2(R) & Sym(R) & 4Refl(R)→ Part(V/R)

Proof.

(P14)–(P16)are straightforward to prove.
(P17) From Trans(R) and Sym(R), we getRyx& Rzx→ Ryz, which, using the

definition, can be written asx ∈ [y]R & x ∈ [z]R→ Ryz. Using (P8) and
Trans(R) again, we getx∈ [y]R & x∈ [z]R→ [y]R⊆ [z]R. In the same way,
we getx∈ [z]R & x∈ [y]R→ [z]R⊆ [y]R. Combining these two formulae,
we get Trans2(R) & Sym(R)→ (x∈ [z]R & x∈ [y]R→ [z]R≈ [y]R). Then
applying generalization (forz), quantifier shifts, and the definition of‖
completes the proof.

(P18) Immediate consequence of (P14)–(P17). 2

Now, after we have studied the properties of the quotient of a given fuzzy relation,
the question arises how we can extract a fuzzy relation (a similarity in the ideal
case) from a given fuzzy partition.

Definition 7.8 For a given fuzzy class of fuzzy classesA we define a fuzzy relation
RA in the following way:

RA =df {〈x,y〉 | (∃A∈ A)(Ax& Ay)}

Note that the definitionRA is not the only possible definition of how to “extract” a
fuzzy relation from a family of subsets. Another often-used way to do that is

R= {〈x,y〉 | (∀A∈ A)(Ax↔ Ay)}

(see [26, 51, 67] and many other papers). The latter actually means that we define
a fuzzy relationR such that ValS(R) is fulfilled (to a degree of 1). Note, however,
that4ValS(R)←→4wValS(R)←→4Sim(R) holds by (V19). Thus we obtain a
similarity regardless of the properties of the classA . So this definition would not al-
low us to relate properties of partitions with properties of the induced relations in a
meaningful graded manner. That is why we use the constructionRA . The following
theorem provides us with these relationships.
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Theorem 7.9 The following properties of RA are provable inFCT:

(P19) Sym(RA)
(P20) Cover(A)→4Refl(RA)
(P21) Disj(A)→ Trans(RA)
(P22) Part(A)−→4Sym(RA)&4Refl(RA)& Trans(RA)−→ Sim(RA)

Proof.

(P19) Trivial.
(P20) Cover(A) −→ (∃X ∈ A)4(x∈ X) −→4(∃X ∈ A)(x∈ X & x∈ X)←→

4RAxx
(P21) FromRAxy& RAyz, we get(∃A,B∈ A)(Ax& Ay& By& Bz). Since from

Disj(A) we get(Ay& By)→ A≈ B, we have(∃A,B∈ A)(Ax& A≈ B &
Bz). As A≈ B & Bz→ Az, we obtain(∃A∈ A)(Ax& Az)↔RAxz, and the
proof is done.

(P22) Immediate consequence of (P19)–(P21). 2

The property (P18) has told us that the quotient of a similarity is a partition. Now
(P22) entails that partitions induce similarities. Note, however, that this is not yet
a proof of one-to-one correspondence. We do not know yet whether these corre-
spondences are invertible, i.e., (i) whether the quotient of a similarity induced by a
partition is the same as the original partition, and (ii) whether the quotient of a given
similarity induces the same similarity. The following final theorem gives answers
to these questions—fortunately in a fully graded manner.

Theorem 7.10 FCT proves the following:

(P23) Sim(R)→ (RV/R u R)
(P24) Part(A)−→Crisp(A) & NormM(A) & Disj(A)−→ (∀A∈ A)(∃B∈ V/RA)(A u B)
(P25) Part(A)−→Crisp(A) & Cover(A) & Disj(A)−→ (∀B∈ V/RA)(∃A∈ A)(A u B)

Proof.

