Relations in Fuzzy Class Theory: Initial Steps

Libor B&€hounek*, Ulrich Bodenhofet, Petr Cintuld
Linstitute of Computer Science, Academy of Sciences of the Czech Republic
Pod Vodirenskou @z 2, 182 07 Prague 8, Czech Republic

2Institute of Bioinformatics, Johannes Kepler University Linz
Altenberger Str. 69, A-4040 Linz, Austria

Abstract

This paper studies fuzzy relations in the graded framework of Fuzzy Class Theory (FCT).
This includes (i) rephrasing existing work on graded properties of binary fuzzy relations
in the framework of Fuzzy Class Theory and (ii) generalizing existing crisp results on
fuzzy relations to the graded framework. Our particular aim is to demonstrate that Fuzzy
Class Theory is a powerful and easy-to-use instrument for handling fuzzified properties of
fuzzy relations. This paper does not rephrase the whole theory of (fuzzy) relations; instead,
it provides an illustrative introduction showing some representative results, with a strong
emphasis on fuzzy preorders and fuzzy equivalence relations.
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1 Introduction

Fuzzy relations are of fundamental importance in almost all sub-fields of fuzzy
logic and fuzzy set theory, including particularly fuzzy preference modeling, fuzzy
mathematics, fuzzy inference, and many more. In the most general setting, fuzzy
relations are mappings from the Cartesian product of non-empty dolkais - x

Un (usually withn > 2) to the unit interval or a more general lattice of truth values

L (see e.g. [38,41,42,47,51]). Clearly the motivation behind fuzzy relations is to
allow more flexibility by admitting intermediate degrees of relationship [12, 36,57,
59,60, 69].
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An important class are the so-callbohary fuzzy relations that are used to express
graded relationships between two objects coming from the same domain. Techni-
cally, they are defined d$ x U — L mappings, wher& is some non-empty set
andL is again the lattice of truth values we consider. There are many important
sub-classes, such as, fuzzy preorders [18,67,69], fuzzy orders [12, 15,47, 69], and
fuzzy equivalence relations [12,20,50,51,66,67,69]. Interestingly, however, the tra-
ditional characterizing properties of these important types of fuzzy relations, such
as, reflexivity, symmetry, transitivity, and so forth, are defined in a strictly crisp way,
i.e., as properties that either hold fully or do not hold at all. One may be tempted
to argue that it is somewhat peculiar to fuzzify relations by allowing intermediate
degrees of relationships, but, at the same time, to still enforce strictly crisp prop-
erties on fuzzy relations. This particularly implies that all results are effective only
if some assumptions are fulfilled, but say nothing at all if the assumptions are not
fulfilled (even if they arealmostfulfilled).

To illustrate our point, let us shortly consider a toy example. It is common in the
theory of fuzzy relations to call a fuzzy relatidk: U x U — [0,1] reflexiveif
R(x,x) = 1 holds for allx € U. From the reflexivity of a fuzzy relatioR, we can
infer

RC Ro, R

whereL is the traditional crisp inclusion of fuzzy sets or relations [68]
Ri C Ryifand only if Ry(x,y) < Rx(x,y) for all x,y € U,

andRo, R is the composition oR with itself (with respect to some triangular
norms), i.e.,
(Ro.R)(xy) = sup{R(x,2) xR(zy) | z€ U}.

What, however, happens if a given fuzzy relati@rs not reflexive, butalmost
reflexive? Let us considér = {1, 2,3} and the fuzzy relation (in convenient matrix
notation)
111
R=(011],
0OO0a

wherea € [0,1]. Using the tukasiewicz t-norms+, y = max0,x+y— 1), routine
calculations show that
111

RoR=(011],
004d
wherea = max(0,2a— 1). So we confirm that only i =1, we also havel =
1, and only in this cas® C Ro; R holds. What is also apparent, however, is the
fact that, the closer the valueis to 1, the les®R exceedRo, R. Actually, in this
example, this degree is

a—a =a—max0,2a— 1) = min(a,1—a).



For example, ifa = 0.99, we obtaire’ = 0.98, andR exceedRRo, Ronly by 0.01.

So we see that, even if some assumptions are not fully satisfied, we may obtain
some meaningful results. The classical theory of fuzzy relations, however, does not
offer any concepts for handling this kind of “gradedness”. We only know that the
classical result is not applicable, sinRkés not reflexive.

It was actually S. Gottwald who first attempted to eliminate this eyesore by intro-
ducing what he called “graded properties of fuzzy relations” [39—41]. Let us shortly
recall these ideas in the light of the above example. For instance, Gottwald defined
thedegree of reflexivitpf a fuzzy relatiorR as

Refl(R) = inf{R(x,x) | xe U}
and thedegree of inclusiomvith respect to a left-continuous t-norsas
R1 C, R =inf{Ri(X,y) =, Ra(X,y) | X,y € U},

where(x =, y) = sup{u € [0,1] | xxu <y} is theresidual implicationof x. Then
it is straightforward to prove the following result

Refl(R) < (RC, Ro,R) (1.1)

which perfectly confirms the results that we obtained for the above example, as we
have ReflR) = aand (byx = y=min(1,1—x+Y))

(RCL Rop R)=min(1,1-a+ad)=min(1,1-a+2a—1)=a

Even though these ideas seem obvious and meaningful, Gottwald’s approach unfor-
tunately found only little resonance (exceptions are, for instance, [12, 48]). What
may be the reasons? In our humble opinion, the following facts may have con-
tributed to the reluctance of the research community to adopt and advance Gottwald’s
ideas: although Gottwald’s syntax is geared to classical mathematics for better read-
ability, he is not using a full-fledged axiomatic framework and is not strictly sep-
arating syntax from semantics. As in our example above, he has to refer to the
operations used (t-norms, etc.) explicitly. For this reason, proofs are complicated
and difficult. Finally, the results that he obtains are already quite difficult to prove,
but still too basic to provide solid argumentation in favor of a full-fledged graded
theory of fuzzy relations.

This paper aims at reviving and advancing Gottwald’s highly valuable ideas. To
overcome the difficulties sketched above, we take a slightly different approach.
We use the formal axiomatic framework of Fuzzy Class Theory (FCT), introduced
in [4]. Fuzzy Class Theory is a powerful and expressive, yet easy-to-read and easy-
to-handle, framework for fuzzy mathematics in which it is just natural to consider
properties of fuzzy relations in a graded manner. In Fuzzy Class Theory, most



notions are inspired by (and derived from) the corresponding notions of classi-
cal mathematics [5]; the syntax of Fuzzy Class Theory is close to the syntax of
classical mathematical theories; and the proofs in Fuzzy Class Theory resemble the
classical proofs of the corresponding classical theorems. Therefore, in FCT it is
technically easier to handle graded properties of fuzzy relations than in Gottwald’s
previous works. Thus we are able to access deeper results than what was possible
in Gottwald’s framework.

This paper is organized as follows. In Section 2, we first highlight how to read
results in FCT, as the language of Fuzzy Class Theory may be unusual for some
readers. Section 3 is concerned with basic graded properties of fuzzy relations,
which mainly means rephrasing existing results on graded properties of fuzzy re-
lations in the frame of Fuzzy Class Theory. Section 4 deals with images under
fuzzy relations in the graded framework, including closures and opening operators,
whereas Section 5 deals with bounds, maxima, and suprema. Section 6 generalizes
the classical representation theorems due to Valverde [67] to the graded framework.
In Section 7, we finally generalize the well-known links between fuzzy equivalence
relations and fuzzy partitions to the graded framework. Throughout the whole pa-
per, we will highlight links between the graded approach presented here and the
existing results available in the literature. Where possible and meaningful, we pro-
vide concrete non-trivial examples.

The aim of this paper is to demonstrate that Fuzzy Class Theory is a powerful and
easy-to-use instrument for handling fuzzified properties of fuzzy relations. As this
paper has the appellative sub-title “Initial Steps”, we do not aim at rephrasing the
whole theory of fuzzy relations (or the whole existing theory of crisp relations,
which is even much larger). Instead, we attempt to provide a kind of illustrative
kick-off by picking out some representative results, with a strong emphasis on the
most important classes of binary fuzzy relations—fuzzy preorders and fuzzy equiv-
alence relations.

2 Preliminaries

Fuzzy Class Theory aims at axiomatizing the notion of fuzzy set. A brief overview
of FCT can be found in Appendix B, where also all standard defined predicates
of the theory, freely used in the following sections, are introduced. For a detailed
account of the theory we refer the reader to the original paper [4] or a freely avail-
able primer [6]. In the present section we only give a brief dictionary explaining
how formulae of FCT can be translated to a more traditional language of fuzzy
set theory, and highlight some peculiar features of FCT that play a role in formal
reasoning about the graded properties of fuzzy relations.



2.1 A Brief Dictionary

We aim this paper at researchers in the theory and applications of fuzzy relations to
attract their interest in graded theories of fuzzy relations. In the traditional theory of
fuzzy relations, it is not usual to separate formal syntax from semantics as it is the
case in FCT. So it may be difficult for some readers who are new to FCT to follow
the results. Therefore, we would like to provide the readers with a dictionary that
improves understanding of the results in this paper and that demonstrates how the
results would translate to the traditional language of fuzzy relations.

FCT strictly distinguishes between its syntax and semantics. This feature has two
important consequences:

e To keep the distinction (and also for certain metamathematical reasons, see [6,
Subsection 1.1]), the objects of the formal theory are cdliedy classegther
than fuzzy sets. The nanfiezzy sets reserved for membership functions in the
modelsof the theory (see Appendix B). Nevertheless (in virtue of the soundness
of FCT with respect to its models), the theorems of FCT about fuzzy classes
are always valid for fuzzgetsand fuzzy relations. Thus, whenever we speak of
classes, the reader can always safely substitute usual fuzzy sets for our “classes”.

e FCT screens off direct references to truth values; truth degrees belong to the
semantic®of FCT, rather than to its syntax (this ensures that FCT renders fuzzy
sets as a primitive notion instead of modeling them by membership functions).
Thus, there arao variables for truth degrean the language of FCT. The degree
to which an elemenk belongs to a fuzzy clasA is expressed simply by the
atomic formulax € A (which can alternatively be written in a more traditional
way asAXx).

The algebraic structure behind the semantics of FCT are Mchains [33]. All
results in this paper hold for all MTA-chains. As noted in Appendix A, if the
domain of truth values is the unit interv@ 1], MTL 5 -chains are characterized as
algebras

([0,1],*%,=,min,max 0,1, A),

wherex is a left-continuous t-norms is its residual implication, and is a unary
operation defined as
1 ifx=1
AX = { ’

0 otherwise.

This means that we can translate the results to the language of fuzzy relations in
the following way, where we may specify an arbitrary universe of discdursea
left-continuous t-nornx, its residuumes-:



FCT Fuzzy Relations

object variablex elementx € U

(fuzzy) classA fuzzy setAe F(U)

(fuzzy) class of (fuzzy) classe® | fuzzy set4 € F(F (U))

unary predicate fuzzy subsetoll, 7 (U), F(F (U)), etc.
n-ary predicate n-ary fuzzy relation oJ", (F (U))", etc.
strong conjunction & t-norm

implication — residual implication=-

weak conjunctiom minimum

weak disjunctionv maximum

negation— the function—-x = (x = 0)

equivalence— bi-residuum, i.e., mifx = y,y = X)
universal quantifiex/ infimum

existential quantifies supremum

predicate= crisp identity

predicatec evaluation of membership function
class term{x| ¢(x)} fuzzy set defined a&x= ¢(x), forallxe U

Let us now shortly consider some examples of definitions and results. For instance,
the truth degree oA C B (defined in FCT by the formulévx)(x € A— x € B), see
Definition B.5) is in an MTLs-chain computed as

inf{Ax=Bx|xeU}

which is a well-known concept of fuzzy inclusion (see [1, 12, 15, 40] and many
more). The degree of reflexivity RER), defined in Section 3 g¥x)Rxx is nothing
else but

inf{Rxx| xe U}.

As another example (cf. Definition B.4), it is easy to see that(Kefor some
fuzzy setA exactly gives the crisp set of all valugs U for which Ax= 1 holds.
Analogously (see Definition B.5), NorfA) evaluates to 1 if and only if there exists
anx € U such thatAx= 1 holds and to 0 otherwise.

The question remains how the theorems in the following sections can be read in
a graded way (although they do not necessarily look graded at first glance). In
traditional (fuzzy) logic, a theorem is read as follows:

If some (non-graded) assumption is true (i.e., fully true, since non-graded),
thensome (non-graded) conclusion is (fully) true.

If we can prove an implication in FCT, by soundness, this implication always holds
to degree 1. Now take into account that, in all Mydchains (comprising all stan-
dard MTLa-chains), the following correspondence holds:

(x=y)=1lifand only ifx <.



So an implication that we can prove in FCT can be read as follows:

The moresome (graded) assumption is true (even if partially),
the moresome (graded) conclusion is true (i.e., at least as true as the assumption).

In other words, the truth degree of an assumption is a lower bound for the truth
degree of the conclusion in provable implications.

Thus, for instance, the assertion (R13) of Theorem 3.5 easily translates into our
motivating example (1.1).

Remark 2.1 To motivate and illustrate the results in this paper, we will use a sig-
nificant number of examples. In order to make them compact and readable, we
will, in examplesdeviate from our principle to keep formulae separate from their
semantics. Instead of mentioning models over some logics, we will simply say that
we use some standard logic, for instance, standard tukasiewicz logic (standing
for the standard MTL-chain induced by the Lukasiewicz t-norm; analogously for
other logics). In examples, we shall furthermore not distinguish between predicate
symbols and the fuzzy sets or relations that model them. Instead of saying that a
certain model of a fuzzy predicakfulfills reflexivity to a degree of 0.8, we will
simply write Ref(R) = 0.8. This is not the cleanest way of writing it, but it is short
and expressive, and it should always be clear to the reader what is meant.

2.2 Some Precautions

It can be observed that the defining formulae of most notions in FCT are exactly the
same as the definitions of these properties for crisp relations in classical mathemat-
ics. This correlates with the motivation of fuzzy logic as generalization of classi-
cal logic to non-crisp predicates: classical mathematical notions are then fuzzified
in a natural way just by interpreting the classical definitions in fuzzy logic. This
methodology has been foreshadowed in [44, Section 5] dlylé] much later for-
malized in [4, Section 7], and suggested as a general principle for formal fuzzy
mathematics in [5].

