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Abstract: Degree-theoretical accounts of vagueness usually equate deter-
minate truth with truth to degree 1. However, by rendering determinate truth
as a sharp notion, this identification disregards the phenomenon of higher-
order vagueness. In this paper I propose a more adequate degree-theoretical
model of determinate truth as a vague notion, based on the logical indis-
tinguishability of truth degrees and measured by the length of the shortest
formal argument separating a given degree from 1.
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1 Vagueness and fuzzy plurivaluationism

The phenomenon of vagueness is usually characterized by several interre-
lated attributes: susceptibility to the sorites paradox, the existence of bor-
derline cases, and higher-order vagueness (cf., e.g., Keefe, 2000, pp. 6–9;
Smith, 2009, pp. 1–2). Vague predicates can thus be loosely defined as such
predicates P that:

1. A sorites series for P can be constructed: i.e., a series of objects
x1, . . . , xN such that each two adjacent objects xi, xi+1 differ only
negligibly in respects relevant to P (making it implausible that they
would differ in being P ), and yet x0 is clearly P and xN is clearly
not P .

2. Borderline cases of P exist: i.e., there are objects x that are neither
determinately P nor determinately not P .

3. P manifests higher-order vagueness: i.e., the property of being bor-
derline P is itself vague, and so has borderline cases.

1The work was supported by MŠMT ČR, programme NPU II, project LQ1602 ‘IT4I XS’.
The author would like to thank participants in the Logica conference (Hejnice, June 2016) and
the Pukeko Logic Group workshop (Wellington, January 2016) for fruitful discussions.
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Vague predicates abound in natural language; prototypical examples include
such properties as tall, red, warm, large, etc.

There are several approaches to modelling vagueness: for an overview
see, e.g., Williamson (1994) or Keefe (2000). This paper deals with a partic-
ular problem related to the fuzzy plurivaluationistic approach to vagueness
proposed by Smith (2009, ch. 6.1). Before introducing the problem, let us
first illustrate fuzzy plurivaluationism and its closest relatives by describing
how they model the vague predicate tall. For simplicity let us assume that
(i) in a given context (e.g., that of Central European men), the only feature
relevant for the predicate tall is the person’s height; we also understand that
(ii) it is a part of the meaning of tall that if a person x is tall and the height of
a person y is no less than that of x, then y is tall as well; and that in the given
context, (iii) people of height 150 cm are not tall, while (iv) people of height
200 cm are tall. We shall call conditions (i)–(iv) the meaning postulates of
the predicate tall.

1.1 The classical semantics of tall

Since the standard semantics of classical logic construes all predicates as
bivalent, there must be a sharp breaking point between the heights of people
who are tall and those who are not tall (as depicted in Figure 1).

Figure 1: The classical semantics of tall

While employing classical bivalent semantics for modelling vague pred-
icates such as tall is often satisfactory and has the undeniable advantage of
simplicity, there are some drawbacks to it as well:

1. It is not clear where the breaking point should occur: in fact, no par-
ticular position of a sharp breaking point is supported by either the
linguistic practice or any reasonable explication of the meaning of
tall.

2. The breaking point creates an implausible discontinuity: it does not
conform with the meaning of tall that an imperceptible change in
height (e.g., of 0.1 cm) should make a difference.
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3. On the other hand, denying the discontinuity generates the sorites
paradox.

4. There are no borderline cases of tall in the bivalent account, while in
fact there clearly are some.

Even though these disadvantages may in many situations be harmless,
they indicate that the classical modelling of vague predicates is rather crude,
and sometimes (e.g., in soritical settings) inadequate. One approach to im-
proving the model is supervaluationism.