(P23) We shall show that Sym(R) & Trans(R)→ RV/R⊆ R and that Refl(R)→
R⊆ RV/R. The first part is proved by the following steps:
RV/Rxy −→ (∃A∈ V/R)(Ax& Ay)
−→ (∃A)((∃z)([z]R = A) & Ax& Ay)
−→ (∃A)(∃z)([z]R = A & Ax& Ay)
−→ (∃A)(∃z)([z]R = A & Ax& [z]R = A & Ay)
−→ (∃z)(x∈ [z]R & y∈ [z]R)
−→ (∃z)(Rzx& Rzy)
−→ (∃z)(Rxz& Rzy), by Sym(R),
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−→ Rxy, by Trans(R).
The second part is proved by the following steps:
Rxy −→ [x]R = [x]R & x∈ [x]R & y∈ [x]R, by Refl(R),
−→ (∃z)([z]R = [z]R & x∈ [z]R & y∈ [z]R)
−→ (∃A)(∃z)([z]R = A & Ax& Ay)
−→ (∃A)((∃z)([z]R = A) & Ax& Ay)
−→ (∃A∈ V/R)(Ax& Ay)
−→ RV/Rxy.

(P24) Let us choose a fuzzy setA∈A . Since Crisp(A) is fulfilled,4A∈A holds.
Since NormM(A) holds, we know that there exists anx such that4Ax.
Now we chooseB = [x]RA , i.e. By←→ RAxy←→ (∃C∈ A)(Cx & Cy).
Since4Ax and4A∈ A we get:

Ay−→ A∈ A & Ax& Ay−→ (∃C∈ A)(Cx& Cy),

i.e. we have proved

Crisp(A) & NormM(A)→ A⊆ B (7.1)

Conversely, we can prove the following:
By←→ (∃C∈ A)(Cx& Cy)
−→ (∃C∈ A)(Ax& Cx& Cy), by4Ax,
−→ (∃C∈ A)(A≈C & Cy), by Disj(A),
−→ (∃C∈ A) Ay
−→ Ay

So we have proved

Crisp(A) & NormM(A) & Disj(A)→ B⊆ A. (7.2)

Finally, we can join (7.1) and (7.2) to complete the proof (as the properties
Crisp and NormM are crisp).

(P25) Let us consider an arbitraryB∈V/RA . Since Crisp(V/RA) holds by (P14),
we have4(B∈ V/RA), which means that there exists anx such thatB =
[x]RA = {y | RAxy}. By (P20), we have Cover(A)→4Refl(RA). Hence,
we have4Bx. From Cover(A) and Crisp(A) we can deduce that we can
choose anA∈ A such that4Ax. Hence, we can deduce the following:

Ay−→ A∈ A & Ax& Ay−→ (∃C∈ A)(Cx& Cy)−→ By

So we have proved the following:

Crisp(A) & NormM(A) & Cover(A)→ A⊆ B (7.3)

Conversely, we can prove

Crisp(A) & Cover(A) & Disj(A)→ B⊆ A. (7.4)
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completely analogously to the proof of (7.2) (just to get4Axwe use Cover
instead of NormM). Finally, we can join (7.3) and (7.4) to complete the
proof. 2

Nonchalantly speaking, we can say that (P24) and (P25) together mean that the
more A is a partition, the more similarA and V/RA are. The question arises,
whether they are equal ifA is a partition to a degree of 1. The next corollary gives
a positive answer and lists some other well-known non-graded results [12, 26, 30]
that are consequences of graded results from above.

Corollary 7.11 FCT proves the following:

(P26) 4Sim(R)→4Part(V/R)
(P27) 4Sim(R)→ RV/R = R
(P28) 4Part(A)→4Sim(RA)
(P29) 4Part(A)→ V/RA = A

Proof. The assertions (P26), (P27) and (P28) are immediate consequences of (P18),
(P23) and (P22), respectively. The assertion (P29) can be proved as follows: from
Part(A), we know thatA is a crisp set and, by (P14), we know that V/RA is
crisp too. Then, using4Part(A), (P24) impliesA ⊆ V/RA and (P25) implies
V/RA ⊆ A , which completes the proof. 2

Let us close this section with a simple example that illustrates the above results.