Nevertheless, although such a translation of notions of classical mathematics into
FCT is an important guideline, the method cannot be applied mechanically, as some
classically equivalent definitions may no longer be equivalent in the logic MTL

In some cases, the most suitable version of the definition can be chosen; in other
cases, a notion of classical mathematics splits into several meaningful notions in
FCT. This can be exemplified by the notion of equality of fuzzy classes:

Besides the primitive crisp identity of fuzzy classes, at least two graded notions
of natural fuzzy equalityx= and=, can be defined (see Definition B.5). Both of
these notions have already appeared in the fuzzy literature. For instance Gottwald



[41] uses= while Bélohlavek [12] uses: for graded equality of fuzzy classes. The
two notions are not equivalent in FCT, as the following counter-example demon-
strates.

Example 2.2 Let us consider a two-element $¢t= {x,y} and standard tukasie-
wicz logic. Let us consider two fuzzy setsB € F (U) defined a®\x= By=1 and
Ay = Bx= 0.5. Then the truth value A ~ B is 0.5, while the truth value oA~ B
is 0.

Only the following relationships hold between these notions.
Theorem 2.3 The following theorems are provable HCT:

(L1) Ax~B<— (ACBABCA)
(L2) A~?’B—Ax~B—A~B
(L3) A(Ax=B)+— A(Ax=B)—A=B

Proof. We give the proof of this lemma in full detail; proofs in the following sec-
tions will usually be more compressed and easy steps will be omitted.

(L1) By Definition B.5 and the rule of distribution &f over A (which is prov-
able in MTLA), we have

AxB «—— (VX)(AX« BX) < (VX)((Ax— BX) A (Bx— AX))
— (VX)(AX— BX) A (VX)(Bx— AX) — ACBABCA.

(L2)  We have the following:

A~?B — (VX)(Ax«< BX) & (VX)(Ax— BX)
— (VX)(Ax— BX) & (Vx)(Bx— AX)
—— ACB&BCA——AXB

MoreoverACB& BCA—ACBABCA«— A~xBby(L1).

(L3)  The first equivalence follows from (L2) by the rule &fnecessitation (see
Appendix A) and distribution ofA over — and &, which is provable in
propositional MTLs. The second equivalence can be proved as

A(A= B) «—— A(YX)(AX+ BX) «—— (VX)A(Ax— Bx) — A=B

by the axiom of extensionality (see Definition B.1). O

Let us add some comments on the meaning of the previous theorem. By definition,
the “strong” bi-inclusionA = B is AC B & B C A; compare it with “weak” bi-
inclusionA ~ B, which by (L1) just uses weak conjunctioninstead of &. Indeed,
by the second implication of (L2} is stronger than-. Notice further that (L2) in



fact says that the truth value 8f= B is bounded by the truth values &f~2 B (a

lower bound) andA ~ B (an upper bound). In traditional non-graded fuzzy math-
ematics both notions coincide, since they are fully true under the same conditions,
as shown by (L3); however, under the graded approach they differ, since in graded
fuzzy mathematics we do not require them to be true to degree 1. This relationship
between two related, but non-equivalent notions is quite common in graded fuzzy
mathematics and will be met several times in this paper.

Finally, it should be pointed out that, unlike in classical Boolean logic, in fuzzy
logic it does make a difference how many times an assumption is used to prove a
certain conclusion. For instance, if we have to use an assumjptiaice to prove

a conclusiony, this means

o— (06— W)

So finally, by the axiom (A5a) of MT), (see Appendix A), we have proved —
Y, but it need not be possible to proye— Y. Such situations will occur frequently
in this paper. For instance, Example 2.2 shows &atB — A~ B indeed does not
hold in FCT, even thoughA ~2 B — A~ B is provable by (L2).

The warnings listed above may appear as eyesores that somehow spoil the beauty
and quality of FCT. Our opinion is, however, that exactly the opposite is the case.
Otherwise, this paper could only reproduce and slightly generalize crisp results
with analogous proofs, without creating really new results. However, due to the
above features, FCT indeed allows to derive new, previously unknown results.

3 Basic Properties of Fuzzy Relations

As announced above, the first item on the agenda of this paper is to embed existing
results on so-called graded properties of fuzzy relations into the framework of FCT.
Such properties were introduced first by S. Gottwald in 1991 [39]. Later on, he
extended this research in his 1993 book [40]; his more recent book [41] contains
an up-to-date review of the topic. Properties of fuzzy relations are studied in the
graded manner also inéBhlavek’s book [12]. The idea of graded properties of
fuzzy relations had also been followed by Jacas and Recasens [48]. In this section,
we closely follow the structure and philosophy of [41, Section 18.6].

Definition 3.1 In FCT, we define basic properties of fuzzy relations as follows:

1 It occurs regularly under certain conditions in graded generalizations of non-graded the-
orems, see [7].



ReflR) =g (YX)Rxx reflexivity
Irrefl(R) =g (¥X)—Rxx irreflexivity
SYymR) =g (VX Y)(Rxy— Ryx symmetry
TrangR) =4 (¥X,Y,2)(RXxy& Ryz— Rx2 transitivity
AntiSyme(R) =gt (WX, ¥)(Rxy& Ryx— Exy)  E-antisymmetry
ASYMR) =g (VX Y)-(Rxy& RyX asymmetry

Note that we slightly deviate from Gottwald in the definition of antisymmetry,
which we generalize by defining it with respect to some relaidnsually a sim-
ilarity). In other words, we follow the ideas of so-called similarity-based orderings
which have turned out to be more suitable concepts of fuzzy orderings [15,47]. Let
us adopt the convention that the indexs dropped ifE = Id (then it coincides with

the concept of antisymmetry that Gottwald uses).

Obviously, all above properties except AntiSymemain unchanged if we replace
Rwith its inverse relatio/® 1. Hence, we can infer the following trivial correspon-
dences:

Ref(R™Y) — Refl(R) Irrefl(R™Y) < Irrefi(R)
SymR™ ) — SymR) Asym(R™Y) — Asym(R)
TrangR 1) < TrangR)

Example 3.2 Let us start with a simple example to illustrate the concepts intro-
duced above. Consider the dombin= {1,...,6} and the following fuzzy relation
(for convenience, in matrix notation):

101005040300
0.81004040300
0.70910080.704
091007100906
0.6 0808071007
030506040710

It is easy to see thd, is a fuzzy preorder with respect to the Lukasiewicz t-norm
max(x+Yy—1,0), hence, taking standard tukasiewicz logic, we obtain([Refl= 1
and TransP;) = 1. In this setting, one can easily infer Siff) = 0.4 (note that for

a finite fuzzy relatiorR, in standard tukasiewicz logic, SYiR) is nothing else but
the largest difference between two vall®syandRyX as well as IrreflP)) =0
and AsyniP;) =

Now let us see what happens if we add some disturbancBs Me added nor-
mally distributed pseudo-random numbers to the above table (with zero mean and
a standard deviation of 0.05) and truncated these values to the unit interval. Finally,

10



we rounded the values to two digits and obtained the following fuzzy relation:

1.00 100 056 040 0.30 000
0.87 100 033 044 026 002
0.67 092 093 087 070 039
0.93 100 064 100 097 067
0.52 079 082 071 100 059
0.27 050 061 041 072 100

Then simple computations give the following results: R&fl = 0.93, Irref(P,) =
0, Sym(P;) = 0.41, TrangP,) = 0.85, and AsyniP,) = 0.

Example 3.3 Now consideilJ = R and let us define the following parametrized
class of fuzzy relations (with, c > 0):

Ea,cXy = min(1,max0,a— %\x—y|))

It is well known that, fora = 1, we obtain fuzzy equivalence relations with respect
to the Lukasiewicz t-norm [25,27,66,67], hence, using standard tukasiewicz logic
again, ReflE1¢) =1, SymEic) =1, and TranfE; ¢) = 1 for all c > 0. On the
contrary, it is well-known and easy to see that, o« 1, reflexivity in the non-
graded manner cannot be maintained. Actually, we obtain

Refl(Eac) = min(1,a).

for all a,c > 0. Similarly, it is a well-known fact that, foa > 1, transitivity in the
non-graded sense is violated. This is a fact that, in some sense, has its roots in the
Poincaé paradox [61, 62]. Note that relations likg ¢ (for a > 1) appear promi-
nently in De Cock and Kerre’'s framework @semblance relatiori28]. Regarding
graded transitivity, we obtain the following:

Trang§Ea ) = min(1,max0,2—a))

Observe that Trarigac) does not depend aneither. This is not surprising, how-
ever, because the parametaonly corresponds to a re-scaling of the domain. Fi-
nally, let us mention the following results (for @lc > 0):

Irrefl(Eac) = max0,1—a)

Syn‘(Ea7c) — 1
Asym(Eac) = min(1,max(0,2 — 2a))

We can conclude that the larggrthe more reflexive, but less irreflexive, asymmet-
ric, and transitiveE, ¢ is. Figure 1 shows two examples.

The following lemma provides us with some results that will be helpful in the fol-
lowing. Note that it is actually a corollary of more general theorems appearing in

11
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Fig. 1. The fuzzy relationgg 7> (left) andEy 41 (right). From Example 3.3, we can infer
that Ref(Eg72) = 0.7, TrangEq 72) = Refl(E141) = 1, and Tran&E141) = 0.6.

an upcoming paper [22]; here we give a direct proof. Some weaker variants can be
obtained from [12, Lemma 4.8].

Lemma 3.4 In FCT, we can prove the following:

(R1) RCS— (ReflR) — Refl(S))

(R2) SCR— (Irrefl(R) — Irrefl(S))

(R3) R=S— (SymR)— Sym§))

(R4) RCS& SC?R— (TrangR) — Trang9))
(R5) SC?2R— (AntiSym(R) — AntiSym(S))
(R6) SC?R— (ASym(R) — ASym(S))

Proof. Here we prove just (R4), the others are analogous. Obvidaisly R —
(Sxy& Syz— Rxy& Ry2). So by TranéR) we getSC? R — (Sxy& Syz— Rx32, and
R C Scompletes the proof. O

The following proposition provides us with a few basic results. Most of them
are obvious translations of results that can be found in [41, Proposition 18.6.1],
where (R11) has been extended to the more general concept of antisymmetry with
respect to a fuzzy relatida (as noted above, this is in line with the similarity-based
approach to fuzzy orderings [15,47]) and (R13) is new in the graded framework (yet
well-known in the non-graded theory of fuzzy relations).

Theorem 3.5 The following theorem are provable in FCT:

(R7) ReflR)—IdCR

(R8) Irrefl(R) <~ IdNR~0

(R9) TrangR) — RoRCR

(R10) SymR)«— R !'CR

(R11) AntiSymg(R) <+ RNR1CE
(R12) Asym(R) < RNR1~0
(R13) ReflR) = RCRoR

12



Proof. We omit the obvious and concentrate on the following non-trivial issues:

(R9)  Obviously,(x,y) € (RoR) < (32)(Rxz& Rzy. Then, by Tran&R) we get
(3z)(Rxy), which is justRxy. Now let us prove the converse direction: for
anyx,y, we have that3z)(Rxz& Rzy — Rxy. Then the rule of quantifier
shift completes the proof.

(R10) Starting fromR~xy, i.e.,Ryx by Sym(R) we getRxy. The other direction
is trivial.

(R13) Rxx& Rxy— (3z)(Rxz& Rzy. ThusRxx— (Rxy— (3z)(Rxz& Rzy).O

The following theorem collects several results that can be found in [41] as well
(Propositions 18.6.1-18.6.5).

Theorem 3.6 The following theorems are provable in FCT:

(R14) Refl(RUId)

(R15) Irrefl(R\ Id)

(R16) TrangR) — TrangRLU/Id)

(R17) TrangR\Id) — TrangR)

(R18) TrangR) & AntiSym(R) — TrangR\ Id)
(R19) AntiSym(R) — ASym(R\ Id)

(R20) ASym(R\ Id) < AntiSym(R\ Id)

(R21) ASym(R) — AntiSym(RU Id)

(R22) TrangR) & Irrefl (R) — ASym(R)

(R23) TrangR) & Transg(Q) — TrangRN Q)

Proof. For brevity, we again omit trivial and obvious parts.

(R15) (x,x) € (R\Id) «—— Rxx& x# x+— 0.

(R16) Observe that fox # y we have(x,y) € (RUId) <+ Rxy We start from
(x,y) € (Ruld) and(y,z) € (Ru1d) and distinguish four cases: xf=y
andy = zthenx = zand so(x,z) € (Rud). If x=y andy # z, then we
have Rxz thus obviously(x,z) € (RUId). The casex#y andy =z is
analogous. The last case is just the transitivitjRof

(R17) We start fromRxy& Ryz If x # y& y # zwe getRxzusing TransR\ Id).
The cases that eith&r=y ory = z are trivial.

(R18) Observe that ik # y we have(x,y) € (R\ Id) < Rxy. Start from(x,y) €
(R\Id) and(y,z) € (R\ Id). Again we distinguish four cases: the only non-
trivial one isx # y andy # z. Thus we hav&xyandRyz observe that from
AntiSym(R) we get thaiz # x (because = x would givex = ).

(R19) ((xy) € (R\Id)) & ({y,%) € (R\1d)) — (Rxy& Ryx& x#y) — (x=
y & x#Yy) «— 0 (in the second step we used AntiS§RY)).

(R22) From Tran$R) we getRxy& Ryx— Rxx which leads to-Rxx— —(Rxy&
Ryx. As we have-Rxxfrom Irrefl(R), the proof is done.
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(R23) FromRxy& Ryz— RxzandQxy& Qyz— Qxzwe immediately geRxy&
Ryz& Qxy& Qyz— Rxz& Qxz which is the same a8RN Q)xy& (RN
Qlyz— (RNQ)xz O

Example 3.7 Consider standard tukasiewicz logic and the following family of
fuzzy relations (witha € [0, 1] andU = R):

Laxy = min(1,max0,a—x+Y))

Easy computations show that the fuzzy relatibgsre transitive for alk € [0, 1]

(i.e. TrangLy) = 1). Obviously,L; is also reflexive, so it is a fuzzy preorder [15],
andLg is irreflexive, hence a typical fuzzy strict order [19, 36, 60]. Generally, we
obtain Ref(L;) = a and Irref(L;) = 1— a. Therefore, we can conclude by (R22)
that Asyn{La) > 1—afor all a< [0,1]. This is only a lower bound, however. It is
possible to show that

Asym(La) = min(1,max0,2—2a))

holds (compare with Example 3.3). This demonstrates that under transitivity, ir-
reflexivity is indeed a stronger requirement than asymmetry. In the non-graded
framework, this is an essential fact for simplifying the definition of strict fuzzy
orders [19].

Now we turn our attention to the property of extensionality of a fuzzy class with
respect to a fuzzy relation. Previously, extensionality was defined as a crisp property
that a given fuzzy set either had or had not [18,50-52]. In FCT, we can generalize
extensionality to the graded framework effortlessly. (See [3] for the changed role
of extensionality in the fully graded theory of fuzzy relations.)

