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Girard’s linear logic (1987) is often interpreted as the logic of resources,
while formal fuzzy logics (see esp. Hájek, 1998) are usually understood
as logics of partial truth. I will argue that deductive fuzzy logics can be
interpreted in terms of resources as well, and that under most circum-
stances they actually capture resource-aware reasoning more accurately
than linear logic. The resource-based interpretation then provides an
alternative motivation for formal fuzzy logics, and gives an explanation
of the meaning of their intermediary truth values that can be justified
more easily than their traditional motivation based on partial truth.

1 Linear and substructural logics

Recall that linear logic and its variants are representatives of basic sub-
structural logics (see, e.g., Restall, 2000; Paoli, 2002; Ono, 2003), i.e.,
logics that result from discarding some of the structural rules from the
Gentzen-style calculi LK and LJ for classical and intuitionistic logic. In
particular, linear logic LL discards the rules of contraction (C)

Γ, A,A,∆ =⇒ Σ
Γ, A,∆ =⇒ Σ

Γ =⇒ Σ, A,A,Π
Γ =⇒ Σ, A,Π

and weakening (W)

Γ =⇒ Σ
A,Γ =⇒ Σ

Γ =⇒ Σ
Γ =⇒ Σ, A

from the calculus LK for classical logic. Intuitionistic linear logic ILL
discards the same rules (C,W) from the calculus LJ for intuitionistic
logic. Affine linear logic ALL and intuitionistic affine linear logic IALL
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discard only the rule of contraction (C) from the calculi LK and LJ,
respectively, but retain the rule of weakening (W).

Recall further that substructural logics work in general with two con-
junctions: the lattice conjunction ∧ (also called weak, additive, or ex-
tensional conjunction) and fusion & (also called group, strong, multi-
plicative, or intensional conjunction). Similarly there are in general two
disjunctions (lattice ∨ and strong) as well as two implications, two nega-
tions, etc., but the latter split connectives will not play a significant role
in our account, as we shall mainly deal with intuitionistic substructural
logics (which lack strong disjunction) and commutative fusion (then both
implications coincide). Since in such substructural logics implication in-
ternalizes the sequent sign =⇒ and & the comma on the left-hand side
of sequents (cf. Ono, 2003), the validity of the sequent A1, . . . , An =⇒ B
is equivalent to the validity of the formula A1 & . . . & An → B. Conse-
quently, the rule of contraction corresponds to the validity of A→ A&A
and the rule of weakening to the validity of A&B → A.

The algebraic semantics of substructural logics is that of residu-
ated lattices (see, e.g., Jipsen & Tsinakis, 2002; Ono, 2003; Galatos,
Jipsen, Kowalski, & Ono, 2007), i.e., lattices endowed with an addi-
tional monoidal operation ∗ (representing &) monotone w.r.t. the lattice
order ≤, and its two residuals /, \ (representing implications) that satisfy
the residuation law

x ∗ y ≤ z iff y ≤ x\z iff x ≤ z/y.

If ∗ is commutative, the two residuals /, \ coincide and are usually de-
noted by ⇒. The set of designated elements is {x | x ≥ 1}, where 1 is
the neutral element of the monoidal operation ∗. If convenient, residu-
ated lattices may be expanded (to Ono’s FL-algebras) by a constant 0
for falsity, which makes it possible to define negation as x⇒ 0.

The term substructural logics will in this paper denote logics of classes
of residuated lattices, following the stipulative definition by Ono (2003).
In particular, (affine) intuitionistic linear logic is the logic of all (bounded
integral) commutative residuated lattices,1 and (affine) linear logic is the
logic of those that furthermore satisfy the law of double negation.

2 Linear logic as the logic of resources

The reason why linear logic has been regarded as the logic of resources is
illustrated by Girard’s (1995) well-known ‘Marlboro–Camels’ example:

1A residuated lattice is called commutative if its monoidal operation ∗ is commu-
tative; it is called bounded integral if 0 ≤ x ≤ 1 for all elements x. We shall usually
work with commutative residuated lattices only.
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Consider the propositions

D = “I pay $1”
M = “I get a pack of Marlboro”
C = “I get a pack of Camels”.

Then the sequent

D →M,D → C =⇒ D →M & C

expressing the inference

If I pay $1, I get a pack of Marlboro
If I pay $1, I get a pack of Camels
∴ If I pay $1, I get a pack of Marlboro and I get a pack of Camels

is derivable by the rules of classical as well as intuitionistic logic. The
inference is, however, viewed as counter-intuitive, if the conclusion is
straightforwardly understood as getting both packs. The disputable se-
quent is not derivable in linear logic, though: linear logic only derives
the sequent

D →M,D → C =⇒ D &D →M & C

which under a similar interpretation captures the fact that I need to pay
two dollars to get both packs of cigarettes.

