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1 The logical omniscience paradox

Standard epistemic logic (see, e.g., Meyer, 2003) renders the epistemic
modality the agent knows that ϕ as a propositional modal operator K. The
operator is supposed to validate some of the standard axioms of normal
modal logics, which formalize several principles of epistemic reasoning:

` K(ϕ→ ψ)→ (Kϕ→ Kψ) logical rationality(K)
` Kϕ→ ϕ truth of knowledge(T)
` Kϕ→ KKϕ positive introspection(4)
` ¬Kϕ→ K¬Kϕ negative introspection(5)

ϕ ` Kϕ necessitation(Nec)

The axioms (4) and (5) of positive and negative introspection are often
considered optional, depending on the introspective abilities of the epistemic
agent. The doxastic variant with the modality the agent believes that ϕ
replaces the truth axiom (T) by the consistency axiom (D):

` K¬ϕ→ ¬Kϕ consistency of beliefs(D)

1The work was supported by project No. LQ1602 “IT4I XS” in the program NPU II of the
Ministry of Eductation, Youth and Sports of the Czech Republic.
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Being a normal modal logic, standard epistemic (or doxastic) logic is sound
and complete with respect to the usual Kripke semantics, where K is evalu-
ated �-like and the intended meaning of the accessibility relation R is that of
epistemic indistinguishability: in a possible world w, the agent only knows
(or believes) that the actual world is one of the worlds w′ such that wRw′,
but cannot distinguish which one of these.

A well known defect of standard epistemic logic is the paradox of logical
omniscience, or the fact that by the inference rule (Nec) and the axiom
schema (K), the agent automatically knows all propositional consequences
of their actual knowledge, including all propositional tautologies. This is, of
course, unrealistic for real-world agents.

Since the standard axioms and rules of doxastic logic likewise include (K)
and (Nec), the problem of logical omniscience applies to standard doxastic
logic as well. We will therefore deal with both of these variants at once, for
the most part referring to epistemic logic only, but mutatis mutandis applying
our considerations to doxastic logic too.

2 Solutions based on resource-awareness

The logical omniscience paradox is obviously caused by over-idealization
of deductive abilities of epistemic agents in standard epistemic logic. In
particular, the modal axioms neglect the costs of logical derivations, or the
fact that the agent needs to spend some of their limited resources, such as
computation time, memory, or energy, in order to perform the derivation.
Consequently, an important class of solutions to the logical omniscience
paradox is based on resource-awareness, i.e., on modifying the standard
account by acknowledging that some resources need be spent on logical
deductions.

Several resource-aware solutions to logical omniscience have been pro-
posed, i.a., by Duc (1997, 2001) and Artemov and Kuznets (2014). One of
these proposals is to introduce time-awareness by prepending the temporal
modality 〈F〉 (standing for “at some future point”) to the conclusions of
epistemic principles. The axioms (K) and (4) are thus modified to read:

` K(ϕ→ ψ)→
(
Kϕ→ 〈F〉Kψ

)
` Kϕ→ 〈F〉KKϕ,

meaning: “if the agent knows both ϕ and ϕ→ ψ, then at some future point
(namely, after applying modus ponens), the agent will know ψ” and “if ϕ is
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known, then at some future point (namely, after performing introspection),
Kϕ will be known”; and similarly for the axiom (5) and the rule (Nec).

The simple temporal modality 〈F〉 can further be refined into dynamic
modalities whose programs represent deduction steps: e.g., composing the
programs 〈mp〉 for modus ponens and 〈pi〉 for positive introspection, the
appropriately modified axioms (K) and (4) yield:

` K(ϕ→ ψ)→
(
Kϕ→ 〈mp; pi〉KKψ

)
Another approach to resource-awareness consists in syntactic stratifica-

tion of the epistemic modality K, e.g., by counting the steps needed for the
logical derivation. The stratified axioms (K) and (4) then read:

` Kn(ϕ→ ψ)→ (Kmϕ→ Kn+m+1ψ)

` Knϕ→ Kn+1Knϕ,

and similarly for the stratified axiom (5) and rule (Nec).
All of the aforementioned solutions avoid logical omniscience by de-

ferring the knowledge deduced from the agent’s actual knowledge to some
future point. An unsatisfactory feature of these solutions, though, is that they
solve the paradox not by treating the modality K itself, but by substituting
some modification thereof, such as 〈F〉K or Kn. The aim of the present paper
is to solve the logical omniscience paradox by a resource-aware treatment
of the very modality K. We will achieve this goal by distinguishing the ac-
tual, potential, and feasible knowledge of an epistemic agent and employing
suitable non-classical logics for resource-aware reasoning about the costs of
logical derivation.