Definition 3.8 In FCT, we define the (degree of) extensionality of a fuzzy chass
with respect to a fuzzy relatiols as

Exte(A) =g (WXY)(Exy& xe A—yecA).
In the non-graded framework, it is well-known that inf-intersections and sup-unions

of families of extensional fuzzy sets are also extensional [18,50-52]. The following
theorem states that a similar result holds in the graded framework.

Theorem 3.9 The following theorems are provable in FCT:
(E1) (JCINJ)& (VAe J)Exte(A) — Exte(N9)
(E2) (JCIng) & (VAcJ)Exte(A) — Exte(U]).

Proof. By Lemma B.8 (L14) and (L15) we hau&/A € 7) Exte (A) — (Exy —
(VAe 7)) (xe A—-yeA) — (Exy— (VA€ J)(xe A) — (VA€ INT)(yeA)).
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NowfromJ C ynJwegetAc I —Ac JnJj,and agvVA e J)(x € A) is exactly
X € N4, the proof of (E1) is done. The proof of (E2) is analogous, only we use
(L16) instead of (L15). O

Remark 3.10 It is easy to see that the conditighC 7N 7 in (C28) is satisfied to
degree 1 in models if and only & € 7 only acquires truth values that are idem-
potent with respect to conjunction. In particular, it is always true for crisp classes
7, and in Gdel logic for all classes. In standard Lukasiewicz logic, the condition
expresses the closenessfofo crispness (it gets large truth values if and only if

A € 7 has only truth values that are close to O or to 1). Thus, in £, the theorem
expresses the fact that the property of extensionality is “almost closed” under inter-
sections and unions of “almost crisp” families of classes. In standard product logic,
the situation is similar, but the condition is much stricter in smaller truth values: it
gets a large truth value if and onlyA € 7 is either equal to O, or close to 1.

The condition of the fornK C XN X is encountered quite often in graded fuzzy
mathematics (cf. for instance (C28) of Theorem 5.18 below) and we could call
it the (graded)2-contractivenessf X. It can be generalized to-contractiveness

X C XN.".NX, with similar, but stricter, semantical meaning for- 2.

In particular, Theorem 3.9 includes the case of crisp two-element families of fuzzy
classes.

Corollary 3.11 The following theorems are provable HCT:

(E3)  Extz(A) AExtg(B) — Extz(AMB)
(E4)  Exte(A) AExtg(B) — Extz(ALB)

Example 3.12 Let us considet) = R, standard tukasiewicz logi€; 1 from Ex-
ample 3.3 and the two fuzzy sets

Ax=min(3,max0, —2(x— 1))) andBx= min(3,max0,2(x— 2))).

Then we obtain Ext,(A) = 3 and Ext,,(B) = . The two fuzzy set# andB

are disjoint, i.e AM1B = 0, hence, Ex, ,(ANB) = Extg,,(0) = 1. This fact un-
derlines that (E3) and (E4) provide us with lower bounds for the extensionality of
intersections/unions, but these bounds need not always be very helpful.

In classical mathematics, special properties of relations are rarely studied com-
pletely independently of each other. Instead, these properties most often occur in
some combinations in the definitions of special classes of relations—with (pre)orders
and equivalence relations being two most fundamental examples. The same is true
in the theory of fuzzy relations, where fuzzy (pre)orders and fuzzy equivalence
relations are the most important classes. Compound properties of this kind are de-
fined as conjunctions of some of the simple properties of Definition 3.1. In the
non-graded case, the properties are crisp, so the conjunction we need is the classi-
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cal Boolean conjunction. In FCT, however, all properties are graded, so it indeed

matters which conjunction we take. Thus, besides the (more usual) combinations by
strong conjunction & (corresponding to the t-norm in the standard case), we also
define their weak variants combined by weak conjunction (corresponding to the

minimum). In this paper, we restrict ourselves to investigation of basic properties

of fuzzy preorders and similarities.

Definition 3.13 In FCT we define the following compound properties of fuzzy re-
lations:

PreordR) =g Refl(R) & Trans(R) (strong) preorder
wPreordR) =g Refl(R) A TrangR) weak preorder

SIM(R) =4t ReflR) & Sym(R) & TrangR) (strong) similarity
wSIM(R) =4 Refl(R) A Sym(R) A TrangR) weak similarity

Example 3.14 Let us shortly revisit Example 3.2. We can conclude the following:

PreordP;) =1 PreordP,) = 0.78
wPreordP;) =1 wPreordP,) = 0.85
Sim(Pl) =04 Sim(Pz) =0.19
wSim(P) = 0.4 wSim(P,) = 0.41

The values in the second column once more demonstrate why it is justified to
speak of strong and weak properties—the stronger (i.e. smaller) the conjunction,
the harder a property can be fulfilled.

For the class of fuzzy relations defined in Example 3.3, we obtain the interesting
result
PreordEa¢) = wPreordE, ) = max(0,1—|1—a|),

from which we can infer that Preoflac) = wPreordEa¢) = 1 if and only if
a= 1. Note that SyrfEsc) = 1, so Sin{Eac) = PreordE,c) and wSin{Ea¢) =
wPreordEa ¢) which implies that SintEa ) = wWSIim(E,¢) = 1if and only ifa= 1.

For the class of fuzzy relations introduced in Example 3.7, we trivially obtain the
following result: Preor(L;) = wPreordL,) = aand SinfL;) = wSim(L5) = 0.

Obviously Preor(R) — wPreordR) and Sin{fR) — wSim(R). From Lemma 3.4
we further obtain:

Lemma 3.15 FCT proves:

(R24) R=&?S— (PreordR) — PreordS))
(R25) RC S& SC?R— (wPreordR) — wPreordS))

2 In line with Zadeh’s original work [69], we use the tersimilarity (relation) synony-
mously for fuzzy equivalence (relation).
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(R26) R=3S— (Sim(R) — Sim(S))
(R27) RC S& SC?R— (wWSIim(R) — wSim(S))

4 Images and Dual Images

In this section, we address images of fuzzy relations in the framework of FCT.

Such operations are of central importance in fuzzy inference [9, 70], in the theory
of fuzzy relational equations [23, 65], and in the study of properties of fuzzy rela-

tions, too [12,18]. These concepts are also strongly linked with fuzzy mathematical
morphology [14, 16,55, 56F.

Definition 4.1 In FCT, we define the following operations:

RIA =g {y|(3x)(xc A& Rxy}
RIA =a {x|(W)(Rxy—yecA)}

Let us shortly clear up the terminology. In the literature, the image opeRitor
A is calledfull image direct image conditioned fuzzy sebr simplyimageof A
under/with respect t&®, while R A appears under the namssperdirect image
anda-operation its systematic name in [8] (submitted to this issuegubproduct
preimage We will simply call both operatorsnages Where necessary, we refer to
L explicitly asdual image*

Example 4.2 Let us considet = R and the fuzzy set
Ax=min(1,max0, 5 (x— 175))).

Straightforward computations then show the following (with the fuzzy relation
E15,10defined as in Example 3.3):

(Evs,10' A)x = min(1,max0, 1(x— 170)))
(E1.57101A)X = min(l, max(O, %)(X— 180)))

Figure 2 shows a plot of these three fuzzy sets. Note that De Cock and Kerre use
the two image operators in conjunction with their resemblance relations [28] to
define linguistic hedges like for instanmughlyandvery[29]. If we considerA as

a model oftall (in the context of European men), we can intergﬁggloTA as a
model ofroughly talland E1.5,101A as a model ofery tallaccording to De Cock’s

and Kerre’s argumentation.

3 Note that the references in this paragraph are just pointers to some important works, but
do not cover all the relevant literature.

4 The relationship between the operatidrend' is in fact an instance of Morsi’s duality

[54] combined with the inversion duality (i.e., the duality betw&sandR1).
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Fig. 2. The fuzzy sef (middle, solid black) and the result that is obtained when applying
image operator<E; 510! A (left, light gray) andEy 510 ' A (right, medium gray).

The next theorem clarifies some basic properties of images under fuzzy relations.
Their non-graded versions are well-known and easy to prove (see e.g. [18,40,41]).
The graded theorems (16)—(114) are also corollaries of more general theorems in
the paper [8] submitted to this issue.

Theorem 4.3 The following properties of images are provableHGT:

(11) RI0=0

(12)  RIV={y| (3% (Rxy} =RngR)
(13)  R'{z}={y|Ray

(4)  RY(0) = {x] (vy)(-Rxy)}
(15) R'V=V

(16) RI(AUB)=RTALR'B
(17) RY(ANB)=R!AMR'B
(1I8) R'(AMB)CR'AMR'B
(199 R!'(AUB)DR!'AULR'B
(1100 ACB—R!'ACR'B
(111) ACB—R!ACR!B
(112) RCS—RIACS'A
(113) RCS—S!ACRI!A
(114) RIACB<~ACR!B

Proof.

(11)—(15) are trivial to prove.

(16)—(19) are simple consequences of Lemma B.8 (L10)—(L13).

(110)  From (Ax— BXx) — (Ax& Rxy— Bx& Rxy) we getA C B — ((3Ix)(Ax&
Rxy) — (3IX)(Bx& Rxy)).

(111)  We know(Ay— By) — ((Rxy— Ay) — (Rxy— By)), whence the required
statement follows by generalization and quantifier shifts.

(112)  (Rxy— Sxy — (Rxy& Ax— Sxy& Ax). ThusRC S— (xe RTA — x ¢
S'A).

(113) (Rxy— Sxy — ((Sxy— Ay) — (Rxy— Ay)), then use generalization and
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guantifier shifts.

(114)  Lefttoright: (Yy)((3x)(Ax& Rxy) — By) — (¥y)(Ax— (Rxy— By)) «—
(Ax— (Vy)(Rxy— By)). Right to left: (vx)(Ax — (Vy)(Rxy— By)) —
(VX) (Ax& Rxy— BY)) < ((3x)(Ax& Rxy) — BY). O

The previous theorem addressed the monotonicity of images of fuzzy relations and
how these images interact with intersections and unions with respect to the weak
conjunction and disjunction, respectively. The question remains how images of
fuzzy relations interact with intersections with respect to the strong conjunction.
The following theorem gives an answer (for its non-graded version, see [40, Propo-
sition 2.16] or [41, Proposition 18.4.1]).

Theorem 4.4 The following properties of relations are provableRET:

(115) (RNR)T(ANB) C (RTA)N(R'B)
(116) (R'A)N(R!'B)C (RNR)!(ANB)

Proof.

(115)  (3x)(Rxy& Rxy& Ax& Bx) — (Ix)(Rxy& Ax) & (Ix)(Rxy& BX)
(115)  (Vy)(Rxy—yeA) & (Vy)(Rxy—ye B) — (V) ((Rxy— y€A) & (Rxy—
yeB)) — (YY) (Rxy& Rxy—yc A& ye B) O

Remark 4.5 Theorem 4.4 intentionally cites only the first two of three assertions
of [41, Proposition 18.4.1] (and, correspondingly, [40, Proposition 2.16]). If we
translate the third assertion to our terminology, we obtain

(R'eA)U(R'eB) C (RUR) 'e(AUB),
whereR 6 A stands for the image with respect to the weak conjunction, i.e.,
RIGA=g {y| (3x)(xe AARxy)}.

First of all, this assertion relies on a certain concept of strong disjunction (a t-
conorm in the standard case) which we cannot define in M{we can do so only

in FCT over stronger logics with involutive negation like IMELor £1T). Secondly,

we would like to point out that this result actually does not hold. Let us consider
the casdJ = {1,2}, standard tukasiewicz logic (with the Lukasiewicz t-conorm
min(1,x+Y) as strong disjunction), and the following fuzzy relation and fuzzy sets
(membership degrees in matrix/vector notation):

0.5 0.4 0.5 0.3
R= <o.5 o.4> A= (0.6> B= (0.4)
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Then easy computations show the following:

0.5 0.4 e 0.9
RicA= (0'5) andR'6B = (0-4) which implies(R'¢A) U (R16B) = (0.9)

On the other hand, we obtain

(1008 _(08Y) . . 1 (038
RUR= (1‘0 0.8> andAUB = <1‘0) yielding (RUR) '¢(AUB) = (O.8>'

So we have got a counter-example. Note that the converse inclusion does not hold
either, as can be seen from the following counter-example (with analogous compu-
tations like above):

1000\ , _(07) . _ (00
R = (o.o 0.5) A= (0.6) 5= <o.4)

Since the assertions do not hold in the non-graded case, it makes no sense to try to
generalize them to a graded version.

Now let us turn our attention to how image operations interact with the common
special properties of fuzzy relations and the concept of extensionality.

Theorem 4.6 The following properties of are provable inFCT:

(117) ReflR) — (VA)(ACRTA)

(118) TrangR) « (VA)(RT(RTA) CRTA)
(119) PreordR) — RT(RTA)=RTA
(120)  wPreordR) — RT(RTA)~RTA
(121) TrangR) < (VA)(Extr(RTA))
(122) ACB&Extr(B) —~ R'ACB
(123) ReflR) & Extr(A) - RTA= A
(124)  Refl(R) A Extr(A) — RTAX A
(125) RTAC A« Extz(A)

(126) ReflR) — (Extr(A) « (A~ R'A)
(127) ReflR) — (Extr(A) «— (A= RTA))

Proof.

(117)  Left to right: obviouslyRxx& Ax — (Jy)(Rxy& Ax) and generalize as
usual. Right to left{VA)(AC RTA) — {z} CR1{z} — (z=2z— Rz2;
we used (13) in the last step.

(118)  Lefttoright: From(Rxz— Rxy) — (Ax& Rxz— Ax& Rxy) we get(Vx) (Rxz—
Rxy — (z€ RTA— yc RTA). Next we getRzy— (¥x)(Rxz— RyX)) —
(Rzy— (ze RTA— yc RIA)). Thus(vx)(Rzy— (Rxz— Rxy)) — (Rzy&
zc RTA—yc RTA)). Right to left: (VA)(RT(RTA) CRTA) — (RT(RT
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{z}) CR'{z}) — (R {y| Rzy}} C {y| Rzy} — ((3x)(R2x& Rxy) —
Rzy), and quantifier shifts complete the proof.

(119) and (I20)are direct consequences of (117) and (118).

(121)  From(Vx)(Ryz— (Rxy— Ry2) we get(Ryz— ((3x) (Rxy& Ax) — (3X)(Rxz&
AX)). The converse direction(vA)(Extr(R'A)) — Extr(R'{z}) —
(Rzx& Rxy— Rzy).

