
A Semantics for Counterfactuals Based on

Fuzzy Logic
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Abstract

Lewis–Stalnaker’s semantics for counterfactuals is based on the
notion of similarity of possible worlds. Since the general no-
tion of similarity is prominently studied in fuzzy mathematics,
where it is modeled by fuzzy equivalence relations, it is natural
to attempt at reconstructing Lewis’ and Stalnaker’s ideas in
terms of fuzzy similarities. This paper sketches such a recon-
struction; full details will be presented in an upcoming paper.
We demonstrate that the approach is viable, adequate with
respect to the expected properties of counterfactuals, and pro-
vides meaningful generalizations of the classical account.

1 Introduction

Counterfactual conditionals, or simply counterfactuals, are condition-
als with false antecedents; i.e., conditionals of the form “if it were the
case that A, then it would be the case that C”, written A �→ C.
Their logical analysis is notoriously problematic: if analyzed straight-
forwardly by material implication, they would always come out true;
nevertheless, intuitively some counterfactuals seem to be true while
others false. Consider, e.g., Goodman’s (1947) example of the pair of
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counterfactuals regarding a piece of butter that has been consumed
and was never heated:

(a) If that piece of butter had been heated to 150 F, it would have
melted.

(b) If that piece of butter had been heated to 150 F, it would not
have melted.

Clearly one of these two sentences (presumably the latter) should be
considered false, even though both have false antecedents.

The logical analysis of counterfactual conditionals has for a long
time been an important issue in philosophical logic. A notable early
attempt to propose an adequate semantics for counterfactuals was
done by Nelson Goodman (1947), who also stressed its importance,
not only for logic, but as well for the philosophy of science. The
most influential analysis was provided independently by Robert Stal-
naker (1968) and David Lewis (1973). Their solution is based on the
notion of similarity which compares possible worlds according to their
(subjective) closeness to the actual world. In the present paper, we
shall mostly follow Lewis’ formulation of the semantics. According to
Lewis, a counterfactual A �→ C is true in the actual world iff either
A does not hold in any world (then A �→ C is trivially true), or all
worlds in which both A and C hold are closer (in a given ordering
of worlds by similarity to the actual world) to the actual world than
some world(s) in which A and ¬C hold.

The general notion of similarity (not just of worlds) is prominently
studied in fuzzy mathematics, where it is modeled by fuzzy equiva-
lence relations (Zadeh, 1971). It is, therefore, natural to attempt a
reconstruction of Lewis’ and Stalnaker’s ideas in terms of fuzzy sim-
ilarities. This paper offers such a reconstruction in the framework of
t-norm fuzzy logics (see esp. Hájek, 1998). We demonstrate that the
approach is viable and that the resulting semantics is adequate with
respect to the expected properties of counterfactuals (i.e., it validates
their intuitive and invalidates their counter-intuitive properties). The
merits of the fuzzy approach to counterfactuals are briefly discussed in
the concluding section. The paper provides a sketch of the approach;
more details will be found in an upcoming full paper.
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2 Lewis’ semantics of counterfactuals

Lewis’ approach is based on the notion of (subjective) similarity of
possible worlds.1 The intuitive notion of similarity of worlds can be
formally rendered in a number of ways, and the rendering impacts
the resulting properties of the logic of counterfactuals. Lewis him-
self (1973) provides a variety of counterfactual logics differing in the
properties of the similarity ordering, and also several reformulations
that replace the similarity order by alternative notions. Here we shall
present his formulation in terms of the relation of closeness between
possible worlds, with notation v ≤w v′ understood as “the world v is
at least as close to the actual world w as the world v′”.

Various sets of natural properties of the closeness relation can be
assumed, generating different logics of counterfactuals. For instance,
the following assumptions yield Lewis’ counterfactual logic VC:

• Strict minimality of the actual world: w <w v for any v 6= w

• Linearity: for any v, v′, either v ≤w v′ or v′ ≤w v

• Transitivity: if v ≤w v′ and v′ ≤w u, then v ≤w u

The counterfactual conditional A �→ C is defined to be true in a
world w with respect to a closeness relation ≤w, iff:

• Either for all v, v 6|= A (i.e., there are no A-worlds), or

• There is a v′ such that v′ |= A∧C and for every v, if v |= A∧¬C
then v′ <w v (i.e., there is an AC-world which is closer to the
actual world then any A¬C-world)

Lewis (1973) showed that the logic VC can be axiomatized by the

1The similarity relation is a primitive parameter of the semantic model. How
the relation is actually obtained is of no concern for the logic of counterfactuals:
it is simply assumed to be given, similarly as subjective probabilities are assumed
to be given in probability theory.