3 The logics of costs and resources

As has been argued by the present author in one of the previous volumes
of The Logica Yearbook (Běhounek, 2009), most kinds of typical resources
exhibit the structure of a (semi)linear residuated lattice.2 In more detail, it
can be observed that many common kinds of resources come to us in amounts
that can be compared and added or subtracted. The comparability establishes
a linear lattice order on amounts; the addition and subtraction of amounts
then constitute the residuated lattice’s operations of fusion and residual.
Admittedly, in some of the more complex types of resources (imagine, for

2In algebraic parlance, semilinear means subdirectly decomposable into linear components.
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instance, the lists of cooking ingredients in recipe books), the order may no
longer be linear. Nevertheless, even such resources can often be decomposed
into some components (oil, flour, sugar, salt, etc.) whose amounts are fully
comparable, and so the order is at least semilinear.

The logics that are sound and complete with respect to the algebraic
semantics of (semi)linear residuated lattices are known as fuzzy logics.3 Thus,
arguably, logics that are generally suitable for resource-aware reasoning,
epistemic or otherwise, can be found among fuzzy logics.4

Before we proceed, let us recall a few properties of propositional fuzzy
logics (for more details see, e.g., Hájek, 1998; Běhounek, Cintula, & Hájek,
2011). In this paper, we will only need the following facts:

1. The standard set of truth values for fuzzy logics is the real unit interval
[0, 1]. Propositional connectives are interpreted truth-functionally, by
certain well-behaved operations on [0, 1]. Particular fuzzy logics differ
in the choice of these truth functions for connectives.

2. The prominent fuzzy logics G, Ł, and Π interpret conjunction (or
fusion, denoted by ⊗) by the following truth functions on [0, 1]:

Gödel–Dummett logic G: ‖ϕ⊗ ψ‖ = min(‖ϕ‖ , ‖ψ‖)
Łukasiewicz logic Ł: ‖ϕ⊗ ψ‖ = max(0, ‖ϕ‖+ ‖ψ‖ − 1)

Product fuzzy logic Π: ‖ϕ⊗ ψ‖ = ‖ϕ‖ · ‖ψ‖

3. These three logics, as well as all of their relatives from the family of
so-called t-norm fuzzy logics, validate this law for implication:

‖ϕ→ ψ‖ = 1 iff ‖ϕ‖ ≤ ‖ψ‖

Let us now give a brief description of the cost-based interpretation of
t-norm fuzzy logics; for more details see the original paper (Běhounek,

3The delimitation of the class of fuzzy logics as the logics of classes of (semi)linear residuated
lattices is due to Cintula (2006).

4By virtue of having the algebraic semantics of residuated lattices, fuzzy logics fall within
the broader family of substructural logics (see, e.g., Ono, 2003; Kowalski & Ono, 2010). A
substructural logic that is often regarded as the logic of resources is linear logic. However,
as argued in the previous paper (Běhounek, 2009), using linear logic for resources disregards
the semilinear structure manifested by most kinds of resources—in other words, neglects their
decomposability into components with linearly ordered amounts. Consequently, linear logic as
the logic of resources is unnecessarily weak, and under-generates resource-wise, compared to
suitable fuzzy logics.
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2009). Under this interpretation, the truth values of fuzzy logic represent
costs, or amounts of a particular resource, such as money, time, or memory.
The designated truth value 1 represents zero costs and all other truth values
represent non-zero costs; the smaller the truth value, the larger the cost.
The truth functions of fuzzy logic perform certain operations on costs. For
instance, the operation of fusion a⊗ b yields the value of the two costs a
and b put together, while the implication a→ b expresses the surcharge to a
that would yield at least the cost b; the remaining propositional connectives
of fuzzy logic possess a natural meaning in terms of costs as well. Particular
fuzzy logics differ in the manner of combining costs: e.g., the way costs
are combined by the standard truth function for ⊗ in Łukasiewicz logic Ł
is that of bounded additivity (where 0 represents the maximal cost); in
product fuzzy logic Π, unbounded additivity (via the logarithm, with 0
representing an infinite cost); and in Gödel–Dummett logic G, maxitivity (as
is appropriate, e.g., for various kinds of capacity). The formulae of fuzzy
logic then represent various ways of combining costs assigned to atoms.5