(122)  FromA C B we getAx& Rxy— Bx& Rxyand from Exg(B) we getBx&
Rxy— By. Thus we havé\x& Rxy— By.

(123) and (124)follow directly from (122) by (117).

(125)  ((IX)(Rxy& AX) — Ay) < (VX)(Rxy& Ax — Ay).

(126) and (127)hen follow trivially. a

Theorem 4.7 The following properties of are provable inFCT:

(128) Ref(R) — R'ACA

(129) TrangR) — R'ACR!(R!A)

(130) PreordR) — R!'(R'A) = R!A
(131)  wPreordR) — R(RIA) ~ R'A
(132) Tran§R) — Extr(R'A)

(I133) BCA&Extg(B) =BCR!A
(134) ReflR) & Extr(B) — RI A= A
(135) Refl(R) A Extr(B) — RIAx~ A
(136) ACR!A < Extr(A)

(137) ReflR) — (Extr(A) — (A= R!A))
(138) Refl(R) — (Exir(A) «— (A= R!A))

Proof.

(128)  (Vy)(Rxy— Ay) — (Rxx— AX), thusRxx— (x € R'A— AX). Generaliza-
tion and quantifier shifts complete the proof.

(129) From (Rzy— Rxy — ((Rxy— Ay) — (Rzy— Ay)) we get(¥x)(Rzy—
Rxy — (x€ RIA— zc RA). Next we get Rxz— (¥x)(Rzy— Rxy)) —
(Rxz— (x€ R'A— ze R!A)). Thus(Vy)(Rxz— (Rzy— Rxy)) — (x €
R'A— (Rxz— ze RIA)).

(130) and (I31)are direct consequences of (128) and (129).

(132)  From(Vy)(Rzx— (Rxy— Rzy)) we get(Rzx— ((Vy)(Rzy— Ay) — (Vy)(Rxy—
AY)).

(133) FromB C Awe get(Rxy— By) — (Rxy— Ax) and from Exk(B) we get
Bx— (Rxy— By). Thus we hav8x — (Rxy— Ay).

(134) and (I35)ollow directly from (133) using (128).

(136) Leftto right: (Ax— (Yy)(Rxy— Ay)) — (Vy)(Rxy& Ax— Ay). The con-
verse direction follows from (132).

(137) and (138)hen follow trivially. O
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Inspired by the concepts of fuzzy mathematical morphology [14, 24, 55], Boden-
hofer has introduced a general concept of opening and closure operators with re-
spect to arbitrary fuzzy relation8]f Now we generalize this concept to the graded
framework.

Definition 4.8 We define the operations openingandclosureof Ain R as

R°A=4 RT(R'A)
R*A=¢ R'(RTA)

Furthermore, we define two properties of fuzzy clasRegpennesandR-closedness

Operg(A) =4t R°A~ A
Closegk(A) =4t R°A~ A

The following lemma provides us with several properties of opening and closure
operators. In particular, the question arises Wgpenness ang-closedness were
defined usingx rather thares. A clear answer to this question is given by (140)
and (141) which state that it actually does not matter whether weuse= in the
definition of openness and closedness.

Theorem 4.9 The following properties of relations are provable in FCT:

(139) R°ACACR°®A

(140) Operg(A) < R°Ax=A

(141) Closegk(A) — R*Ax=A

(142) ACB—R°ACR°B

(143) ACB—R°ACR®*B

(144)  Operk(A) < (IB)(A=RIB)
(145) Closeg(A) « (IB)(A=R!B)
(146) Operg(R°A)

(147)  Closegk(R*A)

Proof.

(139) First, we can show € RT(R!A) «—— (3x)(Rxy& (Vz)(Rxz— Az)) —
(IX) (Rxy& (Rxy— Ay)) — (Ix)Ay —— Ay. Secondly, we havex —
(RXy— Rxy& AX) — (Rxy— (3X)(Rxy& AX)). ThusAx — (Vy)(Rxy—
ycRIA).

(140) and (141)are then direct consequences of (139).

(142) and (143)are direct consequences consequence of (110) and (111).

(144)  The left-to-right direction is trivial (tak& = R'A). The converse direction:
By (114) and (110)R'BC A«——BCR!A— RIBCR!(R!A). Thus
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Ax=RIB—— ACR/BCA— ACR/BCRI!(R!A) =R°A. Since by
(139) alwaysR°A C A, the proof is done.

(145)  Analogous to the proof of (144).

(146) and (14 7)are direct consequences of (144) and (145), respectively. O

Note that, from (144)—(147), we can easily deduce the following corollaries:

(148) R°(R°A) =R°A
(149) R°(R°A)=R°A

Thus, we can conclude that the two operataaad® fulfill the most essential prop-
erties we need to require from opening and closure operators (as stated in [?] to
motivate the definition of the two operators). Unlike [?], in classical mathematics
(e.g. in topology), it is more usual to start from an axiomatic framework of open-
ness and closedness (or opening and closure operators, respectively). Such gen-
eral frameworks have been introduced in the fuzzy setting &ptitavek and Fu-
niokova [10, 11, 13]. They require that opening operators always give subsets, that
closure operators always yield supersets, that both operators are monotonic with
respect to the graded inclusion and that both operators are idempotent. Therefore,
we can conclude that our two operators perfectly fit into the axiomatic framework
of Bélohlavek and Funiokca.

In many classical axiomatic frameworks (including topological ones), it is also
common to represent opening and closure operators as unions of all open sub-
sets and intersections of all closed supersets, respectively. This is well-known in
the non-graded framework; the following theorem provides a generalization to the
graded case.

Theorem 4.10 The following properties of relations are provable in FCT:

(150) R°A=J{B|Operk(B) & BC A} = J{B| A(Operk(B) & BC A)}
(151) R°*A={B|Close&k(B) & ACB} ={B|A(Close&(B) & ACB)}

Proof. To prove (150), let us denotg{B | Operk(B) & BC A} asC. Theny € C «
(3B)(y € B & Operg(B) & B C A). SinceR°A C A and Opeg(R°A) we get that

y € R°A— y e C. To prove the converse direction we use Lemma B.8 (L6). We fix
B and show that OpgyiB) & B C AimpliesB C R°A. From Opeg(B) we get that
R°B ~ B and fromB C A we getR°B C R°A. ThusB C R°A. The proof of the
second equality is almost straightforward. (151) can be proved analogously

From the two representations (150) and (151), we can deduce immediately how
opening and closure operators interact with unions and intersections (with respect
to weak conjunction).
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Corollary 4.11 The following properties of relations are provableR&T:

(I52) R°(AUB)=R°ALR°B

(153) R°*(AMB)=R°AMNR°®B

(154)  Operk(A) & Operg(B) — Opery(ALB)
(155) Closegk(A) &Closedk(B) — Closeg(AMB)

Proof.

(152) Use (150) and (L10) of Lemma B.8.
(153) Use (I51) and (L11).
(154) and (I55)are then direct consequences of (152) and (153), respectively

As shown in [?], under the presence of reflexivity and/or transitivity, the results
concerning opening and closure operators can be strengthened. We will see in the
following that, by this way, results for images of fuzzy preorders are obtained that
are well-known in the non-graded framework [18].

Theorem 4.12 The following properties of relations are provable in FCT:

(156) PreordR) — (R°*A=RTA)

(I57) wPreordR) — (R*A~R'A)

(158) PreordR) — (R°AX=R!A)

(159) wPreordR) — (R°Ax~R!A)

(160) TrangR) — (Operk(A) — Extr(A))
(161) TrangR) — (Closeg(A) — EXtr(A))
(162) Refl(R) — (Extr(A) — Operg(A))

(163) Refl(R) — (Extr(A) — Closegk(A))
(164)  wPreordR) — (Extr(A) <> Operk(A))
(165)  wPreordR) — (Extr(A) < Closeg(A))
(166) PreordR) — (Operg(A) <« Closeg(A))

Proof.

(156) and (157)From (132) we know Tran®R) — Extr(R!A). Then (156) follows
from (123) and (157) follows from (124).

(158) and (159)From (121) we know Tran®) — Extr(RTA). Then (158) follows
from (134) and (159) follows from (135).

(160)  We start from Opeg(A) (i.e. A~ R°A) and TranéR). Using (132) we get
Extr(R'A), thus by (122)RT (R'A) C R'A. So we obtairA C R'A. Now
we use (136) and get ExtA).

(161) Analogously to (160), by (121), (133), and (125).
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Fig. 3. The fuzzy seA from Example 4.13 (light gray)Ei21 ' A (medium gray), and
E121°A(solid black).

(162)  We start from RefR) and Exk(A). From Ref(R), by (117), we geR'AC
RT(R!A). From Exk(A), we obtain by (133) thad C R'A. So finally, we
can concludé\ C R°Awhich, with (139), proves OpgyiA).

(163)  Analogously to (162), using (128), (122), and the second inclusion of (139).

(164)—(166)then follow trivially. O

Example 4.13 Let us consider standard tukasiewicz logic and the following fuzzy
set (withU = R):

;

2x—5 if x € [2.5,3]
4—x if xe1]3,3.5]

Ax= {05 if x € ]3.5,5]
105—2x if xe ]5,5.25
0 otherwise

Further we consider the fuzzy relati@n » 1 from Example 3.3 for which we know
Refl(E121) =1 and TranéEy21) = PreordEy 2 1) = wPreordE; 2 1) = 0.8. Fig-
ure 3 shows plots oA, E1_271TA, andEj 21 *A. Basic computations show that
Closeg, ,,(A) = 0.5. Moreover, we have thgA ~ E11 ' A) = 0.3. From (126)
we can infer, therefore, that Ext, , (A) = 0.3. It also holds thatE; 2 1 *A~ E1,271T
A) = (E121°*A=Ej21!A)=0.8. Figure 4 shows plots &, E; 1 ' AandE; 51 °A.
We can show that Opg[_\u(A) =05and(A~ El.zyllA) = 0.3. Thus, we can infer
Exte, ,, (A) = 0.3 also via (137). Further we can show th{&i 21 "A~ E1 211 A) =
(E121°A= E;21'A) = 0.8. If we take into account thg0.5 — 0.3) = (0.3 «
0.5) = 0.8, these numbers demonstrate that, in this special case, the estimations
provided by Theorem 4.12 are tight.

Finally, we can formulate representations of images under fuzzy preorders. Note
that the first four assertions (167)—(170) of the following theorem are “fuzzy repre-
sentations”, i.e. they do not determine the truth degreR 'ok or R A itself. We

can only infer from the degree to whiéhis a (weak) preorder to which degree the
image is guaranteed to resemble to the intersection (resp. union). The “real” (non-
graded) representations (171)—(172), known from [?, 18], are their special cases for
R being a preorder to degree 1.

Corollary 4.14 The following properties of relations are provableRET:
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Fig. 4. The fuzzy seA from Example 4.13 (light gray)Ei21 ' A (medium gray), and
E121°A(solid black).

(167) PreordR) — RTA= N{X|AC X & Extr(X)}

(168) PreordR) — RIAX |J{X | X C A&EXtr(X)}

(169) wPreordR) — RTA= N{X | AC X A Extr(X)}
(I70)  wPreordR) — R'A= [J{X | X C AAExtr(X)}
(1I71)  APreordR) — RTA=N{X| A(AC X & Extr(X))}
(1I72)  APreordR) — RIA=J{X | A(X C A& Extr(X))}

Proof. (167) For anyX such thatA C X & Extg(X) we can inferRT A C X from
(122). Hence, the first inclusioR' A C N{X | A C X & Extr(X)} follows by (L7)
of Lemma B.8. Conversely, (118) and (121) imply Pre@®i — Extr(RTA) & A C
RTA. Then (L8) completes the proof.

The proofs of (168)—(170) are analogous. The assertions (171) and (172) follow from
(167) and (168), respectively, if we take basic propertieg\ahto account. a

Remark 4.15 At the beginning of this section, we mentioned the close relationship
of images, closures and openings with concepts in fuzzy mathematical morphol-
ogy. In (crisp) mathematical morphology, images are considered as crisp subsets
of an Abelian grougU, +,0) (more commonly, a linear vector space structure is
assumed). Given a sét (theimage and a seB (the so-calledstructuring ele-

men), the four standard operations (on the im&geith respect to the structuring
elementB) can be defined as follows:

A®B =4 {y|(3IX)(Ax& B(y—x))} (dilation)
ASB =g {X[(vy)(Bly—x) —Ay)}  (erosion)

AeB =4 (A®B)oB (closure)
AoB =4 (AcB)@&B (opening)

The language in the definitions above has been chosen intentionally to comply fully
with the language of FCT. Thus, if we consider gray level imagdd as L map-
pings (with the standard cake= [0, 1] being the natural choice), we can generalize
the four morphological operations to gray level images and gray level structuring
elements simply by the above formulae. In the standard kas€0, 1|, the well-
known t-norm based fuzzy mathematical morphology is obtained [?, 14, 55, 56].
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This is not at all new, but it demonstrates that the expressive power of FCT allows
rather effortless generalizations—the obvious secret is the commonality of its syn-
tax with classical Boolean logic. As demonstrated in [?], the operations of fuzzy
mathematical morphology can be embedded in the concepts of this section in the
following way:

(1) If we define a fuzzy relatiolR asRxy= B(y — x) for a given structuring ele-
mentB, then the following four equalities hold:

AaB=R'A (4.1)
ASB=R'A 4.2)
AeB=R°A (4.3)
AoB=R°A (4.4)

(2) If Ris a shift-invariant fuzzy relation, i.e. if
(VX ¥, 2)(Rxy— R(x+2)(y+2))

holds, then the equalities (4.1)—(4.4) hold if we define the structuring element
B asBx= ROx.

This relationship particularly implies that we can transfer all results of this sec-
tion to fuzzy mathematical morphology without any restriction. For the non-graded
case, most of these results are already known [?, 24], but it is worth to mention
that, hereby, we have generalized fuzzy mathematical morphology to the graded
framework almost effortlessly. It may be questionable whether a graded framework
of fuzzy mathematical morphology is useful in image processing practice, but it is
certainly interesting from a theoretical perspective.

5 Bounds, Maxima, and Suprema

The aim of this section is to study the lattice-like structure induced by a fuzzy
relation. We follow the philosophy of Demirci’s approach [31, 32]. Note that this
is not a classical axiomatic approach to lattices; instead, lattice-theoretical notions
are defined on the basis of a given fuzzy relation, where Demirci assumes that
fuzzy relation under consideration is a similarity-based fuzzy ordering [15,47]. As
in the previous sections, we do not restrict ourselves to a particular class of fuzzy
relations in advance, but we infer gradual results from the degrees to which the
relation fulfills some properties (in particular, reflexivity and transitivity).