1.2 The supervaluationistic account of tall

Placing a particular breaking point between tall and not tall in the classical
semantics can be viewed as a precisification of the meaning of tall. The
basic idea of supervaluationism (Fine, 1975) is to consider not just one, but
all possible precisifications of the meaning of tall.2 The supervaluationistic
semantics of tall thus consists of all classical models of tall that satisfy its
meaning postulates:3

Figure 2: The supervaluationistic semantics of tall

This clearly addresses objection 1 of Section 1.1: the breaking point is
no longer arbitrarily fixed, as we are considering all of its possible posi-
tions. Supervaluationism furthermore distinguishes between truth under a
particular precisification and supertruth, or truth under all admissible pre-
cisifications. Since truth can be an artefact of precisification, it is, naturally,
just supertruth that matters. This solves the sorites paradox: its inductive
premise (if Pxi then Pxi+1) is not supertrue, as there is an admissible pre-
cisification that puts the breaking point between xi and xi+1. The solution
avoids introducing a point of discontinuity (objection 2), as no statement

2The version of supervaluationistic semantics presented here is called plurivaluationism by
Smith (2009); however, Smith’s distinction between supervaluationism and plurivaluationism
is immaterial for our purposes.

3In the context of supervaluationism, meaning postulates are called penumbral connections
(as coined by Fine, 1975).
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“The change occurs at height h” is supertrue. Another virtue of supervalu-
ationism is that it retains classical logic, as it is concerned with truth under
all classical precisifications of vague predicates.

One issue which remains unresolved by supervaluationism is the jolt
problem (as termed by Smith, 2009): even though none of the statements
“The change occurs at height h” is supertrue, the existence of a sharp break-
ing point (a ‘jolt’) is still supertrue, as each admissible classical precisifica-
tion (see Figure 2) does indeed contain a jolt. This establishes the supertruth
of such implausible statements as “There are no borderline cases of tall” and
“There is no gradual transition between tall and not tall” in supervaluation-
istic models.

A different approach to vagueness that aims specifically at modelling
the gradual transition between P and ¬P is the degree-theoretic (or fuzzy)
semantics (e.g., Williamson, 1994, ch. 4; Keefe, 2000, ch. 4).

1.3 The fuzzy semantics of tall

In order to accommodate the gradual transition between P and ¬P , fuzzy
models of vagueness admit intermediary degrees of truth. Most often, the
degrees of truth are represented by real numbers from the unit interval [0, 1],
where the degree 1 represents full truth and the degree 0 full falsity. A vague
predicate P is then modelled by a function4 ‖P‖ : X → [0, 1] which assigns
to each object x from a domain X a number ‖Px‖ ∈ [0, 1] representing the
degree to which x has the property P .

Figure 3: A fuzzy semantics of tall

A fuzzy model for our paradigmatic predicate tall is depicted in Figure 3.
In this model, the membership function ‖tall‖ assigns degrees from [0, 1]

4In fuzzy set theory, ‖P‖ is called the membership function of P or the fuzzy set delimited
by P . Thus in fuzzy models, vague predicates are represented by [0, 1]-valued ‘fuzzy’ sets in-
stead of ordinary two-valued ‘crisp’ sets. Crisp sets can be identified with special membership
functions that only assign the degrees 0 and 1.
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to people according to their height (in cm on the horizontal axis). In this
model, if John is, for instance, 182 cm tall, then ‖tall‖(John) = 0.84; i.e.,
the statement “John is tall” is assigned the truth degree 0.84. Observe that
the model honours the meaning postulates (i)–(iv) for tall (see page 2) by
(i) making ‖tall‖ functional in height, (ii) assigning larger truth degrees to
taller people, (iii) assigning the degree 0 to people of height 150 cm, and
(iv) assigning the degree 1 to people of height 200 cm.