4 Libor Běhounek and Ondrej Majer

following axioms:

A �→ A (1)
(¬A �→ A) → (A �→ B) (2)
(A �→ ¬B) ∨ (((A ∧B) �→ C) ↔ (A �→ (B → C))) (3)
(A �→ B) → (A→ B) (4)
(A ∧B) → (A �→ B) (5)

plus the axioms of classical propositional calculus and the rules of
modus ponens, substitution, and the rule of deduction within condi-
tionals,

(B1 ∧ . . . ∧Bn) → C

(A �→ B1) ∧ . . . ∧ (A �→ Bn) → (A �→ C)
(6)

The modality � of necessity, with the usual meaning of truth in
all accessible worlds, is definable in Lewis’s system VC in terms of
counterfactual implication:

�A ≡ ¬A �→ ⊥ (7)

Various intuitively plausible properties of counterfactuals are deriv-
able in the logic VC, for instance the following ones:

�(A→ B) → (A �→ B) (8)
�¬A→ (A �→ B) (9)
�B → (A �→ B) (10)
(A �→ B) & �(B → B′) → (A �→ B′) (11)
(A �→ B) & �(A↔ A′) → (A′ �→ B) (12)

By (4) and (8), the logical strength of counterfactual implication is
intermediate between those of material and strict implication. Unlike
material conditionals, counterfactual conditionals do not obey, i.a.,
the following laws:

• Weakening:
A �→ C

(A&B) �→ C

• Contraposition:
A �→ C

¬C �→ ¬A
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• Transitivity:
A �→ B,B �→ C

A �→ C

Informal counterexamples to these rules as well as formal counterex-
amples in Lewis’ semantics can easily be constructed (or see Lewis,
1973).

3 Formal fuzzy logic

Fuzzy logics are many-valued logics suitable mainly for gradual predi-
cates, such as tall, old, warm, etc., whose underlying quantities can be
measured by real numbers (e.g., height in cm’s, age in years, tempera-
ture in Fahrenheits, etc.). In order to be measured on a common scale,
the underlying quantities are conventionally transformed into the unit
interval [0, 1] (or another suitable algebra); the transformed values are
called the degrees of the gradual predicates (e.g., the degrees of tall-
ness, warmness, etc.). Certain algebraic operations are defined on
[0, 1] that represent logical connectives and quantifiers, and a degree-
based consequence relation between [0, 1]-valued gradual propositions
is studied.

Different fuzzy logics arise by different admissible choices of al-
gebraic operations that realize logical connectives on [0, 1]. A pro-
totypical (and probably the best known) example of fuzzy logic is
infinite-valued  Lukasiewicz logic; other members of the family are,
for instance, Gödel–Dummett logic, product fuzzy logic, fuzzy log-
ics BL, MTL, etc. For the sake of simplicity, we shall in this pa-
per restrict our attention to  Lukasiewicz logic, even though all our
considerations, derivations, and semantic examples actually work for
any well-behaved formal fuzzy logic.2 For basic information on for-
mal fuzzy logic see, e.g., (Hájek, 2010); more technical details can be
found, e.g., in (Hájek, 1998). In this section, we shall briefly recall
basic definitions of  Lukasiewicz logic.

In the standard [0, 1]-valued semantics of  Lukasiewicz logic, propo-

2Namely, for any extension of the fuzzy logic MTL, which is arguably the
weakest t-norm–based fuzzy logic suitable for fuzzy mathematics.
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sitional connectives are realized by the following operations on [0, 1]:

x→ y = max(1− x+ y, 1)
x& y = min(0, x+ y − 1)
x ∧ y = min(x, y)
x ∨ y = max(x, y)
x↔ y = 1− |x− y|

¬x = 1− x

∆x = 1 iff x = 1, otherwise ∆x = 0

Notice that  Lukasiewicz logic possesses two conjunctive connectives:
idempotent ∧ and non-idempotent &. The presence of these two
conjunctions is not surprising, considering the fact that  Lukasiewicz
logic belongs to contraction-free substructural logics (Ono, 2003) all
of which possess two conjunctions.3 The connective ∆, expressing the
full degree of a gradual proposition, enables interpretation of classi-
cal logic within  Lukasiewicz logic (as its connectives and quantifiers
behave classically on the values 0 and 1).