Throughout this section, assume tRadenotes a binary fuzzy relation that is arbi-
trary, but fixed.
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Definition 5.1 The properties of being ampperor lower classin X with respect
to Rare defined as follows:

UppeR(A) =g (Vxe X)(Vy e X)[Rxy— (AXx— Ay)]
Loweri(A) =¢ (Vxe X)(Vy € X)[Rxy— (Ay — AX)]

Let us further make the conventions Upg@X) =qr Uppei (A) and Loweg(A) =g
Lower}(A). Further, to ease notation, we omit the lower infRunless we require
special properties dR or unless a relation different from the default choRés
used.

Remark 5.2 Note that Uppeg(A) is in fact nothing else but ExtA) and that
Lowerr(A) is just Exk-1(A). We make this terminological distinction in order to
increase readability and to make explicit that we have some preorder-related no-
tions in mind.

Remark 5.3 There is an “inversion duality” between the pairs of notions defined
in this section, consisting in the observation that the second notion of each pair is
just the first one applied to the inverse relation. Thus, L@QA}H Upper ;(A)

in Definition 5.1 aboveRVA = (R™1) 2 A in Definition 5.7 below, Mig(A) =
Maxg-1(A) in Definition 5.9, and In§(A) = Supz-1(A) in Definition 5.14. As the
theorems on the dual notions follow trivially by takifRy* for R, we shall usually

not write them down explicitly.

As a first simple result, we consider the antitony of (degrees of) upperness and
lowerness.

Proposition 5.4 The following properties are provable in FCT:

(C1) (X CY)?— (Uppeg(A) — Uppek(A))
(C2) (XCY)?— (Loweri(A) — Lowerk(A))

Proof. (X CY)2impliesxc X & ye X —xecY & ycY. Assuming Uppe§(A),
equivalently (vx)(Vy)(x € X & y € X & Rxy— (Ax — Ay)), we can thus infer
(VX)(VY)(XeY & yeY & Rxy— (Ax— Ay), which proves (C1). Then (C2) follows
trivially by duality. a

Note that in Proposition 5.4 we need to require an assumption twice. The following
simple example demonstrates that the proof of Proposition 5.4 cannot be improved
in the sense that the “doubled assumption” could only be used once.

Example 5.5 Let us consider standard tukasiewicz logic &he {x,y} and define

fuzzy setsA X,Y by Xx= Xy=Ax=1,Yx=Yy= 0.9 andAy = 0.8. Using the
fuzzy relationR defined afkxx= Ryy= Ryx= 0 andRxy= 1, we obtain thak C Y
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is true to a degree of 0.9. Furthermore, we have Up@er= 0.8 and Uppe§(A) =
1; thus the truth degree f C Y — (Uppek(A) — UppeR(A)) is only 0.9.

As X C Vis always true to a degree of 1, we can infer the following simple corollary
on upperness from Proposition 5.4 (by the duality of Remark 5.3, we omit the same
result for lowerness).

Corollary 5.6 Uppek(A) — (VX)UppeR(A)

Like in classical mathematics, we can define the classes of all upper (and dually,
lower) bounds of a class:

Definition 5.7 The upper coneand thelower coneof a classA (with respect tdR)
are defined as follows:

RAA =4 {x|(Vac ARax
RVYA =4 {x]|(VacA)Rxa

If we do not suppose any special conditions involviRgve write just®A and VA
instead olR“A andR VA, respectively.

Note thatR” A appears in some literature as an image operator in its own right.
It is called sub-direct imageby some authors (e.g. [29]). In [8], the systematic
names of the operatofsand ¥ aresubproduct imagendsuperproduct preimage
respectively.

Theorem 5.8 The following properties of cones are provableHET for an arbi-
trarily fixed R:

(C3) TrangR) — Uppek(R™A)
(C4) ACB—-2BC2A

(C5) ACVAA

(C6) AVAA — AA

(C7) “(AuB)C”~ANn“B

(C8) “~AUSBC “(ANB)

€9 Nea=2(UA)

AcAa AcAa
(€10 |J2Ach(NA)
AcAa AcAa

(Converse inclusions and implications have crisp counter-examples.)

Proof.

(C3) TrangR) implies Rxy— (Rax— Ray), which impliesRxy— ((a€ A —
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Rax — (a € A — Ray)), whence we get the required asserti®ry —
((Vvae A)Rax— (Va € A)Ray) by generalization and quantifier shifts.

(C4) The requiredVx € A)(x € B) — (Vy)[(Vx € B)Rxy— (Vx € A)Rxy fol-
lows by generalization and distribution of the quantifiers fréAx —
Bx) — [(Bx— Rxy) — (Ax— Rxy)].

(C5) Therequireche A— (VX)((Vy € A)Ryx— Rax) follows by generalization
fromac A— ((Vy € A)Ryx— RaX, which is a variant of the specification
axiom (Vy)(y € A— Ryx — (a€ A— RaX.

(C6) By (C5)itis proved that'A C “¥(“A). By (C5) and (C6), it is proved that
A(VAA) C 2A. By the axiom of extensionality, we are done.

(C7) and (C8Jollow directly from the antitony of cones: by (C4)(AUB) C 2A
and~(AUB) C ©B, therefore*(AUB) C “AN*B; analogously for*(AN
B).

(C9) This assertion can be proved as follows:

xe (] A« (VA€ 4)(Va € A)Rax
AcAa
—— (Va)[(3A € A)(ac A) — Ray <—>xeA< U A>
AcAa

(C10) Similarly to (C9), we can infer the following:

xe | J A« (3A€ a)(Va < A)Rax
AcAq
— (Va)[(VA e 4)(ac A) — Ra} «—— x ¢ A( N A>7
AcAa

where the middle implication follows from Lemma B.8 (L5) by general-
ization and appropriate quantifier shifts. a

It is worth mentioning that the following two corollaries can be inferred directly
from (C9) and (C10):

(C11) “(AUB)="An“"B
(C12) “AUZBC ~(AMB)

Theorems (C4)—(C12) as well as their duals are also corollaries of more general
theorems found in [8] (submitted to this issue). Now let us move closer to the
lattice-theoretical notions at which this section aims. First of all, we define maxima
and minima.

Definition 5.9 The classes of alhaximaandminimaof a classA with respect to
R are defined as follows:

MaxgA =g AN(RSA)
MinRA =g AN(RYA)
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Fig. 5. The fuzzy sef from Example 4.13 (light gray), its upper cohe” A (medium
gray), and its maximum MaxA (solid black).

The indexR is dropped under the same conditions as noted above.

Remark 5.10 Observe that Definition 5.9 is just a more compact way of expressing
the usual definition of maxima and minima as those elemen#stbét are larger
resp. smaller than all elementsAni.e.,

(C13) MaxgA={xeA|(Yye ARyx
(C14) MingrA={xec A| (Vy e ARXy}

Notice further that since the property of being an upper (or lower) bound is graded
in FCT, maxima (minima) have to be defined as fuzzy classes (unlike in classical
mathematics, where they are determined uniquely and therefore can be defined as
single elements).

Example 5.11 Let us consider the fuzzy sétfrom Example 4.13 and standard
tukasiewicz logic again. Further consider the fuzzy relatigrirom Example 3.7

which is a fuzzy preorder [15]. Figure 5 showsL; 2 A and Max, A, while Fig-

ure 6 shows\, L, YAand Min_, A. The results we obtain for the lower cone and the
minimum are what one may expect intuitively. Similarly intuitive results are always
obtained for (unions of) fuzzy intervals. The results we obtain for the upper cone
and the maximum in this case demonstrate, however, that quite peculiar results may
be obtained for more unusual fuzzy séts.

As the above example suggests, cones, minima and maxima may not be as intuitive
and simple concepts as in classical mathematics. The following theorem demon-
strates that still properties hold that one would expect intuitively.

Theorem 5.12 The following properties of maxima are provableRGT:

(C15) ACB& xeMaxgA& y e MaxgB — Rxy

5 Although unusual, the results are nevertheless not counter-intuitive and in Figure 5 they
can be explained by the shape of the membership functigh tfe gradual decrease of

A to the right makes the maximum subnormal (compare it with right-open crisp intervals
which have no maximum at all), and the increase of the membership function in the left part
induces a second peak of the maximum (asothmits ofA for largea have their maxima
exactly there).
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Fig. 6. The fuzzy sef\ from Example 4.13 (light gray), its lower corg VA (medium
gray), and its minimum Mip A (solid black).

(C16) xe MaxgrA& ye MaxgA — Rxy& Ryx
(C17) xe MaxgrA&ye MaxgA & AntiSymg R — EXy

Proof.
(C15) We have to prove
(ACB)& (xe A& xcR®A) & (ye B& yc R®B) — Rxy

Now AC B& y € R®Bimpliesy € R®A by (C1) which, together with
X € A, impliesRxy.

(C16) To prove this, we simply have to combine the antecedents and consequents

of the following two trivial assertions

xcA& yecRAA— Rxy
yeA & xe R®A— Ryx

and the proof is completed.
(C17) follows directly from (C16). a

A nonchalant interpretation of (C15) is that the larger (with respect to inclugion)
is, the larger (with respect Q) MaxrA is. The property (C16) can be interpreted

as the fact that MaxA is unique up to the symmetrization Bf In the case that,

in a non-graded settingg is a fuzzy preorder, it is easily possible to show that its
symmetrization is a similarity [15, 67]. Then (C16) means nothing else than that

MaxrA is afuzzy poin{52]. The property (C16) generalizes this to any relation
antisymmetric (to some degree) with respedtto

The following theorem shows that maxima are upper classes inside the fuzzy class

that is considered (to the degrRes transitive).
Theorem 5.13 The following property of maxima is provableHkcCT:

(C18) TrangR) — Uppef(MaxgA)
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Proof. By (C3), TrangR) impliesx € R®A & Rxy— y € R”A which implies the
requiredx € A& yc A& Rxy& (X€ A& xc R®A) = (yEA& YERAA). O

Now we can finally define suprema and infima. Not surprisingly, the suprema are

defined as the least upper bounds, i.e., the minima of the upper cone. Again the
condition of being a supremum is graded, as the notion of a bound itself is graded.
Dually, the infima are defined as the greatest lower bounds.

Definition 5.14 The classes of aBupremaandinfimaof a classA with respect to
R are defined as follows:

SUmA =g Ming(R%A)
InfRA =g Maxg(RVA)

The indexR is dropped under the same conditions as noted above.

Obviously, we can rewrite the definitions in the following way:

(C19) SupA=“"ANVAA
(C20) InfA=VANLVA

As shown by the following theorem, suprema and infima are interdefinable.
Theorem 5.15 The following property of maxima is provableHCT:

(C21) SupA=Inf2A

Proof. By (C20) and (C6), InfA = VAANAVAA = VAAN2A = Min “A = SupA.
O

Since suprema are a special kind of minima, the general properties of the latter hold
for suprema as well; further properties of suprema hold by virtue of the properties

of cones. Some of such properties of suprema are summarized in the following
theorem.

Theorem 5.16 The following properties of maxima are provableRGT:

(C22) ACB& xe SupgkA&ye SumrB — Rxy
(C23) xe€ Sug,rA&Yye SuprA— Rxy& Ryx

(C24) xe Sug,rA&Yye SugkrA&ANntiSymeg R— Exy
(C25) TrangR) — Uppe&(SupkA)

(C26) TrangR) — LoweR A(SugA)
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Fig. 7. The fuzzy sef from Example 4.13 (light gray), its infimum InfA (dashed black),
and its supremum SypA (solid black).

Proof.

(C22) Follows from (C4) and the dual of (C15).

(C23) and (C24jollow respectively from the duals of (C16) and (C17).

(C25) By (C3), TrangR) impliesx € “A& Rxy— y € “A. Furthermore, by (C5),
y € A—ye Y2A Combining the antecedents and consequents of these
implications we get the requiredc A& y € A& Rxy& (x€ PA& x €
VOA) — (ye PA& y € VAA).

(C26) Follows from the dual of (C18). O

Suprema differ from maxima already in crisp sets. The following example shows
how the difference may look like in fuzzy sets.

Example 5.17 Let us revisit Example 5.11. Figure 7 shows the fuzzy/fsatong
with Inf_, Aand Sup, A. (Compare with Figures 5 and 6.)

The following theorem provides us with two results on how suprema and maxima
are related to each other. For the precondiian AN A in (C28) see Remark 3.10.

Theorem 5.18 The following interrelations between maxima and suprema are prov-
able inFCT:

(C27) ANnMaxA C ANSupA C MaxA
(C28) ACANA— MaxA=ANSupA

Proof.

(C27) Using (C5), we can infeAN“ANA C AN“ANVAAC ANCA.
(C28) AC ANnA— AN“AC An“AnAwhich, together with the proof of (C27),
yields the converse implication M SupA C MaxA of (C27). a

By means of suprema and infima, the notion of lattice completeness can be de-
fined [32]. A systematic study of complete lattices and fuzzy lattice completions in
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FCT will be part of a subsequent paper. For some particular cases, see [2].

6 Valverde-Style Characterizations of Preorders and Similarities

This section aims at generalizing some of the most important and influential theo-
rems in the theory of fuzzy relations to FCT—Valverde’s representation theorems
for fuzzy preorders and similarities [67]. In the tradition of Cantor [21], Valverde
uses score functions to represent relations. Actually, he uses score functions that
map into the unit interval, so these functions can also be considered as fuzzy sets.
This interpretation facilitates an easy reformulation of these results in FCT.

Let us first consider the fuzzy relati® defined as
Rixy =4t (V2)(Rzx— Rzy)

(for a given fuzzy relatiomR). This is called théeft traceof R[35,36]. Analogously
we define theight trace (which will be used in Section 7) as

R'xy =¢f (Vz)(Ryz— Rx32.

Observe the meaning of the following expressions:

R’ C R (¥x,Y)[(V2)(Rzx— Rzy) — Rxy] (6.1)
RC R’ « (¥x,y)[Rxy— (Vz)(Rzx— Rzy)] (6.2)
R~ R < (¥xy)[Rxy— (Vz)(Rzx— Rzy)] (6.3)

Now we can formulate another characterization of graded reflexivity and transitiv-
ity besides those of Theorem 3.5.

Theorem 6.1 The following properties hold ikCT:

(V1) Ref(R)—~RCR
(V2) Tran§R) - RCR

Proof.