By admitting the degrees of truth, fuzzy models capture the graduality
of vague predicates and remove the jolt between P and ¬P . The sorites
paradox can now be solved by letting the truth degree of Pxi gradually
decrease along the sorites series, which makes the inductive premise almost
(though not quite) true. Nevertheless, fuzzy semantics still suffers from
several problems. Let us mention just two of them:

1. A fuzzy model specifies a particular membership function ‖P‖, which
assigns exact truth degrees to objects; e.g., ‖tall‖(John) = 0.84.
However, such precision seems unwarranted: there are many func-
tions compatible with the meaning postulates of tall, and nothing in
language appears to determine whether John’s tallness is 0.84 or 0.83.
In general it seems rather incongruous to model a vague predicate
with unclear and imprecise boundaries by means of a completely pre-
cise real-valued function. This objection to fuzzy semantics is known
as the problem of artificial precision (e.g., Williamson, 1994, p. 127;
Smith, 2009, p. 277).

2. Relatedly, assigning precise degrees on a linearly ordered scale such
as the real unit interval makes the degrees of all properties compa-
rable. However, many properties are qualitatively so different that
there is hardly any way to compare their intensities; for instance, it is
largely meaningless to say that John is more tall than young. Let us
call this the linearity objection to fuzzy semantics (e.g., Smith, 2009,
p. 293; Williamson, 1994, p. 128).

A remedy to these problems for fuzzy semantics is to do the supervalu-
ationist trick in the fuzzy setting (as proposed by Smith, 2009, ch. 6). The
rationale for this move is the very reason behind the problem of artificial
precision: namely that neither the meaning postulates nor any other linguis-
tic facts determine membership functions uniquely. Rather, the meaning
postulates (or more generally, the meaning-determining facts) only estab-
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lish constraints5 on membership functions in fuzzy models. This approach,
which combines the merits of supervaluationism and fuzzy semantics, has
been called fuzzy plurivaluationism by Smith (2009, p. 9).

1.4 The fuzzy plurivaluationistic semantics of tall

Following the above motivation, fuzzy plurivaluationistic semantics assigns
to vague predicates, in general, not just a single fuzzy model, but all fuzzy
models satisfying the constraints given by the meaning-determining facts. In
the particular case of the predicate tall, the fuzzy plurivaluationistic seman-
tics consists of all membership functions that satisfy its meaning postulates:

Figure 4: The fuzzy plurivaluationistic semantics of tall

Let us call the class of admissible fuzzy models of a vague predicate its
fuzzy plurivaluation. Just like supervaluationism, fuzzy plurivaluationism
understands particular models in the plurivaluation as admissible precisifi-
cations of the meaning of the vague predicate; only this time, the precisifi-
cations are gradual. Consequently, it is again just supertruth, or truth in all
admissible fuzzy models, that matters, as truth in a particular fuzzy model
may be an artefact of the precisification (i.e., of the particular choice of the
membership function in that model).

By combining the merits of supervaluationism and fuzzy semantics, fuzzy
plurivaluationism addresses several problems of either account:

• Like fuzzy models, it avoids the jolt by letting the truth degree gradu-
ally decrease from 1 to 0 along the sorites series.6

5or “fuzzy penumbral connections”, to use the supervaluationistic terminology
6In fact, fuzzy models and fuzzy plurivaluationism make it possible to require, as another

meaning postulate for tall, that (v) very small changes in height should only result in very small
changes in the truth (degree) of tall. This requirement would only admit (Lipschitz) continuous
membership functions for tall, making the absence of a jolt and the presence of borderline cases
supertrue. Cf. Smith’s principle of Closeness for vague predicates (2009, ch. 3.3–5).
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• Like supervaluationism, it removes the arbitrariness of a particular
model by considering all admissible models. This addresses the prob-
lem of arbitrary precision in fuzzy semantics: since John’s tallness
has different degrees in different admissible models, no statement as-
signing to it a precise degree (such as “John is tall to degree 0.84”)
is supertrue. The linearity objection is answered in a similar manner:
since the degree of “John is tall” exceeds that of “John is young” only
in some models, neither the statement “John is more tall than young”
nor its converse is supertrue.