Example 7.12 Let us considerU = {1,2,3,4}, standard Łukasiewicz logic, and
the crisp classA = {A1,A2,A3,A4}, whereA1,A2,A3,A4 are fuzzy sets defined in
the following way:

A1 = (1.0,0.4,0.3,0.0)
A2 = (0.0,1.0,0.7,0.0)
A3 = (0.1,0.2,1.0,0.5)
A4 = (0.0,0.1,0.5,1.0)

Obviously, Crisp(A) = Cover(A) = NormM(A) = 1. To compute Disj(A), we first
compute the degrees of compatibility (overlapping) and equality:

‖ A1 A2 A3 A4

A1 1.0 0.4 0.3 0.0
A2 0.4 1.0 0.7 0.2
A3 0.3 0.7 1.0 0.5
A4 0.0 0.2 0.5 1.0

≈ A1 A2 A3 A4

A1 1.0 0.0 0.1 0.0
A2 0.0 1.0 0.2 0.0
A3 0.1 0.2 1.0 0.5
A4 0.0 0.0 0.5 1.0
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From these values, we see that the pair(A2,A3) is the one for which compatibility
exceeds equality to the largest extent. So, we obtain

Disj(A) = A2 ‖ A3→ A2≈ A3 = 0.7→ 0.2 = 0.5

which implies Part(A) = 0.5. We can deriveRA as follows:

RA =


1.0 0.4 0.3 0.0
0.4 1.0 0.7 0.1
0.3 0.7 1.0 0.5
0.0 0.1 0.5 1.0


Obviously Refl(RA) = Sym(RA) = 1 (any other result would contradict our find-
ings above). Straightforward calculations show that

Sim(RA) = wSim(RA) = Trans(RA) = 0.9.

Hence, we can conclude that the bounds in (P21) are not necessarily tight (which
proves that the converse implication cannot generally hold).

Now let us consider the quotientU/RA . Obviously,U/RA = {B1,B2,B3,B4} with

B1 = (1.0,0.4,0.3,0.0)
B2 = (0.4,1.0,0.7,0.1)
B3 = (0.3,0.7,1.0,0.5)
B4 = (0.0,0.1,0.5,1.0)

and we immediately see the discrepancy betweenA andU/RA . Interestingly, we
haveA1 ⊆ B1, A2 ⊆ B2, A3 ⊆ B3, andA4 ⊆ B4. This is not surprising, however, if
one looks at the proofs of (P24) and (P25), where we show that, for anA∈ A , we
can find aB∈ V/RA such thatA⊆ B. Not surprisingly either,A1 is most similar to
B1, just asA2 is most similar toB2, and so on. Simple calculations show that the
truth values of the formulae on the right-hand sides of (P24) and (P25) are both 0.5.

If we computeRU/RA
, we obtain the following fuzzy relation:

RU/RA
=


1.0 0.4 0.3 0.0
0.4 1.0 0.7 0.1
0.3 0.7 1.0 0.5
0.0 0.1 0.5 1.0


Then routine computations show that this fuzzy relation is a similarity. So, at least
in the setting of this example, successive application of computing quotients and
induced similarities yields increasing degrees to which the relations are similarities
and the classes of fuzzy sets are partitions.
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8 Concluding Remarks

In this paper, we have rephrased and generalized results on binary fuzzy relations to
the graded framework of Fuzzy Class Theory (FCT). While Section 3 was more or
less concerned with rewriting Gottwald’s previously published results, Sections 4–
7 have generalized results that were known in the non-graded framework of tradi-
tional theory of fuzzy relations to the fully fledged graded framework of FCT. These
new results hereby demonstrate that Fuzzy Class Theory is indeed a very powerful
and easy-to-use framework for handling fuzzified properties of fuzzy relations.

This paper has never been intended as a comprehensive treatise that covers the
whole theory of crisp or fuzzy relations. We only tried to communicate the idea of
how to apply Fuzzy Class Theory to generalizing existing (and possibly discovering
new) results on fuzzy relations in the fully graded framework of FCT. Obviously,
much is left for future studies, and we would like to encourage everybody interested
in this topic to adopt the framework and advance the results.