In this sense, linear logic is said to regard formulae as ‘resources’,
which are ‘spent’ when used as premises of implications (in the Marlboro–
Camels example, the premise D is spent by being detached from D →M
to obtain M , and cannot be used again for D → C to obtain M & C).
More formally, since premises cannot in linear logic be contracted (due
to the lack of the rule (C)), they act as tokens for ‘resources’ needed to
support the conclusion: a sequent is valid in linear logic only if it has
the needed amounts of premises required for arriving at the conclusion.2

In other words, linear logic ‘counts’ premises of sequents as if they rep-
resented resources needed for ‘buying’ the conclusion (where different
propositional letters would represent different types of resources, while
their occurrences in the sequent would represent tokens or units of that
type).

Nevertheless, this feature of linear logic is due solely to the absence of
the rule (C) of contraction, and therefore is common to all contraction-
free substructural logics. It is not clear why exactly linear logic should

2Exactly the needed amounts in LL or ILL; at least the needed amounts in their
affine versions (it being an effect of weakening that we need not spend all premises).
In logics with both (C) and (W), e.g., classical or intuitionistic logic, each premise
required for arriving at the conclusion only needs to be present at least once.
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be more adequate as a logic of resources than any other contraction-free
logic. Rather, it is to be expected that different contraction-free logics
will correspond to different assumptions on the structure of resources. In
the following sections I will argue that linear logics are in fact adequate
only for very general structures of resources, while under most common
circumstances, stronger logics are appropriate.

3 The structure of resources

As a first task, we need to refine our conception of resources. Since
we aim at an informal semantic explanation of certain logics, instead
of giving a formal definition we shall just list a few examples indicating
what kind of resources we have in mind, and specify the mathematical
properties they are assumed to satisfy.

Our notion of a resource will be rather broad: it can include any
kind of things that can be counted or measured, that can be acquired
and expended, or used for any purpose. Among the resources we consider
are, e.g.: money (costs, prices, debts, etc.); goods (packs of cigarettes,
clothes, cars, etc.); industrial materials (chemicals, natural raw materi-
als, machine components, etc.); cooking ingredients (flour, salt, pota-
toes, etc.); computer resources (disk space, computation time, etc.);
penalties (which can be regarded as a kind of costs incurred); sets, mul-
tisets, or sequences (tuples or vectors) of the above; etc.

It can be observed that all of these (as well as many other) kinds
of resources exhibit the structure of a residuated lattice. In particular,
there is:

• A partial order � comparing the amounts of the resources. For
instance, 300 g of flour is more than 200 g of flour; two pens and
three pencils are more than one pen and three pencils; etc. For
the sake of compatibility with further definitions, we shall under-
stand x � y as “the resource x is larger than or equal to y”. The
order need not be linear, as for instance two pens are not compa-
rable with three pencils (if different items are counted separately).
However, it can be assumed that � is a lattice order, as this is
true for all prototypical cases: by definition, it amounts to suppos-
ing that for any two resources x, y (for instance: x = 2 pens and
3 pencils; y = 1 pen and 4 pencils), there is the least resource that
is at least as large as both (in this case, 2 pens and 4 pencils) and
the largest resource that is at most as large as both (here, 1 pen
and 3 pencils). Even though there may exist resources that do not
satisfy this assumption, we leave them aside in our considerations.
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• A monoidal operation ∗ of composition (or fusion) of resources. For
example, 300 g of flour and 200 g of flour is 500 g of flour; 2 pens
and 3 pencils plus 1 pen and 3 pencils are 3 pens and 6 pencils; etc.
Putting the resources together can be assumed to be associative
(i.e., we presume that the total sum does not depend on the order
of summation). The kinds of resources we consider always have a
neutral element e, the empty resource, which does not change the
amount when added to another resource: e.g., 0 g of flour; 0 pens
and 0 pencils; etc. Even though composition of resources need
not be commutative (consider, e.g., the order of adding ingredients
when cooking), for the sake of simplicity of exposition we shall only
consider commutative ∗ here (generalization to non-commutative
∗ is always straightforward).

• Finally, resources of all typical kinds can be ‘subtracted’ or ‘evened
up’, i.e., their composition has the residual operation ⇒ expressing
the remainder, or the difference of amounts: x ⇒ y is the least
resource to be added to x in order to get a resource at least as
large as y.3 For example, if x = 200 g of flour and y = 300 g of
flour, then x ⇒ y is 100 g of flour, as one needs to add 100 g
of flour to 200 g of flour to get at least 300 g; while if x = 2 pens
and 3 pencils, and y = 1 pen and 3 pencils, then x⇒ y is 0 pens and
0 pencils (i.e., the empty resource e), as we need not add anything
to x to get at least y.