From the model-theoretic point of view, the fuzzy plurivaluation for a
set of vague predicates can be explained as the class of models of a the-
ory that formalizes the meaning postulates of the vague predicates involved
(Běhounek, 2014).7 Supertruths in the plurivaluation then coincide with
logical consequences of this theory; i.e., (super)true statements about vague
predicates are exactly the logical consequences of their meaning postulates.

An apparent problem is that taken prima facie, the meaning postulates
of most vague predicates are inconsistent, as they typically entail the sorites
paradox. One option, then, is to translate them into the language of member-
ship functions, as we did with the meaning postulate (ii) for tall, interpret-
ing it as the monotonicity condition for the membership function.8 Another
option, which additionally offers a recipe for the translation, is to use a non-
classical logic designed specifically for fuzzy models—a fuzzy logic.

2 A logic for fuzzy plurivaluationism

Fuzzy logics are logics tailored to fuzzy models of Section 1.3. There is
a whole family of fuzzy logics, corresponding to different possible mean-
ing postulates for fuzzy connectives. Only some of them are suitable for
modelling the logical aspects of the sorites paradox, and so for modelling
vagueness; of those, perhaps the most prominent is the infinite-valued logic
of Łukasiewicz (e.g., Hájek, 1998, ch. 3). For simplicity, we shall restrict
our attention to this logic and particularly to its standard [0, 1]-valued se-
mantics.

7The explanation is based on understanding the meaning postulates as (regularized) char-
acterizations of meanings, abstracted from (irregular) linguistic meaning-determining facts
(Běhounek, 2011). It is assumed that they can be formalized in a suitable logic.

8Similarly, the continuity (or Closeness) postulate (v) of footnote 6 can be viewed as a
degree-theoretical reinterpretation of Wright’s principle of Tolerance, making it consistent with
the postulates (i)–(iv) for tall. Cf. Smith’s discussion of Closeness vs. Tolerance (2009, ch. 3.5).
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In the standard [0, 1]-valued semantics, the propositional connectives of
Łukasiewicz logic combine the degrees from [0, 1] in the following manner:

‖ϕ ∧ ψ‖ = min(‖ϕ‖, ‖ψ‖) (1)
‖ϕ ∨ ψ‖ = max(‖ϕ‖, ‖ψ‖) (2)
‖¬ϕ‖ = 1− ‖ϕ‖ (3)

‖ϕ& ψ‖ = max(‖ϕ‖+ ‖ψ‖ − 1, 0) (4)
‖ϕ→ ψ‖ = min(1− ‖ϕ‖+ ‖ψ‖, 1). (5)

Note that like other contraction-free logics, Łukasiewicz logic possesses two
conjunctive connectives, ∧ and &.9 It is the non-idempotent & that repre-
sents iterative cumulation of premises (as in the sorites paradox), since∥∥ϕ1 → (ϕ2 → · · · (ϕn−1 → ϕn) · · · )

∥∥ =

=
∥∥(ϕ1 & ϕ2 & . . .& ϕn−1)→ ϕn

∥∥. (6)

The following connective, often added to Łukasiewicz logic, indicates
the full truth of its argument:

‖4ϕ‖ =

{
1 if ‖ϕ‖ = 1

0 otherwise.

First-order models for Łukasiewicz logic are defined analogously to clas-
sical first-order models, the only difference being the interpretation of pred-
icate symbols: just like in fuzzy models of Section 1.3, each n-ary predicate
P is interpreted by a [0, 1]-valued membership function ‖P‖ : Mn → [0, 1],
whereM is the universe of the model, instead of a two-valued characteristic
function as in classical models. The quantifiers are interpreted as follows:

‖(∀x)ϕ‖ = infa∈M ‖ϕ(a)‖, ‖(∃x)ϕ‖ = supa∈M ‖ϕ(a)‖.