Tautologies of propositional  Lukasiewicz logic are those formulae
that always evaluate to 1. The set of propositional tautologies of
 Lukasiewicz logic is finitely axiomatizable by a Hilbert-style calculus
(see Hájek, 1998).

First-order  Lukasiewicz logic extends the propositional syntax in
the usual way. Semantically, n-ary first-order predicates are inter-
preted by n-ary functions from a fixed set of individuals (the universe
of discourse) to [0, 1]. The quantifiers ∀ and ∃ are interpreted, respec-
tively, as the infimum and supremum of the degrees of all instances of
the quantified formula. First-order  Lukasiewicz logic can be axiomati-
cally approximated by adding Rasiowa’s (1974) axioms for quantifiers
to propositional  Lukasiewicz logic.4

3  Lukasiewicz logic, similarly as other contraction-free substructural logics, also
has another, non-idempotent disjunction x ⊕ y = min(1, x + y), which, however,
will not be needed in this paper. (In (29) below, which is the only place where dis-
junction occurs in this paper, the variants with ⊕ and ∨ happen to be equivalent,
since one of the disjuncts is bivalent.)

4Rasiowa’s axioms are only complete with respect to a generalized semantics
of first-order  Lukasiewicz logic, which evaluates formulae in more general algebras
than [0, 1]. The standard [0, 1]-valued first-order semantics is not finitarily ax-
iomatizable, though it can be axiomatized by an infinitary rule—see (Hay, 1963).
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4 Higher-order fuzzy logic

First-order  Lukasiewicz logic is sufficiently strong for supporting non-
trivial axiomatic mathematical theories. For smooth mathematical
work it is expedient to define a Russell-style simple type theory over
 Lukasiewicz logic (or Henkin-style higher-order  Lukasiewicz logic, see
Běhounek & Cintula, 2005). The latter is an axiomatic theory over
multi-sorted first-order  Lukasiewicz logic, with sorts of variables for
individuals from a fixed universe of discourse (zeroth-order variables)
and for predicates of all orders n ≥ 1 and arities k ≥ 0 (n-th-order
variables). The language of the theory comprises:

• The primitive memberships predicates ∈ between successive sorts,

• The bivalent identity predicate = on each sort,

• The functions 〈. . .〉 for tuples of each order and arity, and

• The comprehension terms {x | ϕ} of order n + 1 for each well-
typed formula ϕ and the variable x of each order n.

The theory is axiomatized by the following axiom schemata:

• The identity axioms x = x and x = y → (ϕ(x) → ϕ(y)), for
each well-typed formula ϕ and each sort of variables;

• The usual technical axioms for handling tuples of each arity and
order;

• Comprehension axioms y ∈ {x | ϕ(x)} ↔ ϕ(y) for each well-
typed formula ϕ and each sort of variables;

• Extensionality axioms (∀x)∆(x ∈ A↔ x ∈ B) → A = B for all
orders.

In the intended models of the theory,5 individual variables range
over a fixed set X (the universe of discourse). First-order k-ary pred-
icates are interpreted as [0, 1]-valued fuzzy sets (for k = 1) or k-ary

Nevertheless, Rasiowa’s axiomatic approximation is sufficient for almost all prac-
tical purposes.

5Just like in classical higher-order logic, the theory of intended models is not
recursively axiomatizable (as it interprets true arithmetic). The above axiomati-
zation is sound with respect to intended models, but complete only with respect
to a more general class of models. Nevertheless, the axiomatic approximation is
again sufficient for almost all practical purposes.
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fuzzy relations (for k > 1) onX; i.e., as functionsXk → [0, 1]. Second-
order k-ary predicates are interpreted as fuzzy sets (or relations) of
fuzzy sets (or relations) of individuals; i.e., as functions (X1)k → [0, 1],
where X1 is the range of 1st-order predicate variables. In general,
(n+1)-st-order k-ary predicates are interpreted as fuzzy sets (or rela-
tions) of order n+1; i.e., as functions (Xn)k → [0, 1], where Xn is the
range of n-th-order predicate variables. The membership predications
x ∈ A are assigned the value (in [0, 1]) that the function interpreting
A assigns to the interpretation of x.