Specifically, tautological implications ϕ→ ψ express valid laws of cost
preservation, of the form: “The cost ψ never exceeds the cost ϕ.” Fuzzy
logics can thus be viewed as calculi that formalize reasoning salvis expensis,
in a similar manner as classical logic formalizes reasoning salva veritate.6

In the next sections I propose a solution to logical omniscience based on
resource-aware reasoning modeled in fuzzy logic. The approach has already
been briefly sketched in an earlier short paper (Běhounek, 2013). The present
paper elaborates the solution in more detail, taking in part advantage of the
recently developed fuzzy intensional semantics (Běhounek & Majer, 2018).
Due to limited space, most of the mathematical apparatus is omitted here and
deferred to a later full exposition.

5Formulae thus directly represent combinations of costs, rather than propositions or states
of affairs. Compare this formulae-as-costs interpretation, e.g., with formulae-as-types in the
Curry–Howard correspondence or the categorial grammar interpretation of the Lambek calculus.
Alternatively, the logical atoms can be interpreted as gradual propositions of the form “the
item x is inexpensive”; however, that requires an additional assumption on the correspondence
between combining costs and combining degrees of truth by the propositional connectives.

6The general algebraic semantics of t-norm fuzzy logics in terms of semilinear residuated
lattices generalizes this interpretation even to resources with non-linearly ordered amounts (yet
decomposable into linearly ordered components).
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4 Three kinds of knowledge

When discussing solutions to logical omniscience based on resource aware-
ness, it is generally useful to distinguish the following three kinds of a given
agent’s knowledge:

• Actual knowledge, or the explicit knowledge that is immediately avail-
able to the agent. In artificial agents, this can be the contents of their
database. In humans, it is the sum of all the facts the person knows
without needing to infer them from other known facts.

• Potential knowledge, or the implicit knowledge that is, at least in prin-
ciple, logically derivable from the actual knowledge. In other words,
the set of all logical consequences of the agent’s actual knowledge.

• And feasible knowledge, or that part of potential knowledge that the
agent can feasibly derive from actual knowledge, taking into account
the agent’s limited resources (such as time, memory, etc.).

It can be noticed that logical omniscience is only troublesome for the
notion of feasible knowledge, since the actual knowledge of a non-idealized
real-world agent is never closed under logical consequence (one reason being
its finiteness); while any agent’s potential knowledge does indeed include all
logical truths by definition.

It can furthermore be observed that whereas actual knowledge can be
viewed as crisp and finite (and potential knowledge as crisp and infinite),
feasible knowledge is apparently gradual, since long and complex logical
derivations will require more of the agent’s limited resources (e.g., time,
memory, or energy) than shorter or simpler ones—and so can be less feasibly
performed by the agent. The fact that fuzzy logics are, by design, tailored
to deal with gradual notions just further underscores their suitability for
resource-sensitive treatment of feasible knowledge.

As a matter of fact, the paradox of logical omniscience can be construed
as an instance of the sorites paradox: a single additional step of logical deriva-
tion is always feasible and within the capability of a logically rational agent.7

However, just like in the sorites paradox, it does not follow that arbitrarily
long logical derivations would be feasible, with however many steps. In
consequence of this correspondence, any solution to the sorites paradox gen-
erates a solution to the logical omniscience paradox. Our proposed solution

7Except when hard limits (e.g., on time or memory) are imposed. This case can be set aside,
though, as then neither the sorites series of steps nor logical omniscience arise.
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to logical omniscience thus, besides making use of resource-awareness, also
parallels the treatment of the sorites paradox in fuzzy logic (cf. Hájek &
Novák, 2003).