A sentence is considered true in a model if it is evaluated to degree 1.
As usual, tautologicity is defined as truth in all models; and the logical con-
sequences of a theory T are defined as the sentences true in all models of T
(i.e., all models in which all formulae from T are true).10

9Distinguishing between them actually answers most common objections raised against
truth-functional fuzzy logic, including those offered by Williamson (1994, pp. 118, 136–8) and
Keefe (2000, pp. 96–98).

10The notions of tautologicity and finitary entailment in Łukasiewicz logic turn out to be
finitely axiomatizable (e.g., Hájek, 1998), while infinitary entailment requires an infinitary rule
of inference or, alternatively, relaxing somewhat the standard semantics of Łukasiewicz logic
to fit its finitary approximation.
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Notice that the notion of logical consequence in Łukasiewicz logic ex-
actly matches the (fuzzy plurivaluationistic) notion of supertruth in the class
of models of a theory. Thus, if a theory T formalizes the meaning postu-
lates of some vague predicates, then its logical consequences in Łukasiewicz
logic are precisely the supertruths about these predicates. In this sense,
(Łukasiewicz) fuzzy logic can be viewed as the logical background of fuzzy
plurivaluationism. From this perspective, fuzzy plurivaluationistic mod-
elling of vague predicates amounts to expressing their meaning postulates
as a theory in fuzzy logic;11 the class of its models then constitutes the fuzzy
plurivaluation, and the logic’s consequence relation captures the notion of
supertruth.

This approach to modelling vague predicates has been taken, e.g., by Há-
jek and Novák (2003). We shall illustrate it by a (simplified) formalization
of the predicate large natural number.

A minimalistic set of meaning postulates for the predicate large on natu-
ral numbers can be listed as follows: (i) zero is not large; (ii) numbers larger
than large numbers are large, too; (iii) there are large numbers. These postu-
lates can be straightforwardly formalized in Łukasiewicz logic as follows:12

¬Large(0) (7)
(∀m,n)(m≥ n & Large(n)→ Large(m)) (8)
(∃n) Large(n) (9)

Notice that in accordance with fuzzy plurivaluationism, these axioms do
not specify a unique membership function for Large, but only constrain the
class of admissible fuzzy models of Large. In particular, by the standard
semantics of Łukasiewicz logic, the class of fuzzy models admitted by these
axioms consists of all membership functions ‖Large ‖ = ` : N → [0, 1]
(where N is a model of crisp Peano Arithmetic) such that (i) `(0) = 0,
(ii) ` is non-decreasing, and (iii) supn `(n) = 1. It can be observed that
already this minimal set of meaning postulates ensures that many intuitively
plausible statements (e.g., that there are large prime numbers) are supertrue,

11The formalization of meaning postulates in fuzzy logic can moreover be done in a straight-
forward manner, since the vague predicates will automatically get interpreted by gradual [0, 1]-
valued membership functions as intended.

12Since Large is a predicate on natural numbers, the meaning postulates for (non-vague)
natural numbers need be formalized in Łukasiewicz logic, too. This can be done, e.g., by means
of Crisp Peano Arithmetic, which consists of the classical axioms of Peano Arithmetic together
with the axioms enforcing the bivalence of its primitive predicates, e.g., (∀m,n)((m ≤ n) ∨
¬(m ≤ n)).

9



Libor Běhounek

while many intuitively implausible statements (e.g., that there is the least
large number) are not. Various additional meaning postulates can be added
in order to model the vague predicate large more accurately;13 the axioms
(7)–(9), nevertheless, suffice for our illustrative purposes.

3 The jolt problem for determinate truth

Recall the jolt problem for supervaluationism (Section 1.2): in the superval-
uationistic model of a sorites series for a vague predicate P , the proposition

(∃n)(Pxn ∧ ¬Pxn+1) (10)

comes out supertrue. Fuzzy models of Section 1.3 solve the problem by
letting the truth degree of Pxn decrease gradually with increasing n. Con-
sequently, the jolt sentence (10) is no longer valid in the fuzzy plurivaluation
for P , and so not (super)true of P .