A First-Order MTL 4: Basic Definitions

Monoidal t-norm based logic (MTL for short) was introduced by Esteva and Godo
in [33] as an extension of Ḧohle’s monoidal logic [46] by the axiom of prelinearity
(i.e., the axiom (A6) below). In this appendix we recall the definitions and some of
the basic properties of MTL and its expansion by the connective4. We start with
the propositional variant and then expand it to the first-order predicate variant.

The formulae of propositional logic MTL are composed from a countable set of
propositional atoms by using three basic binary connectives→, ∧, and &, and a
nullary connective 0. Further connectives can be defined as:

ϕ∨ψ ≡df ((ϕ→ ψ)→ ψ)∧ ((ψ→ ϕ)→ ϕ),
¬ϕ ≡df ϕ→ 0,

ϕ↔ ψ ≡df (ϕ→ ψ)∧ (ψ→ ϕ),
1 ≡df ¬0.

Convention A.1 In order to avoid unnecessary parentheses, we stipulate that unary
connectives take precedence over∧,∨, and &, which in turn bind more closely than
→ and↔.

The deduction rule of MTL is Modus Ponens (fromϕ andϕ→ ψ infer ψ) and the
following formulae are the axioms of MTL:

(A1) (ϕ→ ψ)→ ((ψ→ χ)→ (ϕ→ χ))
(A2) ϕ & ψ→ ϕ
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(A3) ϕ & ψ→ ψ & ϕ
(A4a) ϕ & (ϕ→ ψ)→ ϕ∧ψ
(A4b) ϕ∧ψ→ ϕ
(A4c) ϕ∧ψ→ ψ∧ϕ
(A5a) (ϕ→ (ψ→ χ))→ (ϕ & ψ→ χ)
(A5b) (ϕ & ψ→ χ)→ (ϕ→ (ψ→ χ))
(A6) ((ϕ→ ψ)→ χ)→ (((ψ→ ϕ)→ χ)→ χ)
(A7) 0→ ϕ

The logic MTL4 was introduced in [33] as an expansion of the logic MTL by a
new unary connective4, the deduction rule of necessitation (fromϕ infer 4ϕ),
and the following axioms:

(A41) 4ϕ∨¬4ϕ
(A42) 4(ϕ∨ψ)→ (4ϕ∨4ψ)
(A43) 4ϕ→ ϕ
(A44) 4ϕ→44ϕ
(A45) 4(ϕ→ ψ)→ (4ϕ→4ψ)

Formulae derived from these axioms by means of the mentioned deduction rules
are calledtheoremsof MTL4.

Definition A.2 An MTL -algebrais a structureL = (L,∗,⇒,∧,∨,0,1), where

(1) (L,∧,∨,0,1) is a bounded lattice
(2) (L,∗,1) is a commutative monoid
(3) x≤ (y⇒ z) if and only if x∗y≤ z for all x,y,z∈ L (residuation)
(4) (x⇒ y)∨ (y⇒ x) = 1 for all x,y∈ L (prelinearity)

Definition A.3 A structureL = (L,∗,⇒,∧,∨,0,1,4) is called an MTL4-algebra
if (L,∗,⇒,∧,∨,0,1) is an MTL-algebra and if the additional connective4 has the
following properties (for allx,y∈ L):

(1) 4x∨ (4x⇒ 0) = 1
(2) 4(x∨y)≤ (4x∨4y)
(3) 4x≤ x
(4) 4x≤44x
(5) 4(x⇒ y)≤4x⇒4y
(6) 41 = 1

If the lattice order ofL is linear, we say thatL is an MTL4-chain. If the lattice
reduct ofL is the real unit interval with the usual order, we say thatL is astandard
MTL4-chain. It can be easily shown that in each MTL4-chain the following holds:

4x =

{
1 if x = 1

0 otherwise
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The structure([0,1],∗,⇒,min,max,0,1,4) is a standard MTL4-chain if and only
if ∗ is a left-continuous t-norm and⇒ its residuum.

Given an MTL4-algebra, we can evaluate formulae of MTL4 by assigning ele-
ments ofL to propositional atoms and computing values of compound formulae
using operations ofL . A formula is atautologyof a given MTL4-algebra if it
always evaluates to 1.