Combining these ideas, we will render feasible knowledge as a fuzzy set
of formulae that are logically derivable from the actual knowledge, where
the membership degrees represent the derivation costs. The next sections
elaborate the fuzzy semantics of feasible knowledge in more detail.

5 Fuzzy modal logic of feasible knowledge: syntax

Following the previous considerations, we are going to formalize feasible
knowledge as a unary fuzzy modality K governed by a suitable t-norm fuzzy
logic L. As explained in Section 3, the choice of the fuzzy logic depends
on the way we intend to compound costs (for example, Łukasiewicz logic is
suitable for bounded addition).

The epistemic modality K can, in principle, be applied to formulae of any
language E in which the agent’s knowledge is formalized.8 Our syntax will,
therefore, be two-layered, allowing:

(i) The modality K to be applied to a formula ϕ in the language E of the
agent’s knowledge representation, and

(ii) Modal atoms of the form Kϕ to be combined by the connectives of a
propositional t-norm fuzzy logic L of our choice.

We will denote the logic with this two-layered syntax by LK[E ]. For example,
if the agent’s knowledge is represented in first-order multi-agent doxastic
logic KD45∀nB with unary modalities B1, . . . ,Bn and unary predicates P,Q,
then K

(
(∀x)B1(Px → BnQx)

)
⊗ K

(
(∃y)¬B1Py

)
is a well-formed for-

mula of the logic ŁK[KD45∀nB].
It can be noticed that in LK[E ], the modality K of feasible knowledge

cannot be nested. This is because the ‘outer’ logic L serves for our reasoning
about the agent’s feasible knowledge, and its formulae are not part of the
agent’s knowledge. It is, nevertheless, possible that the language E of the
agent’s reasoning contains its own epistemic modality that refers to the
agent’s own knowledge: for instance, the agent might use the standard
epistemic logic S5K for their epistemic reasoning. Strictly speaking, the

8The language is usually equipped with a set of derivation rules the agent can apply, i.e., a
logic of the agent’s reasoning. We will therefore regard E rather as a logic than just its language.
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agent’s (‘inner’) epistemic modality and our (‘outer’) epistemic modality K
should always be denoted by different symbols. Nevertheless, since they are
distinguished by the level of nesting (‘our’ K’s being the outermost ones), in
logics such as ŁK[S5K] we will take the liberty of using the same symbol K
on both syntactic levels. This will make our syntax closer to that of standard
epistemic logic and allow us, for example, to write positive introspection in
its traditional form Kϕ→ KKϕ.

Besides nesting, the two-layered syntax of LK[E ] also prohibits combin-
ing modal and non-modal atoms by the connectives of L. This restriction
appears natural, as the connectives of L are intended to just combine the
costs of knowledge. It is, nevertheless, reasonable to relax this constraint and
permit forming mixed formulae too. One reason is that non-modal atoms
can as well be employed to denote costs (as, e.g., in Section 8 below), and
then they become meaningfully combinable with the costs of knowledge.
Moreover, the costs themselves can be regarded as the degrees of truth of
certain propositions (e.g., when we interpret Kϕ as the graded statement

“to infer ϕ from the actual knowledge is inexpensive”), and thus as freely
combinable with any other graded propositions of the logic L. So, provided
that E-formulae can be assigned truth values of L (as is the case, e.g., if the
logic E is bivalent, since all L-algebras contain the truth values 0 and 1), we
will also consider the extension of LK[E ] that admits mixed formulae and
denote it by LK(E). This will allow us, for instance, to discuss the truth
axiom Kϕ→ ϕ within the framework of such logics as ŁK(S5).9

6 Fuzzy modal logic of feasible knowledge: semantics

We will introduce our cost-sensitive fuzzy modal logic LK[E ] of feasible
knowledge by means of a fuzzy-relational possible-world semantics, where
possible worlds represent the agent’s epistemic states. Each possible world is
assigned a set of E-formulae that form the agent’s actual knowledge in that
state. Transitions between the states correspond to inference steps the agent
is able to perform; i.e., to changes of the actual knowledge in consequence
of deductions performed by the agent. As usual, possible transitions are
encoded by an accessibility relation; in our case, the relation is weighted
(L-valued, or fuzzy) and the weights represent the costs of the transitions.