However, the problem reappears for determinate truth, or the truth of P
to the full degree 1: in fuzzy models of the sorites series for P , the jolt
sentence for the predicate determinately P , which can be formalized in
Łukasiewicz logic as

(∃n)(4Pxn ∧ ¬4Pxn+1),

is still supertrue, despite the fact that the boundary between borderline and
determinate cases of vague predicates is typically vague as well (that is,
vague predicates typically manifest higher-order vagueness; see page 1).

One option is to admit that fuzzy plurivaluationism cannot model higher-
order vagueness any better (without jolts) than supervaluationism; after all,
for bivalent predicates such as determinately P , fuzzy models reduce to bi-
valent ones, so for these predicates fuzzy plurivaluationism reduces to clas-
sical supervaluationism. Another route, which we intend to pursue here, is
to acknowledge that due to higher-order vagueness, the predicate determi-
nately P is vague as well, and therefore should not be represented in fuzzy
models by a bivalent membership function. This, however, means to con-
test the common identification of determinate truth with truth to degree 1 in

13E.g., postulates ensuring the existence of borderline cases or enforcing Lipschitz-style
conditions on the membership function (cf. footnote 6). These postulates are expressible in
Łukasiewicz logic, too (e.g., the former by the axiom ¬(∀n)(Large(n)∨¬Large(n))); they
would make the theory classically inconsistent, but still consistent in Łukasiewicz logic.
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degree-theoretical accounts of vagueness, and search for a more adequate
representation of determinate truth in fuzzy models. We will follow this
route by considering the inferential rôle of determinate truth in arguments
involving vagueness.

4 Indistinguishability of close truth degrees

Notice that by (1)–(5), the basic connectives of Łukasiewicz logic (without
the connective 4, whose legitimacy we contest) are Lipschitz continuous,
with the Lipschitz constant 1. Therefore, if the difference between the truth
degrees ‖p‖ and ‖q‖ is at most ε, then for any formula ϕ of Łukasiewicz
logic (without 4) containing at most n occurrences of basic propositional
connectives,14 the difference between the degrees ‖ϕ(p)‖ and ‖ϕ(q)‖ is
at most n · ε. Consequently, truth degrees differing by at most ε cannot
be distinguished (i.e., one made true and the other false) by any formula
shorter than 1/ε connectives; or by any argument that can be formalized in
Łukasiewicz logic by a formula shorter than 1/ε. In other words, very close
truth degrees can only be distinguished by very long arguments.

In particular, truth degrees that are very close to 1 can be distinguished
from 1 only by very long arguments, such as a sufficiently long sorites argu-
ment. For instance, consider the degree 0.9: it can indeed be distinguished
from 1 by a 10-step sorites argument;15 but due to the Lipschitz property of
Łukasiewicz connectives, 0.9 and 1 cannot be distinguished by any shorter
argument. Similarly, the truth degree 0.99 can only be distinguished from 1
by a (sorites)16 argument of length 100; and the degree 0.999 999 999 re-
quires a sorites argument over a series of one thousand million elements to
distinguish it from 1.

Thus, degrees too close to 1 cannot be distinguished from 1 by argu-
ments of ordinary lengths. Moreover, in arguments of ordinary lengths,
such degrees make no observable difference from 1: for instance, even if
used 100 times in any argument that can be formalized by basic connectives
of Łukasiewicz logic, using the degree 0.999 999 999 instead of 1 changes

14Since negation preserves the distance of degrees, counting just binary basic connectives or
atomic subformulae would yield a tighter estimate; however, the accuracy of this upper estimate
will not be essential for our considerations.

15Each application of the 0.9-true inductive premise decreases the truth degree of the con-
clusion by 0.1, therefore 10 applications are needed to reach 0; cf. (4) and (6) in Section 2.