The completeness theorem for MTL and MTL4 with respect to standard algebras
was proved in [49]: a formula is a theorem in MTL4 if and only if it is a tautology
of each standard MTL4-algebra.

Now we introduce the language of first-order MTL4 logic (we give a slightly sim-
plified account, omitting the subsumption of sorts; for full details see [4]).

Definition A.4 A predicate languageΓI is a tuple(S,P,F,a), whereS is a non-
empty set of sorts of variables,P is a non-empty set of predicate symbols,F is
a set of function symbols, anda is anarity functionwhich assigns a sequence of
sorts(s1, . . . ,sk) to each predicate symbol and a sequence of sorts(s1, . . . ,sk,sk+1)
to each function symbol (k≥ 0 in both cases). Functions with arity(s1) are called
object constantsof sort s1. The setP is supposed to contain a symbol= of arity
(s,s) for each sorts. For each sorts, there are countably many variablesxs

1,x
s
2, . . . .

For the rest of this appendix, fix a predicate languageΓI and an MTL4-chainL .

Definition A.5 Any variablexs of sorts is a termof sorts. If F ∈ F is a function
symbol of arity(s1, . . . ,sk,sk+1), then for any termst1, . . . , tk of respective sorts
s1, . . . ,sk, the expressionF(t1, . . . , tk) is a term of sortsk+1.

Atomic formulaehave the formP(t1, . . . , tk), wheret1, . . . , tk are terms of respective
sortss1, . . . ,sk andP∈ P is a predicate symbol of arity(s1, . . . ,sk). Where conve-
nient, we switch to infix notation for binary predicate symbols.

Formulaeare built from atomic formulae by using the connectives of MTL4 and
the quantifiers∀,∃ (for a formulaϕ and a variablex, both (∀x)ϕ and (∃x)ϕ are
formulae).

Definition A.6 An occurrence of a variablex in a formulaϕ is bound if it is in
the scope of a quantifier overx; otherwise it is calledfree.A formula ϕ is called a
sentenceif all occurrences of variables inϕ are bound.

A term t is substitutablefor the object variablexs of sorts in a formulaϕ(xs) if and
only if t is also of sorts and no variable occurring int becomes bound inϕ(t).

Definition A.7 First-order MTL4 logic (with crisp identity) has the following ax-
ioms:
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(P) The axioms resulting from the axioms of MTL4 by substituting first-order
formulae for propositional formulae

(∀1) (∀x)ϕ(x)→ ϕ(t), wheret is substitutable forx in ϕ
(∃1) ϕ(t)→ (∃x)ϕ(x), wheret is substitutable forx in ϕ
(∀2) (∀x)(χ→ ϕ)→ (χ→ (∀x)ϕ), wherex is not free inχ
(∃2) (∀x)(ϕ→ χ)→ ((∃x)ϕ→ χ), wherex is not free inχ
(∀3) (∀x)(χ∨ϕ)→ χ∨ (∀x)ϕ, wherex is not free inχ
(=1) x = x
(=2) x = y→ (ϕ(x)↔ ϕ(y)), wherey is substitutable forx in ϕ

The deduction rules are those of MTL4 andgeneralization: from ϕ infer (∀x)ϕ.

We define the notion of atheoremin the same way as in the propositional case. We
can also define a more general notion of a theory.

Definition A.8 A theoryis a set of sentences. A formula isprovable in a theory T
if it is derivable from the axioms of first-order MTL4 and sentences belonging to
T by the deduction rules. We denote this fact byT ` ϕ.

Definition A.9 An L -structureM has the form:M =((Ms)s∈S,(PM )P∈P,(FM )F∈F),
where eachMs is a non-empty set; eachPM is ak-ary fuzzy relationPM : ∏k

i=1Msi→
L for each predicate symbolP∈ P of arity (s1, . . . ,sk); andFM is ak-ary function
FM : ∏k

i=1Msi → Msk+1 for each function symbolF ∈ F of arity (s1, . . . ,sk,sk+1).
Furthermore,=M is the crisp identity of the elements ofMs for eachs∈ S.