Comprehension terms {x | ϕ(x)} (of any order) denote fuzzy sets
to which each element x belongs to the degree of ϕ(x). Classical
(bivalent) sets can be represented by fuzzy sets whose membership
functions only take values in the two-element set of degrees {0, 1}. The
condition of being bivalent is expressible as (∀x)∆(x ∈ A ∨ x /∈ A),
where x /∈ A abbreviates ¬(x ∈ A).

Various fuzzy mathematical notions can be defined over  Lukasiewicz
logic by reinterpreting the formulae of classical mathematics in higher-
order  Lukasiewicz logic. In what follows, we shall need the following
elementary defined notions:

∅ = {x | 0} (13)
A ⊆ B ≡ (∀x)(x ∈ A→ x ∈ B) (14)

Moreover we shall use the following defined connectives that compare
the degrees of formulae:

ϕ ≤ ψ ≡ ∆(ϕ→ ψ) (15)
ϕ = ψ ≡ ∆(ϕ↔ ψ) (16)

The definition is justified by the fact that in  Lukasiewicz logic (as well
as in other fuzzy logics), the degree of ϕ→ ψ is 1 iff the degree of ψ
is at least as large as the degree of ϕ, and the degree of ϕ↔ ψ is 1 iff
the degrees of ϕ and ψ are equal.6

6The defined connective = of (16), expressing the identity of degrees, should
not be confused with the identity predicates on each sort of variables: though
denoted here by the same sign, they are always disambiguated by the context,
as the arguments of the latter are terms, while the arguments of the former are
formulae.
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5 Similarity relations

Similarity relations are in fuzzy mathematics standardly modeled as
fuzzy equivalence relations (Zadeh, 1971), i.e., binary fuzzy relations
S that satisfy (to degree 1) the axioms of fuzzy reflexivity, symmetry,
and transitivity in  Lukasiewicz (or another fuzzy) logic:

∆(∀x)Sxx (17)
∆(∀xy)(Sxy → Syx) (18)
∆(∀xyz)(Sxy & Syz → Sxz) (19)

A stronger notion of separated (or unimodal) fuzzy equivalence (some-
times also called fuzzy equality) strengthens the reflexivity condition
(17) by the additional requirement that only identical elements are
fully similar:

(∀xy)(∆Sxy ↔ x = y) (20)

Let a fuzzy relation SM : X2 → [0, 1] be the interpretation of the
predicate S in a given standard [0, 1]-valued semantic model M (with
the universe X) for  Lukasiewicz logic. Then the function d(x, y) =
1 − SMxy is a (bounded) pseudometric iff S is a fuzzy equivalence
relation (i.e., satisfies (17)–(19) to degree 1) in M , and is a bounded
metric iff the fuzzy equivalence is separated (i.e., satisfies (18)–(20) to
degree 1 in M).7

The correspondence to (pseudo)metrics and the fact that they can
be conveniently handled by means of formal fuzzy logic (cf. Běhounek,
Bodenhofer, & Cintula, 2008) makes fuzzy equivalence relations a suit-
able representation of gradual relations of closeness or similarity. Con-
sequently, they have become the standard model of similarity relations
in fuzzy mathematics, and we shall call fuzzy equivalence relations
simply (fuzzy) similarities further on. It should, however, be stressed
that formal fuzzy logics admit other algebras of degrees besides the
[0, 1] interval (see, e.g., Hájek, 1998). Fuzzy equivalence relations thus
generalize real-valued (pseudo)metrics by admitting various scales of

7In a similar manner, fuzzy equivalence relations correspond to (generally un-
bounded) pseudometrics d(x, y) = − log SMxy in product logic, pseudoultramet-
rics in Gödel logic, and various generalizations of pseudometrics in other fuzzy
logics (differing in the operation used in the triangle inequality), and to corre-
sponding kinds of metrics if the equivalence relation is separated.
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abstract degrees of closeness (or similarity); consequently, modeling
similarity or closeness by equivalence relations over fuzzy logic does
not enforce measuring them by real numbers.