16Since the degree of iterated conjunction decreases most rapidly of all basic Łukasiewicz
connectives, the sorites argument is actually optimal for distinguishing between 1 and 1− ε.
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the resulting truth value only by 0.000 000 1, or one ten-millionth. Only
in very long arguments such as the sorites of enough length, their differ-
ence from 1 may become apparent. Degrees extremely close to 1, such as
1− 10−100, thus behave just like 1 in any argument of feasible length.

This suggests that determinate truth should not be be represented just
by the degree 1, but should include also the degrees observationally indis-
tinguishable from 1. Even though such degrees can in principle be distin-
guished from 1 by very (often, unfeasibly) long arguments, in practice they
behave just like determinate truth, and should therefore be regarded as rep-
resenting determinate truth (almost) as well as the degree 1.

Obviously, the borderline between the degrees that can be regarded as
indistinguishable from 1 and those that cannot, is not sharp: the indistin-
guishability of degrees depends on the length of arguments that can distin-
guish them. For instance, the degree 0.999 is much better distinguishable
from 1 than 0.999 999 (as the latter requires a sorites argument of length
one million, while the former just one thousand, in order to be distinguished
from 1), even though in ordinary arguments of lengths up to a few hun-
dred connectives they both behave like fully true. This in fact conforms
very well with the observation that motivated these considerations—namely
that because of higher-order vagueness, determinate truth must be a gradual
notion, or else the jolt problem and the sorites paradox reappear for deter-
minately P . The minimal length of a distinguishing argument then provides
a natural measure of practical indistinguishability between a given degree
and 1, and so the suitability of that degree for representing determinate truth.

5 Determinate truth redefined

The above considerations lead us to a revised definition of determinate truth
in fuzzy models. The commonly accepted definition that determinately ϕ
(henceforth denoted by Detϕ) is true in fuzzy models if and only if ‖ϕ‖ = 1
turns out to be unsuitable, since it does not accommodate higher-order vague-
ness (specifically, being bivalent, it is subject to the jolt problem just like
classical supervaluationism). Our analysis corroborates that determinate
truth is a gradual notion, and suggests that the truth degree of determi-
nately ϕ is suitably measured by the length of the shortest argument that can
distinguish the truth of ϕ from 1: the larger the length, the less ‖ϕ‖ is distin-
guishable from 1 and so, the more ϕ is determinately true. Since, moreover,
the quickest way to distinguish ‖ϕ‖ from 1 in standard Łukasiewicz logic
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is by means of iterated conjunction (cf. footnote 16), our analysis identifies
the degree of determinately ϕ with the degree of largeness of the minimal
number n of conjuncts making the iterated conjunction ϕn ≡def ϕ& . . .&ϕ
(n times) false. This characterization is expressed by the following defini-
tion:

Detϕ ≡def Large
(
min{n | ‖ϕn‖ = 0}

)
. (11)

In the setting of standard Łukasiewicz logic, the minimal distinguish-
ing n can be explicitly calculated. By (4) we obtain:

‖ϕn‖ = 1−min
(
n · (1− ‖ϕ‖), 1

)
,

whereby the definition (11) is equivalent to:

Detϕ ≡ Large
⌈
1/(1− ‖ϕ‖)

⌉
. (12)

Thus, if ‖ϕ‖ = 1 − ε, then ‖Detϕ‖ =
∥∥Larged1/εe∥∥. (For ‖ϕ‖ = 1 we

set ‖Detϕ‖ = 1 as the limit case.)
It can be observed that definition (11) involves the vague predicate Large

on natural numbers. Consequently, our notion of determinate truth is vague
as well. Recall that in fuzzy plurivaluationism, we do not specify a particular
membership function for Large; rather, its semantics is delimited by its (for-
malized) meaning postulates. A set of such meaning postulates for Large
has been presented in Section 2; the corresponding axioms (7)–(9) are, thus,
part of the meaning of the vague notion of determinate truth. In other words,
there is a penumbral connection between the vague notions of determinate
truth and large natural number, because determinacy depends on how large
a sorites argument is needed to ascertain that a determinate-looking case is
in fact borderline.