In words: anL -structure consists of (i) domains for all sorts of variables, (ii) an
interpretation of all predicate symbols byL -fuzzy relations defined on appropri-
ate domains, and (iii) an interpretation of all function symbols by crisp functions
between appropriate domains.

Definition A.10 Let M be anL -structure. AnM -evaluationis a mappingv which
assigns an element fromMs to each object variablexof sorts. For anM -evaluationv,
a variablex of sorts, anda∈Ms we define theM -evaluationv[x 7→ a] as

v[x 7→ a](y) =

{
a if y = x

v(y) otherwise

Definition A.11 Let M be anL -structure andv an M -evaluation. We define the
valuesof terms and thetruth valuesof formulae inM for anM -evaluationv as:
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‖x‖LM ,v = v(x)
‖F(t1, . . . , tn)‖LM ,v = FM (‖t1‖LM ,v, . . . ,‖tn‖LM ,v) for eachF ∈ F
‖P(t1, . . . , tn)‖LM ,v = PM (‖t1‖LM ,v, . . . ,‖tn‖LM ,v) for eachP∈ P
‖c(ϕ1, . . . ,ϕn)‖LM ,v = cL (‖ϕ1‖LM ,v, . . . ,‖ϕn‖LM ,v) for each connectivec

‖(∀x)ϕ‖LM ,v = inf
a∈M
‖ϕ‖LM ,v[x→a]

‖(∃x)ϕ‖LM ,v = sup
a∈M
‖ϕ‖LM ,v[x→a]

If an infimum or supremum does not exist, we consider its value as undefined. We
say that a structureM is safeif and only if ‖ϕ‖LM ,v is defined for each formulaϕ and
eachM -evaluationv. Note that, in a standard MTL4-algebra (or more generally in
any MTL4-algebra whose lattice reduct is a complete lattice), thesafenessof a
structure is a superfluous condition, as the suprema and infima ofall sets exist.

Definition A.12 A formula ϕ is valid in a structureM (denoted asM |= ϕ) if
‖ϕ‖LM ,v = 1 for eachM -evaluationv. A structureM is a modelof a theoryT if
M |= ϕ for eachϕ in T.

Finally we present the (strong) completeness theorem which relates syntactical and
semantical aspects of the first-order MTL4 logic (see [33, 53] for a proof). Recall
that the direction from provability to validity is usually calledsoundness, whereas
the converse direction one is calledcompleteness.

Theorem A.13 Let ΓI be a predicate language, T a theory, andϕ a formula. Then
the following are equivalent:

(1) T ` ϕ.
(2) M |= ϕ for eachMTL -chainL and each safeL -modelM of T .
(3) M |= ϕ for each standardMTL -chainL and eachL -modelM of T .

Thus by (1)⇒(2) we get that if a formula is provable in a given theoryT, then it is
valid in all models ofT overall MTL4-chains. Conversely, by (3)⇒(1) we get that
if a formula is valid in all models ofT over all allstandardMTL4-chains, then it
is provable inT.

B Fuzzy Class Theory: Basic Definitions

Fuzzy Class Theory has the aim to axiomatize the notion of fuzzy set. In the first pa-
per [4], it was based on the logic ŁΠ [34]. In this paper, we use the logic MTL4; ob-
viously all definitions and basic results of [4] can be transferred from ŁΠ to MTL4.
For an introduction to MTL4, see Appendix A (for a more extensive overview of
propositional MTL, see [33]; a more detailed treatment on first-order MTL4 with
crisp equality can be found in [43]).

53



In this section, we present an overview of Fuzzy Class Theory (FCT) in order to
provide the reader with the necessary background. Note that this is only a brief
introduction to the most basic concepts of FCT with the aim to keep the paper self-
contained. Readers who want to understand all proof details or even to make proofs
in FCT themselves should not expect to find all necessary material in this paper.
Instead, they are referred to the freely available primer [6].