6 Similarity of worlds and degrees

Applying the apparatus of fuzzy similarities to Lewis’ concept of the
similarity of possible worlds, we assume that there is a fuzzy relation Σ
on the (classical, bivalent) set W of possible worlds, which satisfies the
axioms of fuzzy similarity (17)–(19). The formula Σxy is informally
interpreted as “the world x is similar to the world y”, and the degree
(from [0, 1] or another algebra of degrees admissible for  Lukasiewicz
logic) that is assigned to it in a particular model of (higher-order)
 Lukasiewicz logic is interpreted as the degree of similarity between
these worlds.

The first idea how to model Lewis’ ternary relation “the world x
is at least as close to the actual world w as the world y” in terms of
the similarity relation Σ is to define it straightforwardly as Σyw ≤
Σxw, where ≤ is the degree-comparing connective (15). However, for
reasons both methodological and technical, it turns out to be more
appropriate to use a fuzzy comparison . of degrees, rather than the
bivalent comparison connective ≤, defining:

x 4w y ≡ Σyw . Σxw. (21)

The intended definition could be informally interpreted as “x is more
or roughly as similar to w as y”. This form follows the fuzzy paradigm
to employ, whenever reasonable, a (fuzzy) indistinguishability (or sim-
ilarity) relation rather than bivalent equality. The particular motiva-
tion for using . instead of ≤ is the natural assumption that worlds in-
distinguishable from x (as regards their closeness to the actual world)
should in the evaluation of counterfactuals play a rôle similar to that
of x.

In order to define the fuzzy ordering . of degrees (of similarity to
the actual world) informally interpretable as “more or roughly as”, we
need to define another similarity, ∼, this time on degrees. Besides the
usual axioms of similarity, we shall require ∼ to satisfy two additional
conditions that specify the kind of similarity relations suitable for our
purposes. Omitting the initial ∆’s (for satisfaction to degree 1) and
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quantification over all degrees, the conditions on ∼ can be listed as
follows:

(α ∼ α) (22)
(α ∼ β) → (β ∼ α) (23)
(α ∼ β) & (β ∼ γ) → (α ∼ γ) (24)
(α ∼ β) → (α↔ β) (25)
(∃β 6= α)(β ∼ α) (26)
(α ≤ β ≤ γ) → ((α ∼ γ) → (α ∼ β)) (27)
(γ ≤ β ≤ α) → ((α ∼ γ) → (α ∼ β)) (28)

The conditions (22)–(24) are just the axioms of fuzzy similarity. The
condition (25) of congruence with respect to the equivalence connec-
tive expresses the substitutivity of similar degrees in gradual inference:
its equivalent formulation is α& (α ∼ β) → β. It furthermore ensures
that the similarity ∼ is separated, since ∆(α ∼ β) ↔ (α = β) is a
corollary of (25); in other words, each degree is fully similar only to
itself. The condition (26) ensures that ∼ differs from the bivalent
identity =, but still to each degree there are arbitrarily similar de-
grees.8 The latter two conditions also ensure that ∼ is indeed fuzzy,
as by (25) and (26) the relation ∼ has to be infinite-valued. Finally,
the conditions (27)–(28) express the compatibility of ∼ with the or-
dering ≤ of degrees: it ensures that closer (in the sense of ≤) degrees
are (non-strictly) more similar to each other.

By means of the relation ∼, the fuzzy comparison “more or roughly
as” . of degrees can be defined as follows:

α . β ≡ (α < β) ∨ (α ∼ β). (29)

The conditions (22)–(26) then entail the following corresponding prop-

8By the semantics of ∃ in  Lukasiewicz logic, (26) ensures that for each α, the
supremum of the degrees of similarity of other degrees to α is 1.
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erties of .:

(α ∼ β) → (α . β) (30)
(α . β) & (β . α) → (β ∼ α) (31)
(α . β) & (β . γ) → (α . γ) (32)
(α . β) → (α→ β) (33)
(α ≤ β) → (α . β) (34)
(∃β 6= α)(β . α) (35)
(α ≤ β ≤ γ) → ((γ . α) → (β . α)) (36)
(γ ≤ β ≤ α) → ((α . γ) → (α . β)) (37)