All kinds of resources we consider thus have the structure of a (com-
mutative) residuated lattice L = (L,∧,∨, ∗,⇒, e). Particular kinds of
resources can have additional properties: for example, most usual kinds
of resources satisfy the so-called divisibility condition x∗(x⇒ y) = x∧y.

Since we aim at a simple resource-based interpretation of existing
logical calculi rather than development of an expressively rich logic of
resources for computer science, we do not consider such phenomena as,
e.g., resource dynamics or possible non-totality of ∗ (which are modeled
by such systems as the logic of bunched implications, computation log-
ics, or synchronous and asynchronous calculi—see, e.g., Pym & Tofts,
2006 for references), but only reconstruct and refine the assumptions on
resources that are adopted by linear logic.

3I.e., x⇒ y = sup{z | z ∗ x � y}, which is an equivalent formulation of the resid-
uation law in complete lattices. For incomplete lattices, a more cautious formulation
based on Dedekind–MacNeille cuts is due, namely {z | z ∗ x � y} = {z | z � x⇒ y},
which is a general equivalent of the residuation law.
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4 Formulae as resources

There are at least two possible representations of resource-based seman-
tics of substructural logics. One of them takes resources (i.e., elements
of the residuated lattice L described in Section 3) directly as semantic
values assigned to propositional formulae. Recall that a logical calculus
can have interpretations other than propositional: cf., e.g., the inter-
pretation of the Lambek calculus as the categorial grammar (where the
semantic values of formulae are grammatical categories), or the Curry–
Howard combinatorial interpretation of the implicational fragment of
intuitionistic logic (where formulae are interpreted as types and proofs
as programs). In a similar vein, we can interpret the algebraic semantics
of substructural logics under the “formulae-as-resources” paradigm as
follows:

• The semantic value of a formula ϕ is a resource ‖ϕ‖ ∈ L.

• The Tarski condition ‖1‖ = e of the algebraic semantics interprets
the formula 1 as the empty resource (or ‘being for free’).

• Similarly, the clause ‖ϕ& ψ‖ = ‖ϕ‖ ∗ ‖ψ‖ says that conjunction
represents the fusion of resources.

• The value of implication, ‖ϕ→ ψ‖ = ‖ϕ‖ ⇒ ‖ψ‖, is the resource
needed to get at least ‖ψ‖, given the resource ‖ϕ‖.

• Finally, the lattice connectives ∧,∨ represent the meet and join of
resources (with respect to the size order � of resources).

The formula ϕ is regarded as valid under a given evaluation iff e � ‖ϕ‖,
i.e., iff it represents a resource that is for free or even cheaper.

5 Resources as possible worlds

Another way how to interpret substructural logics in terms of resources
(cf. Pym & Tofts, 2006) is to regard the structure L of resources as a
Kripke frame (L,�) endowed with a monoidal structure (∗, e). Unlike in
the “formulae-as-resources” paradigm, formulae are here interpreted as
propositions, and resources only serve as indices that may (or may not)
validate them. The forcing relation r  ϕ, “the resource r ∈ L supports
the formula ϕ”, is required to satisfy the following conditions:

• e  1,

• r  ϕ& ψ iff ∃s, t ∈ L: r � s ∗ t and s  ϕ and t  ψ,
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• r  ϕ→ ψ iff ∀s ∈ L: if s  ϕ, then r ∗ s  ψ,

• r  ϕ ∧ ψ iff r  ϕ and r  ψ (“shared resources”—contrast the
clause for &),

• r  ϕ ∨ ψ iff ∃s, t ∈ L: r � s ∨ t and (s  ϕ or s  ψ) and
(t  ϕ or t  ψ),

and the condition of persistence (if r � s and s  ϕ, then r  ϕ),
expressing that “larger resources suffice as well”. The formula ϕ is de-
fined to be valid under  iff e  ϕ, i.e., iff supported even by the empty
resource.4

6 The role of tautologies

In the above semantics, tautologies w.r.t. a class K of (commutative)
residuated lattices are defined as the formulae ϕ that get a value ‖ϕ‖ � e
under all evaluations of propositional letters in any residuated lattice
L ∈ K (resp. are supported by e under all  in every Kripke frame L ∈ K).
The tautologies of substructural logics thus represent combinations of re-
sources that are always “for free or cheaper”.

More importantly, since all residuated lattices validate

e � r ⇒ s iff r � s,

tautologies of the form ϕ→ ψ internalize sound rules of resource trans-
formations that “preserve expenses” (in the sense of �). Inference in
substructural logics can thus be understood as inference salvis expensis,
in a similar manner as inference salva veritate in classical logic.5

Classes of residuated lattices admitted as possible structures of re-
sources then determine particular logics of resources in the above sense.
In particular, by the known completeness theorem, ILL is the logic of
all commutative residuated lattices, and so it is an adequate logic if just
the general structure of a commutative residuated lattice is assumed for
admissible kinds of resources. Its variants IALL, ALL, and LL restrict
the structure of resources to narrower classes of commutative residuated
lattices, and other substructural logics correspond to further specific
classes of residuated lattices of resources.6

4As this is not the aim of this paper, we omit the details on the correspondence
between the Kripke-style and algebraic semantics of substructural logics. For more
information see (Ono & Komori, 1985).