Definition B.1 Fuzzy Class Theory(over MTL4) is a theory over multi-sorted
first-order logic MTL4 with crisp equality. We have sorts for individuals of the
zeroth order (i.e., atomic objects) denoted by lowercase variablesa,b,c,x,y,z, . . . ;
individuals of the first order (i.e., fuzzy classes) denoted by uppercase variables
A,B,X,Y, . . . ; individuals of the second order (i.e., fuzzy classes of fuzzy classes)
denoted by calligraphic variablesA ,B,X ,Y , . . . ; etc. Individualsξ1, . . . ,ξk of each
order can formk-tuples (for anyk≥ 0), denoted by〈ξ1, . . . ,ξk〉; tuples are governed
by the usual axioms known from classical mathematics (e.g., that tuples equal if and
only if their respective constituents equal). Furthermore, for each variablex of any
ordern and for each formulaϕ there is a class term{x | ϕ} of ordern+1.

Besides the logical predicate of identity, the only primitive predicate is the mem-
bership predicate∈ between successive sorts (i.e., between individuals of then-th
order and individuals of the(n+1)-st order, for anyn). 7 The axioms for∈ are the
following (for variables of all orders):

(∈1) y∈ {x | ϕ(x)}↔ ϕ(y), for each formulaϕ (comprehension axioms)
(∈2) (∀x)4(x∈ A↔ x∈ B)→ A = B (extensionality)

Moreover, we use all axioms and deduction rules of first-order MTL4. Theorems,
theories, proofs, etc., can be defined completely analogously.

Observation B.2 Since the language of FCT is the same at each order, defined
symbols of any order can be shifted to all higher orders as well. Since furthermore
the axioms of FCT have the same form at each order, all theorems on FCT-definable
notions are preserved by uniform upward order-shifts.

Convention B.3 For better readability, let us make the following conventions:

• We use the notations(∀x∈ A)ϕ, (∃x∈ A)ϕ as abbreviations for(∀x)(x∈A→ ϕ)
and(∃x)(x∈ A & ϕ), respectively.

• The notation{x∈ A | ϕ} is short for{x | x∈ A & ϕ}.
• We use{〈x1, . . . ,xk〉 | ϕ} as abbreviation for{x | (∃x1) . . .(∃xk)(x= 〈x1, . . . ,xk〉&

ϕ)}.
• The formulaeϕ & . . . & ϕ (n times) are abbreviatedϕn; instead of(x∈ A)n, we

can writex∈n A (analogously for other predicates).

7 By this requirement, Russell’s paradox is avoided in a similar fashion as in type the-
ory [64].
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• Furthermore,x /∈ A is shorthand for¬(x∈ A); analogously for other binary pred-
icates.
• We useAx andRx1 . . .xn synonymously forx ∈ A and〈x1, . . . ,xn〉 ∈ R, respec-

tively.
• A chain of implicationsϕ1→ ϕ2,ϕ2→ ϕ3, . . . ,ϕn−1→ ϕn will for short be writ-

ten asϕ1−→ ϕ2−→ ·· · −→ ϕn; analogously for the equivalence connective.

Definition B.4 In FCT, we define the following elementary fuzzy set operations:

/0 =df {x | 0} empty class
V =df {x | 1} universal class

Ker(A) =df {x | 4(x∈ A)} kernel
Supp(A) =df {x | ¬4¬(x∈ A)} support

\A =df {x | x /∈ A} complement
A∩B =df {x | x∈ A & x∈ B} intersection
AuB =df {x | x∈ A∧ x∈ B} min-intersection
AtB =df {x | x∈ A∨ x∈ B} max-union
A\B =df {x | x∈ A & x /∈ B} difference

Definition B.5 Further we define in FCT the following elementary relations be-
tween fuzzy sets:

Hgt(A) ≡df (∃x)(x∈ A) height
Norm(A) ≡df (∃x)4(x∈ A) normality
Crisp(A) ≡df (∀x)4(x∈ A∨ x /∈ A) crispness
Fuzzy(A) ≡df ¬Crisp(A) fuzziness

A⊆ B ≡df (∀x)(x∈ A→ x∈ B) inclusion
A u B ≡df (A⊆ B) & (B⊆ A) (strong) bi-inclusion
A≈ B ≡df (∀x)(x∈ A↔ x∈ B) weak bi-inclusion
A ‖ B ≡df (∃x)(x∈ A & x∈ B) compatibility