The properties (30)–(32) state that . is a similarity-based fuzzy order-
ing (for which see Bodenhofer, 2000) with respect to the similarity ∼.
The conditions (33)–(35) entail corollaries analogous to those of (25)
and (26), namely:

α& (α . β) → β

∆(α . β) ↔ (α ≤ β), (38)

and also enforce . to be a fuzzy (rather than bivalent) ordering of
degrees, strictly weaker than ≤. The sets of axioms (22)–(28) and
(30)–(37) are in fact equivalent, as the former can be obtained from
the latter if ∼ is defined as the symmetrization of ., i.e., α ∼ β ≡
(α . β) ∧ (β . α), or equivalently, (α . β) & (β . α).

By means of the fuzzy ordering . on degrees (of similarity of
worlds), we can now define Lewis’ ternary relation 4 of closeness of
worlds as intended above in (21), namely:

x 4w y ≡ Σyw . Σxw,

interpreted as “x is more or roughly as similar to w as y”.

7 Fuzzy semantics of counterfactuals

Having interpreted the similarity of worlds and Lewis’ ternary rela-
tion of closeness of worlds in the fuzzy setting, we can now define the
semantics of counterfactuals based on these notions. The primitive
parameters of the semantics, supposed just to be given (cf. footnote 1
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above), are the fuzzy similarity relation Σ on the (bivalent) set W
of possible worlds and the fuzzy similarity relation ∼ on degrees (of
similarity of possible worlds), assumed to satisfy the axioms given in
Section 6. As usual in intensional semantics, the meanings of proposi-
tions are identified with (here in general fuzzy) sets of possible worlds.

The definition of the semantics of counterfactuals in the fuzzy set-
ting will be based on the straightforward idea that the counterfactual
A �→ C is true in the world w if the closest (with respect to w) A-
worlds are also C-worlds.9 The A-worlds closest to w can be defined
as the fuzzy set of minima of a fuzzy set A of worlds in a fuzzy relation
(not necessarily an ordering) 4w (cf. Běhounek et al., 2008):

Min4w
A = {x | x ∈ A ∧ (∀a)(a ∈ A→ x 4w a)},

i.e., the fuzzy set of elements of A at least as close to w as any element
of A (which is the classical definition just reinterpreted in terms of
 Lukasiewicz logic). Basic properties of minima in fuzzy relations are
easily derivable in higher-order fuzzy logic (cf. Běhounek et al., 2008).

Given a model M of higher-order  Lukasiewicz logic and the param-
eters Σ and ∼, the semantic value (or extension) of the counterfactual
A �→ C in the possible world w can now be defined as follows:

(A �→ C)w ≡ (Min4w A) ⊆ C, (39)

where ⊆ is fuzzy inclusion defined in (14). The definition expresses,
in the fuzzy sense, that all 4w-minimal (i.e., closest to w) A-worlds
are also C-worlds. Notice that since the right-hand side of (39) is
evaluated in  Lukasiewicz logic, (A �→ C)w denotes a degree in [0, 1]
(or another algebra admissible for  Lukasiewicz logic).

The meaning (or intension) of the counterfactual propositionA �→ C
is then identified with the fuzzy set of possible worlds to which a pos-
sible world w belongs to degree (A �→ C)w, i.e.,

(A �→ C) = {w | (A �→ C)w}.

With these definitions at hand, a standard account of fuzzy inten-
sional semantics for propositional logic of counterfactuals can already

9This actually corresponds more to Stalnaker’s approach than to Lewis’. It will
be seen in Section 8 (cf. footnote 10) that unlike in Stalnaker’s bivalent framework,
in our fuzzy setting this does not involve the implausible Limit Assumption.
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be given. We omit it here for space restrictions; it runs along the
usual lines, defining a formula A of propositional logic of counterfac-
tuals to have degree 1 in a model (formed of the bivalent set W of
worlds, the parameters Σ and ∼, and an evaluation of propositional
variables in each world) if its intension in the model is the whole set
W of its possible worlds, and to be a tautology (written |= A) if it has
degree 1 in all models. A detailed account of the semantics as well
as a thorough discussion of all defined notions will be given in a full
paper (in preparation).