It can be readily seen that modelling determinate truth by Detϕ (rather
than4ϕ) succeeds in removing the jolt problem for determinately P , as the
jolt sentence

(∃n)(DetPxn ∧ ¬DetPxn+1)

is no longer supertrue. This follows easily from the observation that the jolt
in Large, i.e.,

(∃m)(Large(m+ 1) ∧ ¬Large(m))

is not supertrue in the fuzzy plurivaluation of Large, i.e., the class of fuzzy
models satisfying the meaning postulates (7)–(9).
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6 Conclusions

We have seen that our redefinition of determinate truth solves several prob-
lems faced by its traditional identification with truth to degree 1. Unlike
the connective 4, the operator Det accounts for higher-order vagueness
by admitting borderline determinate cases; being gradual, it removes the
jolt problem for determinate cases; and it is based on a fairly natural con-
cept of (graded) logical indistinguishability of truth degrees in standard
Łukasiewicz logic. Consonant with fuzzy plurivaluationism, the member-
ship function of Det is not uniquely determined, but depends on the fuzzy
plurivaluation for the vague predicate Large on natural numbers.

These facts indicate that determinate truth is better modelled by Det
than4, and that truth to degree 1 is an artefact of a similar kind as the pre-
cise truth degrees contested by the objection of artificial precision. In fuzzy
plurivaluationism, this artefact is analogously eliminated by restriction to
supertrue statements on Det, or (cf. Section 2) the logical consequences of
its meaning postulates embodied in (11). The connective 4, on the other
hand, directly represents the very artefact, and so should be avoided in the
logical analysis of vague predicates.

Admittedly, our treatment of determinate truth in this paper has been
somewhat simplified, and several details still need to be elaborated. For
instance, the following consideration may require a modification of defini-
tion (11): in our exposition, we have not considered the possibility of in-
troducing defined propositional symbols in the course of the distinguishing
argument. If this is allowed, then the descent towards falsity can be much
faster; for instance, if ‖p0‖ = 0.999, then we can distinguish it from 1 in
just 10 steps by letting p1 ≡def p0 & p0, p2 ≡def p1 & p1, etc.: then already
‖p10‖ = 0. While this accelerates the distinction between ‖p0‖ and 1 expo-
nentially,17 the main point still stands: for each truth degree close to 1 there
is a minimal number of steps required for distinguishing it from 1, and for
degrees very close to 1 (such as 1 − 10−100 000), the number of steps can
be infeasibly large, making the degree practically indistinguishable from 1,
and thereby allowing it to represent determinate truth in ordinary arguments
(almost) as well as does the degree 1. Essentially, the only modification
to (11) required by this acceleration is replacing ‖ϕn‖ by ‖ϕ2n‖ and adjust-
ing the explicit calculation (12) accordingly.

17The corresponding ‘accelerated sorites argument’ could be formulated as follows: one
grain makes no difference (premise, apply twice); therefore two grains make no difference;
analogously, if two grains make no difference, then four grains make no difference; etc.
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A further detail that requires elaboration is a more complete account
of the meaning postulates for Large, as hinted in Section 2 (esp. foot-
note 13). Another missing item is a formalization of Det in Łukasiewicz
logic: note that definition (11) refers to the semantic value of ϕ, which can-
not be straightforwardly formalized by first-order means. Nevertheless, it
can be shown, but is omitted here for reasons of space, that Det can be for-
malized in Łukasiewicz logic of a higher order (which has enough expres-
sive power to internalize truth values of formulae). Yet another topic for
future study is a generalization of Det to some other fuzzy logics besides
standard Łukasiewicz.18 All of these topics are left for future work.
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