(V1) To prove the first implication, we need to show tliaty is implied by
Refl(R) and(Vz)(Rzx— Rzy). Specifyingx for zin the latter, we geRxx—
Rxy, which impliesRxy by Ref(R). To prove the converse implication,
we can specifyx for y in (6.1) and get(Vx)[(Vz)(Rzx— RzX — RXxX,
i.e. (¥X)(1— Rx¥, i.e. (VX)Rxx

35



(V2) TrangR) <« (Vz,x,¥)(R2X& Rxy— Rzy) «— (VX,y)(Vz)[Rxy— (Rzx—
Rzy| «— (¥x,¥)[Rxy— (Vz)(Rzx— Rzy)] O

Corollary 6.2 The following is provable ifxCT:

(V3)  wPreordR) «+» R~ R
(V4)  PreordR) -« R= R,
(V5) R~?R’'— PreordR) — R~ FR..

So we have obtained graded versions of Fodor’s characterizations [35, Theorems
4.1, 4.3, and Corollary 4.4]. Note that, regardless of the symmetf;, @fe can
replaceR’ in the above characterizations by the right trace as well.

Remark 6.3 Observe that the following holds obviously (cf. Definitions B.7 and 5.7):
R™{x} = {z]| By € {x})Rzy} = {z| Rz%
RY{x} = {z| (Vvac {x})Rza = {z| Rz%

So we can rewrite (V3) as follows:

wPreordR) < (¥X,y) (Rxy < R™{x} C R™{y})
wPreordR) < (Vx,y) (Rxy — RV{x} C RY{y})

In words, a relatiorR is a weak preorder to the degree it coincides with graded
inclusion between the cones (or preimages) of crisp singletons.

Now we have all prerequisites for formulating and proving a graded version of
Valverde’s representation theorem for preorders. In order to make notations more
compact, let us define two propertiesvailverde preorder representabilifg strong

one and a weak one) for a given fuzzy relati®as

ValP(R) =gt (34) (R= {(xy) | (VA€ A)(Ax— Ay)})
WValP(R) =t (34) (R~ {{x.y) | (VA € A)(Ax— Ay)})

Then we can prove the following essential result for preorders and weak preorders.

Theorem 6.4 FCT proves the following:

(V6)  ValP’(R) — PreordR) — ValP(R)

(V7)  wvalP*(R) — wPreordR) — wValP(R)

Proof. We prove just (V6), the proof of (V7) is analogous. To show the first impli-
cation we defin&g = {(x,y) | (VA € 4)(Ax— Ay)}. If we show Preor(S;), then
the application of (R24) and some quantifier shifts complete the proof.
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Obviously, ReflS;) is a theorem, now we show Trai$85): Saxy & Sgyz «—
(VA€ 4)(Ax— Ay) & (VA € 4)(Ay— Az) — [(AX— Ay) & (Ay— AZ)] — (AX—
Az). By generalization we ge8sxy & Sgyz— (VA€ 4)(Ax— AZ) «—— Sgxz

To prove the second implication just take= {A | (3z)(A = {x | Rz¥)} and
use (V4). O

Obviously, (V6) is more complicated than Valverde’s original result; it is an ex-
ample where the graded framework does not provide us with just a plain copy of
the non-graded (or crisp) result. The following corollary gives us a result that is
comparable with Valverde’s original theorem.

Corollary 6.5 FCT proves the following:

(v8)  APreordR) «— AwPreordR) «—— R=FR
«— AValP(R) «—— AwValP(R)
«— (34) (R=A{xy) | (VA€ A)(Ax— Ay)})
«—— (34)(Crisp(4) & (R={(x,y) | (VA€ 4)(AXx— Ay)}))

Proof. The first four equivalences are trivial consequences of results above, to
prove the last two we prove three implications: clearly the seventh formula implies
the sixth one and that the sixth one implies the fifth one. To complete the proof we
show that

APreordR) — (34)(R={(x,y) | (VA€ 4)(Ax— Ay)}).

Take4 = {A| (32)(A= {x| Rz¥)} and apply/\-necessitation to (V4). O

Although the last formula in (V8) is a perfect copy of Valverde’s non-graded repre-
sentation, the corollary still has graded elements—note that in the sixth equivalent
formula, the classz may be a fuzzy class of fuzzy classes (unlike Valverde’s the-
orem, in which a crisp family of functions is used). The degre& af 2 may be
considered as a weighting factor that controls the influence of a spAatficthe

final result.

Example 6.6 Let us shortly revisit Example 3.2 (in which we use standard Lukasie-
wicz logic). The fuzzy relatio?, was actually constructed from the following crisp
family of three fuzzy sets1 = {A1,A2,As} that are defined as follows (for conve-
nience, in vector notation):

A1 = (0.7,0.8,0.2,0.5,0.4,0.6)
A, = (0.3,0.5,0.6,0.4,0.7,1.0)
As = (1.0,1.0,0.6,0.4,0.3,0.0)
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Fig. 8. Plots of fuzzy preorders that are obtained if we interpret (6.4) in standaotd| G
logic (left), in standard product logic (middle), and in standard tukasiewicz logic (right).

Example 6.7 In [17], some Valverde-style constructions are investigated. For il-
lustrative purpose, let us quote the following example wite- R. We consider a
one-element crisp famil = {B}, where the fuzzy sa is defined as follows:

0 if xe [0,1]
0.4-(x—1) if xe[1,2]
0.7+03-(x—2) ifxe[2,3]
1 if x € [3,5]

Figure 8 shows the three fuzzy preorders that are obtained if we interpret the defi-
nition

R={(xy) | (VC e B)(Cx—Cy)} = {(xy) | Bx— By} (6.4)
respectively in standarddslel logic, standard product logic, and standard tukasiewicz
logic.

In his landmark paper [67], Valverde not only considers fuzzy preorders, but also
similarities (as obvious from the title of this paper). So the question naturally arises
how we can modify the above results in the presence of symmetry. As will be seen
next, the modifications are not as straightforward as in the non-graded case. Let us
first define the fuzzy relatioR’s as

Ry =g (Vz)(Rzx— Rzy)
(for a given fuzzy relationR). This is called théeft symmetric tracef R.

The following lemma demonstrates how this notion is related to the defining prop-
erties of similarity. More or less unexpectedly, the result is not that straightforward
for symmetry.

Theorem 6.8 The following are theorems &iCT:
(V9) RSCR« ReflR)
(V10) RCR®— TrangR)

(V1l) R=R®—-SymR)
(V12) Sym(R)&TrangR) — RC RS
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Proof.

(V9) Analogous to the proof of (V1).

(V10) Follows from (V2) by observation th&’s C R’.

(V11) Obviously we can geR C R® — (Rxy— (Ryx« Ryy)) — (Rxy—
(Ryy— RyX). SOR C RS&Refl(R) — (Vy)(Rxy— RyX. Finally (V9)
completes the proof.

(V12) We need to show th&Rzx— Rzyis implied by SyniR), TrangR), and
Rxy First by TranéR) andRxywe getRzx— Rzy secondly, by SyrtR)
andRxywe getRyx whence by Tran®) we getRzy— Rzx O

The following theorem provides us with an analogue of Corollary 6.2, unfortu-
nately, with looser bounds on the left-hand side.

Corollary 6.9 FCT proves:

(V13) R~*R* —R=~?R’ — Sim(R) — R=R® — R~RS
(V14) Ra?R — Rx=RS — wSim(R)

(V15) wSinm?(R) — R~ R’

The question arises whether it is really necessary to reguirather thanx in
(V11). The following example tells us that this is indeed the case. It also implies
thatR~ R’ — wSim(R) doesnothold in general.

Example 6.10 Consideltd = {1, 2}, standard tukasiewicz logic, and the following

fuzzy relation:
0510
R= <o.o o.5>

It is obvious that RefR) = 0.5 and Syn(R) = 0. Moreover, routine calculations
show that Tran@) = 1. To computeR = R’S, we have to consider the truth values
of Rxy« (Vz)(Rzx— Rzy for all x,y € U:

z_l z=2
x=1y=1: min(osH(05Ho5§,6.5H(o.oHo.0))
Xx=1y=2: mm(lOH(05<—>10),1.0<—>(1.O<—>O.5)):OS
x=2,y=1: min(0.0 (1.0 0.5),00« (0.5 0.0)) =
x=2y=2: min(0.5+ (1.0+ 1.0),05< (0.5 05)) =

So, we finally obtairR~ RS = 0.5 andR~ RS =

Now we can formulate a graded version of Valverde’s representation theorem for
similarities. Analogously to the above considerations, let us define the property of
Valverde similarity representabilit{strong one and weak one) for a given fuzzy
relationR as
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ValS(R) =gf (32)(R= {{x,y
R~ {(x,y

) | (VA€ 2)(Ax— Ay)}),
wValS(R) =¢5 (3.4)( x|

)| (VA€ A)(Ax— Ay)}).

In the same way as for preorders, we can prove Valverde’s representation theorem
of similarities and weak similarities.

Theorem 6.11 FCT proves the following:

(V1i6) ValS*(R) — Sim(R) — ValS(R)
(V17) wvalS*(R) — wSim(R)
(V18) wSin?(R) — wValS(R)

Again, (V16) is more complicated than Valverde’s original representation of simi-
larities. In the following corollary, analogously to preorders, we can infer a result
very similar to Valverde’s original theorem in case that the corresponding properties
are fulfilled to degree 1.

Corollary 6.12 FCT proves the following:

(V19) ASIm(R) «—— AwSIm(R) — R=RS
— AValS(R) «—— AwValS(R)
«— (34) (R=A{xy) | (VA€ A)(Ax— Ay)})
«—— (34)(Crisp(4) & (R= {(x,y) | (VA€ A)(Ax— Ay)}))

Again, like in the case of preorders, (V19) has a graded ingredient—the glass
may be a fuzzy class of fuzzy classes.

Example 6.13 ConsidelJ = |0, 3], standard tukasiewicz logic, and the following
four fuzzy sets:

Arx = max(0,min(1,x))

Aox = max0,min(1,x— 1))
Agx = max(0,min(1,x—2))
Asx = max0,min(1,x— 3))

Figure 9 shows plots of two fuzzy similarities that we obtain by the construction
that is provided by (V19):

Eixy= (VA€ 4;1)(Ax« Ay)
Eoxy = (VA€ A)(Ax— Ay)

where4; = {A1,A2,A3, A4}, i.e. a crisp finite family of fuzzy sets. Hendg, is the

fuzzy relation obtained from Valverde’s original construction. The fuzzy cfgss
however, is defined such thabA; = A3 = AA4 = 1 and 4A; = 0.6, i.e. we

assign a lower weight of 0.6 to the second fuzzy set.
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Fig. 9. Plots of the two fuzzy relatiors; (left) andE; (right) from Example 6.13.
7 Similarities and Partitions

The one-to-one correspondence between equivalence relations and partitions is one
of the most fundamental correspondences in classical mathematics. Itis clear, there-
fore, that fuzzy partitions have been studied intensively in connection with sim-
ilarity relations. The first approach to fuzzy partitions by Ruspini [63] does not
facilitate a direct correspondence with similarity relations. Only more logically ori-
ented approaches to fuzzy partitions that were introduced more recently are able
to provide a smooth interplay with similarity relations. In this section, we demon-
strate how the well-accepted (non-graded) approach by De Baets and Mesiar [26]
(for similar or complementary studies, see also [12, 30, 41, 42,45, 51, 52]) can be
transferred to our graded framework.

Definition 7.1 Consider a fuzzy relatioR. For a given element, we define the
aftersetof x (with respect tdR) as

(X|r =dr {Y | Rxy}.

It is clear that, ifR is a similarity,[x|r can be understood as tequivalence class

of x. Note that Gottwald, in his studies [40, 41], defines the equivalence class of
inversely as thdoreset{y | Ryx}. We stick to the afterset-based definition in this
section. The choice is immaterial, since the aftersefR afe the foresets dR~1

and vice versa, andandR ! satisfy Refl, Sym, and Trans both to the same degrees
(see Section 3).

The following lemma provides us with some easy-to-see links to concepts we have
introduced earlier in this paper.

Lemma 7.2 The following properties of aftersets are provabld=GT:
(P1)  [Xr=R*{x} =Rl {x}
(P2)  [XrC[Ylr<— (V2)(Rxz— Ryz «— R'xy
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Now we can prove some basic properties of aftersets (note that semantically equiv-
alent results for left-continuous t-norms can be found in [41, Section 18.6]).

Theorem 7.3 The following properties are provable FCT:

(P3)  ReflR) « (¥x)(x € [X] >

(P4)  Refl(R) < (vx,y)([Xr HRHRxw

(P5)  Refi(R) & Sym(R) — (¥x,)(lYlr C [Xr — Rxy)
(P6)  Ref(R) — (¥x,y)([Xr ~ [yl — Rxy

(P7)  Reff(R) & Sym(R) — (vx,y)(ylr = [Xr — RPxy)

(R)
(P8)  TrangR) < (VX,y)(Rxy— [y|r C [X|r)
(P9)  TrangR) & Sym(R) — (¥X,y)(Rxy— [X|r C [Y|r)
(P10) TrangR) & Sym(R) — (VX,y)(Rxy— [X|r ~ [y|Rr)
)

(P11) Trang(R) & Sym(R) — (Vx,y)(R?xy — [X|r = [y]r)

Proof.

(P3)  Follows directly from the definition of R&1R).

(P4)  Follows from Ref(R) < R" C R (compare with (V1)) and (P2).

(P5) Take (P4) and apply symmetry.

(P6)  Trivial consequence of (P4).

(P7) Use (P4) and (P5).

(P8)  Follows from TranéR) «— RC R (compare with (V2)) and (P2).

(P9)  Use (P8) and symmetry.

(P10) and (P11hoth follow from (P8) and (P9). O

From Theorem 7.3, we can now infer a first important result—that similarities can
be represented by their aftersets (i.e., equivalence classes).

Corollary 7.4 The following can be proved iRCT:

(P12)  SIM(R) — (Vx,y)(Rxy— [Xr ~ [y|r)
(P13) SINMF(R) — (vx,Y)(RPxy = [Xr = [yR)

In classical mathematics, the notion of quotient set is essential for the study of the
correspondence between equivalence relations and partitions. As also in previous
literature, we define quotient classes in perfect analogy to the crisp case.

Definition 7.5 For a given fuzzy relatioR, we define thequotient class//R as
the class of all aftersets (equivalence classes):

V/R =t {A](3X)(A=[Xr)}
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It is clear that the namguotient classs best justified iRis a similarity. Let4 be a

class of (fuzzy) classes resulting from some similarity in this way. By investigating
properties o4, we found four constituting properties: crispness, normality of its
elements, covering, and disjointness (in a wider sense). They are defined as follows.