Definition B.6 The union and intersection of a class of classes are functions de-
fined as

⋃
A =df {x | (∃A∈ A)(x∈ A)}⋂
A =df {x | (∀A∈ A)(x∈ A)}

Definition B.7 In FCT, we define the following operations:
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A×B =df {〈x,y〉 | x∈ A & y∈ B} Cartesian product
Dom(R) =df {x | Rxy} domain
Rng(R) =df {y | Rxy} range

R←A =df {x | (∃y)(y∈ A & Rxy)} pre-image
R◦S =df {〈x,y〉 | (∃z)(Rxz& Szy)} composition
R−1 =df {〈x,y〉 | Ryx} converse relation

Id =df {〈x,y〉 | x = y} identity relation

The following lemma lists a collection of results that are employed helpful later in
this paper.

Lemma B.8 The following results are provable inFCT:

(L4) 4(ϕ∨¬ϕ)→ [(ϕ→ (ψ→ χ))→ ((ϕ→ ψ)→ (ϕ→ χ))]
(L5) ϕ & (ψ→ χ)→ ((ϕ→ ψ)→ χ)
(L6)

⋃
{B | ϕ(B)} ⊆ A↔ (∀B)(ϕ(B)→ B⊆ A)

(L7) A⊆
⋂
{B | ϕ(B)}↔ (∀B)(ϕ(B)→ A⊆ B)

(L8) ϕ(C)→
⋂
{B | ϕ(B)} ⊆C

(L9) ϕ(C)→C⊆
⋃
{B | ϕ(B)}

(L10) (∃x)(ϕ∨ψ)↔ ((∃x)ϕ∨ (∃x)ϕ)
(L11) (∀x)(ϕ∧ψ)↔ ((∀x)ϕ∧ (∀x)ψ)
(L12) (∃x)(ϕ∧ψ)→ ((∃x)ϕ∧ (∃x)ψ)
(L13) ((∀x)ϕ∨ (∀x)ψ)→ (∀x)(ϕ∨ψ)
(L14) (∀x∈ A)(χ→ ψ)→ (χ→ (∀x∈ A)ψ), where x is free inχ
(L15) (∀x∈ A)(ϕ→ ψ)→ ((∀x∈ A)ϕ→ (∀x∈ A∩A)ψ)
(L16) (∀x∈ A)(ϕ→ ψ)→ ((∃x∈ A∩A)ϕ→ (∃x∈ A)ψ)

The models of FCT are systems (closed under definable operations) of fuzzy sets
(and fuzzy relations) of all orders over some crisp universeU , where the mem-
bership functions of fuzzy subsets take values in some MTL4-chain (see [33] and
Appendix A). Intended models are those which containall fuzzy subsets and fuzzy
relations overU (of all orders); we call such modelsfull. Models in which more-
over the MTL4-chain is standard (i.e., given by a left-continuous t-norm on the unit
interval[0,1]) correspond to Zadeh’s [68] original notion of fuzzy set; therefore we
call themZadeh models.

FCT is sound with respect to Zadeh (or full) models; thus, whatever we prove in
FCT is true about real-valued (orL -valued for any MTL4-chainL ) fuzzy sets and
relations. Although the theory of Zadeh models is notcompletelyaxiomatizable,8

the axiomatic system of FCT approximates it very well: the comprehension axioms
ensure the existence of (at least) all fuzzy sets which aredefinable(by a formula
of FCT), and the axioms of extensionality ensure that fuzzy sets are determined by
their membership functions. This axiomatization is sufficient for almost all practi-

8 Due to G̈odel’s Incompleteness Theorem [37], since natural numbers are definable in
Zadeh models over MTL4.
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cal purposes; it can be characterized assimple type theory over fuzzy logic(cf. [58])
or Henkin-style higher-order fuzzy logic.
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[12] R. Bělohĺavek. Fuzzy Relational Systems: Foundations and Principles, volume 20
of IFSR International Series on Systems Science and Engineering. Kluwer
Academic/Plenum Press, New York, 2002.
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