8 Properties of fuzzy counterfactuals

Various properties of fuzzy counterfactuals can be derived in higher-
order  Lukasiewicz logic. We give just a sample of our results here,
omitting the proofs (which will be given in a full paper under prepa-
ration).

First, the condition (26) ensures that the fuzzy set of minima of A
in 4w is non-empty iff A is non-empty. Consequently, in any world w
in any given model, (A �→ C)w has the full degree 1 for all C if and
only if A = ∅. In other words, a counterfactual is trivially true only
if its antecedent is impossible.10

Second, the undesirable properties of counterfactuals mentioned
in Section 2 are indeed refutable in our framework: fuzzy models can
be constructed (by adapting Lewis’ bivalent counterexamples) that
invalidate the rules of weakening, contraposition, and transitivity for
counterfactual implication. The counterexamples disprove not only
their graded variants, but also the weaker forms with premises satisfied
to the full degree:

6|= ∆(A �→ C) → ((A&B) �→ C)
6|= ∆(A �→ C) → (¬C �→ ¬A)
6|= ∆(A �→ B) & ∆(B �→ C) → (A �→ C)

10Our definition (39), though straightforwardly using the fuzzy minimum of A
in the closeness relation, thus need not use the implausible Limit Assumption
(cf. Lewis, 1973, p. 20) that there always exist the closest among A-worlds (for
A 6= ∅). In the fuzzy setting, the rather natural non-triviality condition (26) on
the similarity of degrees automatically entails that the fuzzy set of minima of a
non-empty fuzzy set in the fuzzy ordering by closeness is non-empty (though the
minimal worlds need not exist to the full degree).
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Third, the desirable properties of counterfactuals are valid in our
framework. For instance, it is provable in higher-order  Lukasiewicz
logic that the strength of the counterfactual conditional is intermedi-
ate between the material and strict conditionals (cf. (4) and (8) above
in Section 2):

|= �(A→ C) → (A �→ C)
|= (A �→ C) → (A→ C),

if the (S5-)modality of necessity is defined in the natural way as the
proposition

(�A) = {w | (∀v)(v ∈ A)}.

Many further classical tautologies involving counterfactuals are prov-
able in higher-order  Lukasiewicz logic, for instance the properties (1)
and (9)–(12) as well as the rule (6) of deduction within conditionals.
Some classical tautologies, however, only hold for full degrees: for
instance, it is provable that

|= ∆(�¬A) ↔ ∆(A �→ ⊥), (40)

but counterexamples can be given to this formula without the ∆’s
(cf. (7)); similarly for Lewis’ axiom (2).

9 Conclusions

We have shown that basic ideas of Lewis–Stalnaker semantics of coun-
terfactuals can be reconstructed in higher-order  Lukasiewicz logic (in
fact, mutatis mutandis, in every t-norm fuzzy logic). The seman-
tics has been shown to be adequate to the intuitive understanding
of counterfactual conditionals; i.e., it validates plausible properties
of counterfactuals and invalidates implausible ones (at least of those
considered in this paper).

The new formalization of Lewis–Stalnaker semantics is based on
an application of a well-developed general theory of fuzzy similarity
relations to the particular case of the similarity of possible worlds.
Fuzzy logic, which can be interpreted as logic of gradual predications,
is particularly suitable for the purpose, since the relation of similarity
is indisputably gradual (some things are more similar than others).
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The ensuing fuzzy semantics moreover automatically accommodates
counterfactuals that involve gradual predicates (i.e., such that come
in degrees). It also admits the gradualness of counterfactuals them-
selves, i.e., the fact that some counterfactuals are perceived to be
truer than others. The price paid for these advantages is the use of
non-classical logic in the semantics; however, since t-norm logics are
well-established (being not too different from intuitionistic or linear
logic) and mathematics based on these logics is sufficiently developed
(see Běhounek & Cintula, 2005; Běhounek et al., 2008), the cost is
not too high and seems to be worth the gains.

The present paper only dealt with the fuzzy semantics of the logic
of counterfactuals; its axiomatization as well as the study of its syn-
tactic or semantic variants is left for future work.
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