Definition 7.6 Let A4 be a fuzzy class of fuzzy classes. We define the following
properties ofZ:

NormM(A4) =4t (VA € A4)(IX) AAX
Cover4) =4 (VX)(FA € 4)AAX
Disj(A4) =4t (VA,B€ 4)(A||B— A~xB)

Correspondingly, we can define the degree to wtddl a partition as
Par(A4) =4 Crisp(4) & NormM(4) & Cover(4) & Disj(A4)

The first three properties are self-explanatory, Digjis a straightforward (graded)
generalization of the disjointness criterion that is well-known from the literature
[26, 45,51, 52]. Without explicitly referring to this as a notion of fuzzy partition,
some authors [45, 51, 52] study the disjointness property in conjunction with nor-
mality (and crispness, as they are working in a non-graded framework). The cov-
ering property was later introduced by De Baets and Mesiar [26] and similarly
studied by Demirci [30] and 8ohlavek [12]. The degree Pé&A) to which a class

of classesq is a partition is thus a straightforward (graded) generalization of the
concept ofT -partition introduced by De Baets and Mesiar [28].

Observe that the properties Crigp), NormM(2), and Covef4) are crisp. Thus,
we have

Par(4) < Crisp(4) A NormM(A4) A Cover(4) A Disj(A4),

i.e. there is no need to define a separate concept of a “weak fuzzy partition”. More-
over, it follows that

(Par{4) < 0) v (Par(4) < Disj(4)).

In other words, the truth value of Paft) for a givenA4 is either O or equal to the
truth value of Dis{4).

6 An alternative option in Definition 7.5 is takinfA | (3x)(A ~ [x]r)} for the quotient
class. This would yield a meaningful, fully fuzzified notion of quotient class and the results
of this section would only need a slight adaptation (this in Definition 7.6 could be
dropped in exchange for some more exponents in definitions and proofs). The usage of
in Definition 7.5 is motivated mainly by keeping the direct correspondence with De Baets
and Mesiar's notion.

43



Theorem 7.7 FCT proves the following properties of the quotidntR:

(P14) CrispV/R)

(P15) ARefl(R) — Cover(V/R)

(P16) AReflR) — NormM(V/R)

(P17) Trang(R) & Sym(R) — Disj(V/R)

(P18) Trang(R) & Sym(R) & ARefl(R) — Par(V/R)

Proof.

(P14)—(P16are straightforward to prove.

(P17) From Tran$R) and SyniR), we getRyx& Rzx— Ryz which, using the
definition, can be written as € [y|r & x € [zZr — Ryz Using (P8) and
TrangR) again, we gex € [yjr & X € [Zr — [Y]r C [Zr. In the same way,
we getx € [Zr & X € [y]r — [Zr C [y]r. Combining these two formulae,
we get Tran§(R) & Sym(R) — (X € [Zr & X € [y]r — [Zr ~ [y]r). Then
applying generalization (for), quantifier shifts, and the definition gf
completes the proof.

(P18) Immediate consequence of (P14)—(P17). O

Now, after we have studied the properties of the quotient of a given fuzzy relation,
the question arises how we can extract a fuzzy relation (a similarity in the ideal
case) from a given fuzzy partition.

Definition 7.8 For a given fuzzy class of fuzzy class@sve define a fuzzy relation
R in the following way:

RY —ar {(xy) | GA€ 1) (Ax& AY)}

Note that the definitioiR? is not the only possible definition of how to “extract” a
fuzzy relation from a family of subsets. Another often-used way to do that is

R={(xy) ] (VA€ 4)(Ax Ay)}

(see [26, 51, 67] and many other papers). The latter actually means that we define
a fuzzy relatiorR such that Val&R) is fulfilled (to a degree of 1). Note, however,
that A ValS(R) «—— AwValS(R) «—— A Sim(R) holds by (V19). Thus we obtain a
similarity regardless of the properties of the clasSo this definition would not al-

low us to relate properties of partitions with properties of the induced relations in a
meaningful graded manner. That is why we use the construBtfoiThe following
theorem provides us with these relationships.
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Theorem 7.9 The following properties of Rare provable inFCT:

(P19)
(P20)
(P21)
(P22)

Proof.

(P19)
(P20)

(P21)

(P22)

Sym(R?)

Cover(4) — ARefl(R?)

Disj(4) — TrangR?)

Par{4) — A Sym(R?) & ARefl(R?) & Trang R?) — Sim(R?)

Trivial.

Cover(4) — (IX e A)A(Xxe X) — A(IX e A)(Xe X & XEX) «—
ARAXX

FromRAxy & R%yz we get(3A,B € 4)(Ax& Ay& By& B2). Since from
Disj(4) we get(Ay& By) — A~ B, we have(3A/B€ 4)(Ax& A~ B &
B2). AsA~B& Bz— Az we obtain(3A € 4)(Ax& Az) «» R?xz and the
proof is done.

Immediate consequence of (P19)-(P21). O

The property (P18) has told us that the quotient of a similarity is a partition. Now
(P22) entails that partitions induce similarities. Note, however, that this is not yet
a proof of one-to-one correspondence. We do not know yet whether these corre-
spondences are invertible, i.e., (i) whether the quotient of a similarity induced by a
partition is the same as the original partition, and (ii) whether the quotient of a given
similarity induces the same similarity. The following final theorem gives answers
to these questions—fortunately in a fully graded manner.

Theorem 7.10 FCT proves the following:

(P23)
(P24)
(P25)

Proof.

(P23)

Sim(R) — (RV/Rx=R)
Par{4) — Crisp(4) & NormM (4) & Disj(4) — (VA€ 4)(3B € V/R*) (A= B)
Par(4) — Crisp(4) & Cover(4) &Disj(A4) — (VB € V/R*)(3A <€ 4)(A= B)

We shall show that Sy(iR) & TrangR) — RY/R C Rand that RefR) —
R C RY/R. The first part is proved by the following steps:

RY/Rxy — (3A € V/R)(Ax& Ay)

(FA((F)([Zr=A) & AX& AY)
(FA)(F2)([Fr = A& AX& Ay)
(GA)(32)([Zr = A& AX& [Zr=A& AY
(F2)(x€ [Zr& y € [ZRr)
(32)(Rzx& Rzy)
(3z)(Rxz& Rzy), by SymR),

HHH
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— Rxy, by TrangR).
The second part is proved by the following steps:
Rxy — [X[r=[Xr& X € [X|r & Y € [X|r, by Ref(R),

— (I([Fr=[dr& xc [Jr& Yy € [ZR)

— (FA)(F2)([dr = A& Ax& Ay)

— (3A((ED)([Jr=A) & Ax& AY)

— (JA e V/R)(Ax& Ay)

— RY/Ryy.

(P24) Letuschoose afuzzy sate 4. Since CrispA) is fulfilled, AA € 4 holds.
Since NormM A4) holds, we know that there exists arsuch thatAAx
Now we chooseB = [X|pa, i.e. By «— RIxy «— (3C € 4)(Cx & Cy).
SinceAAxandAA € 4 we get:

Ay— A€ 4 & Ax& Ay— (3C € 4)(Cx& Cy),
i.e. we have proved
Crisp(4) & NormM(A4) — ACB (7.1)

Conversely, we can prove the following:
By<—— (3C € 4)(Cx& Cy)
— (3C € 4)(Ax& Cx& Cy), by AAX,
— (3C € 4)(A~ C & Cy), by Disj(4),
— (ICe 42) Ay
— Ay
So we have proved

Crisp(A4) & NormM (4) & Disj(A4) — BC A. (7.2)

Finally, we can join (7.1) and (7.2) to complete the proof (as the properties
Crisp and NormM are crisp).

(P25) Letus consider an arbitraBc V /R*. Since CrisgV /R?) holds by (P14),
we haveA (B € V/R?), which means that there exists asuch thaB =
[Xgra = {y | Rxy}. By (P20), we have Covéa) — ARefl(R?). Hence,
we have/ABx. From Cove(A4) and CrisgA4) we can deduce that we can
choose ai € 4 such thatAAx. Hence, we can deduce the following:

Ay— A€ 4 & Ax& Ay— (3C € 4)(Cx& Cy) — By
So we have proved the following:
Crisp(4) & NormM(4) & Cover(4) — ACB (7.3)
Conversely, we can prove

Crisp(4) & Cover(A4) & Disj(A4) — BC A. (7.4)
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completely analogously to the proof of (7.2) (just to gexwe use Cover
instead of NormM). Finally, we can join (7.3) and (7.4) to complete the
proof. O

Nonchalantly speaking, we can say that (P24) and (P25) together mean that the
more 4 is a partition, the more similaZ and V/R? are. The question arises,
whether they are equal i is a partition to a degree of 1. The next corollary gives

a positive answer and lists some other well-known non-graded results [12, 26, 30]
that are consequences of graded results from above.

Corollary 7.11 FCT proves the following:

(P26) ASIM(R) — APar(V/R)
(P27) ASIMR) — RV/R=R
(P28) APar(4) — ASIm(R?)
(P29) APar{4) -V/Ri=24

Proof. The assertions (P26), (P27) and (P28) are immediate consequences of (P18),
(P23) and (P22), respectively. The assertion (P29) can be proved as follows: from
Par{4), we know that4 is a crisp set and, by (P14), we know thatR? is

crisp too. Then, using\Par(4), (P24) implies4 C V/R? and (P25) implies
V/R? C 4, which completes the proof. O

Let us close this section with a simple example that illustrates the above results.

Example 7.12 Let us consideld = {1,2, 3,4}, standard tukasiewicz logic, and
the crisp class? = {Aq1,A2,A3,As}, WhereAq, Az, Az, Aq are fuzzy sets defined in
the following way:

A1 = (1.0,0.4,0.3,0.0)
A, = (0.0,1.0,0.7,0.0)
A3 =(0.1,0.2,1.0,0.5)

= (0.0,0.1,0.5,1.0)

Obviously, CrispA4) = Cover(4) = NormM(A4) = 1. To compute Digj4), we first
compute the degrees of compatibility (overlapping) and equality:

| 1AL Ao A Ay ~|AL Ao Az Aq
A1/1.0 04 0.3 0.0 A1/1.0000.1 0.0
A>|0.4100702 A>|0.0 100200
A3/0.3 0.7 1005 A3/0.1 02 1005
A4/0.0 02 0510 A4/0.0 0005 10
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From these values, we see that the pair, As) is the one for which compatibility
exceeds equality to the largest extent. So, we obtain

Disj(4) = Az | Az — Ay~ A3=0.7—02=05
which implies Part4) = 0.5. We can deriv&®? as follows:

1.0 0.4 0.3 0.0
04100701
R = 0.307 1005
0.0010510

Obviously RefiR?) = Sym(R?) = 1 (any other result would contradict our find-
ings above). Straightforward calculations show that

Sim(R?) = wSim(R?) = TrangR™) = 0.9.

Hence, we can conclude that the bounds in (P21) are not necessarily tight (which
proves that the converse implication cannot generally hold).

Now let us consider the quotiebt/R*. Obviously,U /R? = {By, By, B3, B4} with

B, = (1.0,0.4,0.3,0.0)
B, = (0.4,1.0,0.7,0.1)
Bs = (0.3,0.7,1.0,0.5)
By = (0.0,0.1,0.5,1.0)

and we immediately see the discrepancy betw@eandU /R?. Interestingly, we
haveA; C B1, A> C By, A3 C B3, andA4 C B4. This is not surprising, however, if

one looks at the proofs of (P24) and (P25), where we show that, férar, we

can find aB € V/R? such thatA C B. Not surprisingly eitherd; is most similar to

B;, just asA, is most similar toB,, and so on. Simple calculations show that the
truth values of the formulae on the right-hand sides of (P24) and (P25) are both 0.5.

If we computeRU/Rﬂ, we obtain the following fuzzy relation:

1.0 0.4 0.3 0.0
/Rt _ | 04100701
0.307 1005
0.0 01 05 10

Then routine computations show that this fuzzy relation is a similarity. So, at least
in the setting of this example, successive application of computing quotients and
induced similarities yields increasing degrees to which the relations are similarities
and the classes of fuzzy sets are partitions.
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8 Concluding Remarks

In this paper, we have rephrased and generalized results on binary fuzzy relations to
the graded framework of Fuzzy Class Theory (FCT). While Section 3 was more or
less concerned with rewriting Gottwald’s previously published results, Sections 4—
7 have generalized results that were known in the non-graded framework of tradi-
tional theory of fuzzy relations to the fully fledged graded framework of FCT. These
new results hereby demonstrate that Fuzzy Class Theory is indeed a very powerful
and easy-to-use framework for handling fuzzified properties of fuzzy relations.

This paper has never been intended as a comprehensive treatise that covers the
whole theory of crisp or fuzzy relations. We only tried to communicate the idea of
how to apply Fuzzy Class Theory to generalizing existing (and possibly discovering
new) results on fuzzy relations in the fully graded framework of FCT. Obviously,
much is left for future studies, and we would like to encourage everybody interested

in this topic to adopt the framework and advance the results.

A First-Order MTL A: Basic Definitions

Monoidal t-norm based logic (MTL for short) was introduced by Esteva and Godo
in [33] as an extension of #hle’s monoidal logic [46] by the axiom of prelinearity
(i.e., the axiom (A6) below). In this appendix we recall the definitions and some of
the basic properties of MTL and its expansion by the connectivéVe start with

the propositional variant and then expand it to the first-order predicate variant.

The formulae of propositional logic MTL are composed from a countable set of
propositional atoms by using three basic binary connectives\, and &, and a
nullary connective 0. Further connectives can be defined as:

OV =ar (0 =) =N ((W—9)—0),

-6 =4 ¢ —0,
b=od =4 D—WAW—0),
1 =4 0.

Convention A.1 In order to avoid unnecessary parentheses, we stipulate that unary
connectives take precedence oxex/, and &, which in turn bind more closely than
— and«.

The deduction rule of MTL is Modus Ponens (frarand¢$ —  infer ) and the
following formulae are the axioms of MTL.:

(Al (6—W) = (W—=X)—(®—X))
(A2) &y —1¢
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(A3) d&U—-U&Y

(Ada) & (b —Ww) =AY

(AdD) dAY— O

(Adc) dGAP—UYAD

(A5a) (60— (W—X)— (&Y —X)

(ASb) (&Y —X)— (b — (W—X)

(A6) (P—v)—Xx) = ((L—=9)—=X) —X)
(A7) 0—¢

The logic MTLA was introduced in [33] as an expansion of the logic MTL by a
new unary connectivé\, the deduction rule of necessitation (fragpminfer A¢),
and the following axioms:

(AAL) AdV-Ad

(AL2) A(dVY) — (AdVAY)
(AA3) Ad —

(ANL) Ab — AND

(AAD) A(d— ) — (Ad — AY)

Formulae derived from these axioms by means of the mentioned deduction rules
are calledheoremof MTL A.