A sample model for LK[E ] is depicted in Figure 1. The agent’s possible

9If E contains its own epistemic modality, then LK(E) needs, unlike LK[E], to distinguish
both modalities graphically, in order to disambiguate such formulae as KKϕ→ Kϕ.
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Figure 1: Example of an epistemic model.

epistemic states (represented by boxes) differ in the agent’s actual knowledge
(written inside the boxes). For simplicity, let us assume that the logic E of the
agent’s reasoning has only the rules of adjunction and positive introspection.
Possible transitions between the states, brought about by application of
these deduction rules, are indicated by arrows. The width of each arrow
signifies the cost incurred by the agent for performing the inference step:
in this model, applying adjunction is less costly (hence, thicker arrows).
Collectively, the arrows represent the cost-weighted accessibility relation
between the epistemic states.10

Let us have a look at how the agent’s feasible knowledge is computed for
any given epistemic state in Figure 1. Suppose, for instance, that the actual
world w0 is the leftmost one, in which the agent’s actual knowledge consists
just of the single E-formula p, and let us calculate the degree to which the
formula K(p& Kp) is part of the agent’s feasible knowledge in that state;
in other words, we want to determine the truth value of the LK[E ]-formula
K
(
K(p& Kp)

)
in the state w0.11 It can be observed that in this model, the

10The figure omits the arrows that arise by composition of the depicted single-step arrows;
their costs can be calculated as the L-conjunction (fusion) of the costs of the single-step
transitions. Also omitted are the full-width (i.e., zero-cost) arrows from each state to itself.
These all, too, are part of the graded accessibility relation, which equals the L-valued reflexive-
transitive hull of the weighted single-step arrows from the picture (cf. Section 7).

11Recall that the outermost K is the LK[E]-modality governed by the fuzzy logic of costs L,
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E-formula K(p & Kp) belongs to the agent’s actual knowledge just in the
two upper-rightmost depicted states. We can see that in order to arrive at this
knowledge (i.e., at one of these states), the agent needs to perform positive
introspection twice and adjunction once. The cost of deriving this knowledge
is thus the fusion of the costs of these three inference steps. Consequently, the
truth value of K

(
K(p& Kp)

)
in the state w0 is the L-conjunction α⊗β ⊗ α,

where α is the degree representing the cost of positive introspection (or the
weight of the thinner arrows in Figure 1) and β the cost of adjunction (the
thicker arrows) in our LK[E ]-model of Figure 1.

It can be noticed that in this LK[E ]-model, there are also other (longer)
paths from w0 to a state containing K(p& Kp). These paths consist of
three applications of positive introspection and one adjunction, and so are no
cheaper than the shorter route described above. Since we are interested in
resources that must unavoidably be spent to arrive at the knowledge, we take
the cheapest route, or generally the infimum of costs (which is the supremum
of degrees) along all possible paths.12

Models for LK(E), which admits mixed formulae, will only need to addi-
tionally set an L-evaluation of E-formulae in each state. Let us summarize
these ideas in a definition of fuzzy epistemic models.

Definition 1 A fuzzy epistemic model for LK(E) is a tuple M = (W,L,
R,A, e), where:

• W is a non-empty set (of an agent’s possible epistemic states);

• L is an L-algebra (of truth degrees representing costs);

• R : W 2 → L is an L-valued weighted accessibility relation on W
(representing the transition costs between states);

• A : W × FormE → {0, 1} is a relation indicating the agent’s actual
knowledge Aw = {ϕ ∈ FormE : A(w,ϕ) = 1}, in each state w; and

while the inner modalities K belong to the logic E of the agent’s reasoning.
12Admittedly, this is a gross idealization, as finding the cheapest route would generally

be a non-trivial problem for the agent. (Thanks are due to Sebastian Sequoiah-Grayson for
pointing this out at Logica 2019.) We adopt the idealization here, since—unlike the resource-
obliviousness of standard epistemic logic—it does not produce logical omniscience. Indeed,
a more realistic model of cost-aware epistemic reasoning ought to address it—possibly by
replacing the costs of moving along the cheapest path with the costs of searching for whichever
path to the desired knowledge. Then, besides the inferential distance in the logic E , the feasibility
degree would also depend on the agent’s path-searching heuristics and algorithms.
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• e : W × FormE → L is an evaluation of E-formulae in each state.13