Definition A.2 An MTL-algebrais a structurd. = (L, x,=,A,V,0,1), where

(1) (L,A,V,0,1) is a bounded lattice

(2) (L,*,1) is a commutative monoid

(3) x< (y= 2z ifand only if xxy < zfor all x,y,z € L (residuation)
(4) (x=y)V(y=x)=1forallxy e L (prelinearity)

Definition A.3 A structureL = (L,*,=,A,V,0,1,A) is called an MTla-algebra
if (L,*,=,A,V,0,1) is an MTL-algebra and if the additional connectiehas the
following properties (for alk,y € L):

(1) Axv(Ax=0)=1
(2) A(xVvy) < (AxV AY)
(3) Ax<x

(4) Ax< AAX

(5) Alx=y) < Ax= Ay
(6) Al=1

If the lattice order ofL is linear, we say that is an MTLa-chain If the lattice
reduct ofL is the real unit interval with the usual order, we say tha astandard
MTL A-chain It can be easily shown that in each MAtchain the following holds:

Ax— 1 ifx= 1'
0 otherwise

50



The structuré[0, 1], x,=,min,max 0,1, A) is a standard MTL-chain if and only
if x is a left-continuous t-norm aneg- its residuum.

Given an MTLx-algebra, we can evaluate formulae of MYlby assigning ele-
ments ofL to propositional atoms and computing values of compound formulae
using operations oE. A formula is atautologyof a given MTLx-algebra if it
always evaluates to 1.

The completeness theorem for MTL and MA lwith respect to standard algebras
was proved in [49]: a formula is a theorem in MILf and only if it is a tautology
of each standard MTA-algebra.

Now we introduce the language of first-order M{ logic (we give a slightly sim-
plified account, omitting the subsumption of sorts; for full details see [4]).

Definition A.4 A predicate languagd is a tuple(S,P,F,a), whereS is a non-
empty set of sorts of variableR, is a non-empty set of predicate symbdisjs

a set of function symbols, aralis anarity functionwhich assigns a sequence of
sorts(sy,...,S) to each predicate symbol and a sequence of $srts. ., S, 1)

to each function symbok(> 0 in both cases). Functions with aritg;) are called
object constantef sorts;. The setP is supposed to contain a symbslof arity
(s,s) for each sors. For each sors, there are countably many variabbgsxs, . . ..

For the rest of this appendix, fix a predicate langubged an MTLx-chainL.

Definition A.5 Any variablex® of sortsis atermof sorts. If F € F is a function
symbol of arity(si,...,S,S.+1), then for any terms;,. .. tx of respective sorts
S1,...,, the expressiof (ti, . ..,t) is a term of sor, 1.

Atomic formulaehave the fornP(ts,...,tx), wherety, ...t are terms of respective
sortssy, ..., andP € P is a predicate symbol of arityss, ..., s). Where conve-
nient, we switch to infix notation for binary predicate symbols.

Formulaeare built from atomic formulae by using the connectives of MTand
the quantifiersy,3 (for a formula¢ and a variable, both (¥x)¢ and (3Ix)¢ are
formulae).

Definition A.6 An occurrence of a variable in a formula¢ is boundif it is in
the scope of a quantifier ov&r otherwise it is calledree. A formula ¢ is called a
sentencéf all occurrences of variables i are bound.

A termt is substitutabldor the object variable® of sortsin a formulad (x®) if and
only if t is also of sors and no variable occurring inbecomes bound ifi(t).

Definition A.7 First-order MTL, logic (with crisp identity) has the following ax-
ioms:
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(P) The axioms resulting from the axioms of MELby substituting first-order
formulae for propositional formulae
V1)  (YX)$(x) — ¢(t), wheret is substitutable fok in ¢
31)  o(t) — (IX)P(x), wheret is substitutable fok in ¢
V2) (™) (X—¢) — (X — (VX)9), wherex s not free inx
(F2) (W) (d —X) — ((IX)d — X), wherex s not free inx
VX)(

(V3) ( X)(XV ) — xV(VX)d, wherex is not free inx
(=1) =X
(=2) =y — (§(x) < ¢(y)), wherey is substitutable foxin ¢

The deduction rules are those of Mflandgeneralizationfrom ¢ infer (vx)¢.

We define the notion of theoremin the same way as in the propositional case. We
can also define a more general notion of a theory.

Definition A.8 A theoryis a set of sentences. A formulagsovable in a theory T
if it is derivable from the axioms of first-order MTLand sentences belonging to
T by the deduction rules. We denote this factiby ¢.

Definition A.9 An L-structureM has the formM = ((Ms)scs, (Pv )pep, (Fm )FeF),
where eaciMs is a non-empty set; eadly is ak-ary fuzzy relatiorPy : 1K, Mg —
L for each predicate symb® € P of arity (s1,...,S); andRy is ak-ary function
Fu: 11 Mg — Ms,,, for each function symbdF € F of arity (sy,...,S, S1)-
Furthermore=y, is the crisp identity of the elements bfs for eachs € S.

In words: anL-structure consists of (i) domains for all sorts of variables, (i) an
interpretation of all predicate symbols hyfuzzy relations defined on appropri-
ate domains, and (iii) an interpretation of all function symbols by crisp functions
between appropriate domains.

Definition A.10 Let M be anL-structure. AnM-evaluationis a mapping/ which
assigns an element frolis to each object variabbeof sorts. For anM -evaluatiorv,
a variablex of sorts, anda € Ms we define theM -evaluationv|x — aJ as

aif y=x
v(y) otherwise

vix—al(y) = {

Definition A.11 Let M be anL-structure ands an M-evaluation. We define the
valuesof terms and théruth valuesof formulae inM for an M -evaluationv as:
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Xy = V()
IFtn 5y = Fulltalfy...[talf,)  foreachF e F
1Pttty = Pulltal5ye. . tally ) for eachP e P
110l = cLldalluys-.. |dnlls,) for each connective
15000y = Inf 1] e
@08l = SUPIDIy va

If an infimum or supremum does not exist, we consider its value as undefined. We
say that a structuri is safeif and only if |$ |5, ,, is defined for each formukaand
eachM-evaluationv. Note that, in a standard MTl-algebra (or more generally in

any MTLx-algebra whose lattice reduct is a complete lattice),shenesof a
structure is a superfluous condition, as the suprema and infiglas#ts exist.

Definition A.12 A formula ¢ is valid in a structureM (denoted asM |~ ¢) if
H¢Hk,,7v = 1 for eachM-evaluationv. A structureM is a modelof a theoryT if
M = ¢ foreachd in T.

Finally we present the (strong) completeness theorem which relates syntactical and
semantical aspects of the first-order MY logic (see [33, 53] for a proof). Recall

that the direction from provability to validity is usually callsdundnesswvhereas

the converse direction one is calledmpleteness

Theorem A.13 LetT be a predicate language, T a theory, apié formula. Then
the following are equivalent:

1) TE¢.
(2) M = ¢ for eachMTL-chainL and each safé-modelM of T.
(3) M = ¢ for each standardMTL-chainL and eacH_-modelM of T.

Thus by (1}=(2) we get that if a formula is provable in a given thedrythen it is
valid in all models ofT overall MTL »-chains. Conversely, by (3}(1) we get that
if a formula is valid in all models oT over all allstandardMTL A-chains, then it
is provable inT.

B Fuzzy Class Theory: Basic Definitions

Fuzzy Class Theory has the aim to axiomatize the notion of fuzzy set. In the first pa-
per [4], it was based on the logidt[34]. In this paper, we use the logic MTL; ob-
viously all definitions and basic results of [4] can be transferred fromMd-MTL A .

For an introduction to MTL,, see Appendix A (for a more extensive overview of
propositional MTL, see [33]; a more detailed treatment on first-order MWlith

crisp equality can be found in [43]).
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In this section, we present an overview of Fuzzy Class Theory (FCT) in order to
provide the reader with the necessary background. Note that this is only a brief
introduction to the most basic concepts of FCT with the aim to keep the paper self-
contained. Readers who want to understand all proof details or even to make proofs
in FCT themselves should not expect to find all necessary material in this paper.
Instead, they are referred to the freely available primer [6].

Definition B.1 Fuzzy Class Theoryover MTL,) is a theory over multi-sorted
first-order logic MTL, with crisp equality. We have sorts for individuals of the
zeroth order (i.e., atomic objects) denoted by lowercase variahtes, x,y,z, . . .;
individuals of the first order (i.e., fuzzy classes) denoted by uppercase variables
A, B, X.Y,...; individuals of the second order (i.e., fuzzy classes of fuzzy classes)
denoted by calligraphic variables, B, X,7,...; etc. Individualsy, . . ., & of each

order can fornk-tuples (for anyk > 0), denoted by¢, ..., &); tuples are governed

by the usual axioms known from classical mathematics (e.qg., that tuples equal if and
only if their respective constituents equal). Furthermore, for each vanaiflany
ordern and for each formula there is a class terdx | ¢ } of ordern+ 1.

Besides the logical predicate of identity, the only primitive predicate is the mem-
bership predicate between successive sorts (i.e., between individuals ofi-the
order and individuals of thén+- 1)-st order, for anyn). ” The axioms forc are the
following (for variables of all orders):

(€1)  ye{x|d(X)} < ¢(y), for each formulap (comprehension axioms)
(€2) (™) A(xe A~ xe B) — A= B (extensionality)

Moreover, we use all axioms and deduction rules of first-order M-TCheorems,
theories, proofs, etc., can be defined completely analogously.

Observation B.2 Since the language of FCT is the same at each order, defined
symbols of any order can be shifted to all higher orders as well. Since furthermore
the axioms of FCT have the same form at each order, all theorems on FCT-definable
notions are preserved by uniform upward order-shifts.

Convention B.3 For better readability, let us make the following conventions:

e We use the notation®x € A)¢, (Ix € A)$ as abbreviations faivx)(x € A— ¢)
and(3x)(x € A& ¢), respectively.

e The notation{xc A| ¢} is short for{x | xc A& ¢}.

e We use{(xq,...,X) | §} as abbreviation fofx | (Ixq) ... (Ix) (X= (X1,...,X) &
)}

e The formulaed & ... & ¢ (ntimes) are abbreviatepl'; instead of(x € A)", we
can writex €™ A (analogously for other predicates).

’ By this requirement, Russell's paradox is avoided in a similar fashion as in type the-
ory [64].
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e Furthermorex ¢ Ais shorthand for(x € A); analogously for other binary pred-
icates.

e We useAx andRx; ...x, synonymously foxx € A and(xs,...,X,) € R, respec-
tively.

e A chain of implicationsh; — ¢2,d2 — d3,...,0n_1 — dn will for short be writ-
ten asp; — ¢ — --- — ¢p; analogously for the equivalence connective.

Definition B.4 In FCT, we define the following elementary fuzzy set operations:

0 =g {x|0} empty class
V=g {x|1} universal class
Ker(A) =4 {X|AXeA)} kernel
SuppA) =g {X|A=(xeA)} support
\A =gt {Xx|x¢A} complement

ANB =g {x|xeA&xeB} intersection
ANB =g {X|Xx€AAX€B}  min-intersection
AUB =g {X|x€AvxeB}  max-union
A\B =g {x|xeA&x¢B} difference

Definition B.5 Further we define in FCT the following elementary relations be-
tween fuzzy sets:

Hot(A) =g (IX)(Xx€A) height
Norm(A) =4¢ (IX)A(XEA) normality
Crisp(A) =gt (WX)AXeAVXEA) crispness
FuzzyA) =4 —Crisp(A) fuzziness
ACB =4 (™)(xe A—xeB) inclusion
Ax=B =54 (ACB)& (BCA) (strong) bi-inclusion
AxB =g (™)(xeA—xeB) weak bi-inclusion
A||B =4 (IX)(xc A& xeB) compatibility

Definition B.6 The union and intersection of a class of classes are functions de-

fined as

UJAa=a{x| (3A€ A)(x€ A)}
A=t {x| (VA€ A)(xc A)}

Definition B.7 In FCT, we define the following operations:
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AxB =4 {(xy)|xeA&yeB} Cartesian product
Dom(R) =gt {X|Rxy} domain
RngR) =gt {y|Rxy} range
RA =¢ {X|(3y)(ye A& Rxy} pre-image
RoS =4t {(Xy)|(32)(Rxz& Szy} composition
R =g {(xy)|Ryx converse relation
Id =gt {(XY)|Xx=Yy} identity relation

The following lemma lists a collection of results that are employed helpful later in
this paper.

Lemma B.8 The following results are provable ICT:

(L4)  AGV—h)—=[(¢—=W—=X)— (d—=v)— (6 —X))
(LS ¢&W—=X)—((d—¥)—X)
(L6)  U{B|$(B)} CA~ (VB)(¢(B) - BCA)

(L7)  ACN{B|¢(B)} — (VB)(¢(B) = ACB)

(L8) ¢(C)—N{Blo(B)}CC

(L9)  ¢(C)—CcU{B|9(B)}

(L10)  (3X)(0 V) = ((BX)d V (X))

(L11) (W)@ AY) < (V) A (VW)

(L12) (3@ AY) — (30 A (EOY)

(L13) ()9 V (X)) — (V) (0 V)

(L14) (WXeA(X—Y) — (X — (Vxe Aw), where x is free irg
(L15) (WxeA)(d—Y) — (e A)d — (Vxe ANAY)
(L16) (VX€A)(d — ) — ((Ixe ANAYD — (Ix € A)Y)

The models of FCT are systems (closed under definable operations) of fuzzy sets
(and fuzzy relations) of all orders over some crisp univédsevhere the mem-
bership functions of fuzzy subsets take values in some M€thain (see [33] and
Appendix A). Intended models are those which con#diriuzzy subsets and fuzzy
relations ovetJ (of all orders); we call such modetsll. Models in which more-

over the MTLx -chain is standard (i.e., given by a left-continuous t-norm on the unit
interval [0, 1]) correspond to Zadeh’s [68] original notion of fuzzy set; therefore we
call themZadeh models

FCT is sound with respect to Zadeh (or full) models; thus, whatever we prove in
FCT is true about real-valued (brvalued for any MTLx -chainL) fuzzy sets and
relations. Although the theory of Zadeh models is canpletelyaxiomatizable®

the axiomatic system of FCT approximates it very well: the comprehension axioms
ensure the existence of (at least) all fuzzy sets whictdafmable(by a formula

of FCT), and the axioms of extensionality ensure that fuzzy sets are determined by
their membership functions. This axiomatization is sufficient for almost all practi-

8 Due to Gdel's Incompleteness Theorem [37], since natural numbers are definable in
Zadeh models over MTL.
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cal purposes; it can be characterizediagple type theory over fuzzy lodadf. [58])
or Henkin-style higher-order fuzzy logic.
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