The truth value ‖ψ‖w of an LK(E)-formula ψ in a state w ∈ W is
defined by the following Tarski conditions, for all n-ary L-connectives c,
E-formulae ϕ, and LK(E)-formulae ψ1, . . . , ψn:

‖ϕ‖w = e(w,ϕ)

‖c(ψ1, . . . , ψn)‖w = cL(‖ψ1‖w, . . . , ‖ψn‖w)

‖Kϕ‖w =
∨
w′∈W,ϕ∈Aw′ Rww′

The notions of intension ‖ψ‖ : w 7→ ‖ψ‖w, tautologicity and (local)
entailment with respect to a class of fuzzy epistemic models are defined in a
standard manner.14

7 Constraints on fuzzy epistemic models

To achieve some level of real-world plausibility, fuzzy epistemic models need
be constrained by some conditions on the weighted accessibility relation that
would reflect various principles of the agent’s epistemic reasoning. Some of
such constraints are the following:15

1. Fuzzy transitivity of R:

∀w,w′, w′′ ∈W : Rww′ ⊗Rw′w′′ ≤ Rww′′.

This condition reflects the concatenability of E-derivations: if an E-
derivation δ1 takes the agent from an epistemic state w to a state w′

at the cost Rww′ and a derivation δ2 makes the transition from w′

to w′′ at the cost Rw′w′′, then the transition from w to w′′ costs at
most Rww′ ⊗Rw′w′′, or the cost of the concatenated derivation δ1δ2.

13Note that although both e and A assign values to E-formulae, their roles are different: the
value e(w,ϕ) determines the (degree of) truth of ϕ in w, while A(w,ϕ) indicates whether ϕ is
part of the agent’s actual knowledge. We assume that e, though taking values in L, is also an
admissible evaluation of formulae in the sense of E (cf. the end of Section 5). In fuzzy epistemic
models for the logic LK[E], which does not admit mixed formulae, this component of a model
is simply omitted.

14As usual in t-norm fuzzy logics, only the truth degree 1 designated in L. Notice that in
infinite models, the existence in L of all the suprema required by the Tarski condition for K
need be assumed. This can be ensured either by requiring the lattice-completeness of L, or (to
enable axiomatizability) by using safe models (cf. Hájek, 1998, ch. 5).

15The properties of fuzzy transitivity, fuzzy reflexivity, upper sets, preimages, and closures
are well studied in fuzzy set theory (e.g., Bělohlávek, 2002; Běhounek, Bodenhofer, & Cintula,
2008). Fuzzy relations that are fuzzy transitive and fuzzy reflexive are called fuzzy preorders.
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2. Fuzzy reflexivity of R (i.e., ∀w ∈ W : Rww = 1), which expresses
the immediate (cost-free) availability of actual knowledge.

3. Persistence, or the upperness of Aϕ = {w ∈W : A(w,ϕ) = 1} in R
for each E-formula ϕ.

In fuzzy epistemic models that satsify these constraints, feasible knowl-
edge can be characterized as a closure operator on the epistemic state space:

Observation 1 Let M = (W,L, R,A, e) be a fuzzy epistemic model for
LK(E) satisfying the conditions 1–3 above and let ϕ be an E-formula. Then:

• The intension Aϕ ⊆W of the actual knowledge of ϕ is a crisp upper
set in the L-valued fuzzy preorder R on W .

• The fuzzy intension ‖Kϕ‖ : w 7→ ‖Kϕ‖w of the feasible knowledge
of ϕ is the fuzzy preimage of Aϕ in R. In symbols, ‖Kϕ‖ = R← Aϕ.

Figure 2: The fuzzy intension ‖Kϕ‖ of the feasible knowledge of ϕ is the
fuzzy preimage of the (crisp upper) intension Aϕ of the actual knowledge
of ϕ in the fuzzy accessibility preorder R; i.e., ‖Kϕ‖ = R← Aϕ.

Moreover, since R is a fuzzy preorder, the fuzzy preimage operator X 7→
R← X , where (R← X)(w) =

∨
w′∈W (Rww′ ⊗Xw′) for all X : W → L

and w ∈W , satisfies the conditions of a fuzzy closure operator.16

16Namely, is pointwise extensive and monotone w.r.t.≤L, and R← (R←X) = R←X for
all X : W → L. Additionally, R← ∅ = ∅. The (easy) proofs can be found, e.g., in (Běhounek
et al., 2008).
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Consequently, the feasible knowledge ‖Kϕ‖ can also be described as the
(backward) fuzzy closure of the actual knowledgeAϕ under the cost-weighted
fuzzy transition relation R on epistemic states.

The list of constraints 1–3 above is neither unalterable nor complete.
Reasonable conditions on fuzzy epistemic models depend largely on the
assumed properties of the epistemic agent, and particularly on the logic E
of the agent’s reasoning. For example, persistence of actual knowledge
(condition 3) can hardly be required if E is non-monotonic. On the other
hand, possible additions may include the following constraints:

• The finiteness of Aw for all w ∈W (finite actual knowledge in each
epistemic state).

• Pointwise inclusion17 of the actual knowledge A in the model’s E-
evaluation e (facticity of actual knowledge); or in doxastic variants,
pointwise inclusion of A in any E-evaluation e′ : W × FormE → L
(consistency of actual beliefs).

• Constant evaluation of E-formulae across all epistemic states, i.e.,
e(w,ϕ) = e(w′, ϕ) for all w ∈W and ϕ ∈ FormE (static facts).18

• The property of (weighted) confluence for transitions between epis-
temic states, which reflects free combinability of derivations (if valid
for E):

∀w,w1, w2 ∈W ∃w3 ∈W :

Aw3 = Aw1 ∪Aw2 , Rww2 ≤ Rw1w3, Rww1 ≤ Rw2w3.

• If each E-inference step produces a single E-formula, the models are
bound to satisfy the following condition for each w ∈W and n ∈ N:∨

w′∈[w]n+1
Rww′ ≤

∨
w′∈[w]n

Rww′,

where [w]n = {w ∈W : Card(Aw
′ rAw) = n}.

17I.e., A(w,ϕ) ≤ e(w,ϕ) for all w ∈W and ϕ ∈ FormE .
18Notice that if E-evaluation is state-dependent as in Definition 1, the truth-axiom Kϕ→ ϕ

need not be valid in a model even if A is pointwise included in e, since the evaluation of ϕ can
change during derivations.
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8 The costs of inference steps

The general requirements on fuzzy epistemic models listed in Section 7
abstract from specific inferential abilities of epistemic agents. Still, it may
sometimes be desirable to have the agent’s capability of performing particular
inferential steps (such as modus ponens or positive introspection) captured
axiomatically, in a similar way as in standard epistemic logic. Lest we fall
back into the logical omniscience paradox, though, the modal axioms of
standard epistemic logic need to be adapted to reflect the agent’s cost of
inference. For instance, the cost-sensitive modifications of the epistemic
axioms (K) and (4) might read:

` K(ϕ→ ψ)⊗Kϕ⊗mϕ,ψ → Kψ(K′)
` Kϕ⊗ iϕ → KKϕ(4′)

Here, mϕ,ψ and iϕ are new propositional constants added to L, possibly
different for each ϕ,ψ ∈ FormE (as the costs of inference steps generally
depend on the formulae involved—e.g., on their length).

The appropriate values of these propositional constants in a model are
contingent on the properties of the particular agent, and for many agents (such
as humans) can hardly be determined precisely. Nevertheless, independently
of their exact values, their presence in the axioms ensures that the costs
of inference steps are accounted for. In longer E-derivations, these costs
accumulate by the fusion connective ⊗ of L, eventually making too long
derivations from the actual knowledge infeasible. This eliminates logical
omniscience while keeping the agent inferentially capable, by virtue of the
cost-sensitivity of the axioms of logical rationality in L.
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