5Note that the general validity of ‖ϕ‖ � ‖ψ‖ defines the local consequence relation
(expressed, i.a., by sequents in Section 1), while Hilbert-style calculi for substructural
logics usually capture the global consequence relation “e � ‖ψ‖ whenever e � ‖ϕ‖”.

6For example, classical logic can be interpreted as the logic distinguishing just two
sizes of resources: empty e = ‖1‖ and non-empty f = ‖0‖ ≺ e.
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In the following sections I will argue that most typical kinds of re-
sources satisfy the so-called prelinearity condition, and so are in fact
governed by deductive fuzzy logics rather than linear logics.

7 Deductive fuzzy logics

Deductive fuzzy logics can be delimited as logics of (classes of) linearly
ordered residuated lattices (Běhounek & Cintula, 2006; Běhounek, 2008).
Among the extensions of ILL they can be characterized as those that
satisfy the axiom of prelinearity (Pre): ((A→ B) ∧ 1) ∨ ((B → A) ∧ 1),
or in the presence of weakening, equivalently (A→ B) ∨ (B → A).

Let us call residuated lattices for which a substructural logic L is
sound, L-algebras. The prelinearity axiom ensures that a deductive fuzzy
logic L is sound and complete, not only w.r.t. the class of all L-algebras
(the general completeness theorem), but also w.r.t. the class of all linear
L-algebras (the linear completeness theorem). The linear completeness
theorem characterizes deductive fuzzy logics among substructural log-
ics; the finitary ones are moreover characterized by the linear subdirect
decomposition property, which says that each L-algebra is a subdirect
product7 of linear L-algebras. (See Cintula, 2006 for details.)

Besides the general and linear completeness theorems, most impor-
tant deductive fuzzy logics furthermore enjoy the standard completeness
theorem, i.e., the completeness w.r.t. a set of (selected) L-algebras on
the unit interval [0, 1] of reals (with the usual ordering ≤), called the
standard L-algebras. Since L-algebras on [0, 1] are fully determined by
the monoidal operation ∗, standard-complete deductive fuzzy logics can
be defined as logics of (sets of) such monoidal operations ∗ on [0, 1]. For
example,

•  Lukasiewicz logic  L is the logic of the  Lukasiewicz t-norm x ∗ y =
(x+ y − 1) ∨ 0,

• Gödel–Dummett logic G is the logic of the minimum, i.e., of x∗y =
x ∧ y,

• Product fuzzy logic Π is the logic of the ordinary product of reals,
x ∗ y = x · y,

• Hájek’s basic fuzzy logic BL is the logic of all continuous t-norms,8

• Monoidal t-norm logic MTL is the logic of all left-continuous t-
norms,

7I.e., a subalgebra of the direct product with all projections total.
8A commutative associative monotone binary operation on [0, 1] with a neutral

element e ∈ [0, 1] is called a uninorm. A t-norm is a uninorm with e = 1.
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• Uninorm logic UL is the logic of all left-continuous uninorms, etc.

For more information on these logics see (Hájek, 1998; Esteva & Godo,
2001; Metcalfe & Montagna, 2007).

The weakest deductive fuzzy logic extending a substructural logic
L is often9 obtained by adding the prelinearity axiom (Pre) to L: for
instance,

ILL + (Pre) = UL

IALL + (Pre) = MTL

are the weakest deductive fuzzy logics extending intuitionistic linear log-
ics, or the logics of linear commutative (bounded integral) residuated
lattices. (For LL and ILL, the double negation law is to be added to
UL resp. MTL.)

8 Fuzzy logics as logics of costs

Since deductive fuzzy logics are logics of (special classes of) residuated
lattices, they can be interpreted as logics of resources in the same way as
other substructural logics. Specifically, by the linear completeness theo-
rem (see Section 7), deductive fuzzy logics are sound and complete w.r.t.
particular classes of linear residuated lattices, and so they are adequate
for resources that are linearly ordered by �. In other words, deductive
fuzzy logics are those logics of resources in which we can assume that all
resources are comparable.

Prototypical linearly ordered resources are costs, that is, resources
converted to money. Even though resources in general need not be com-
parable (cf. the examples in Section 3), their costs (if specified) can al-
ways be compared, as money (of a single currency) forms a linear scale.10

Besides money, there are many other kinds of resources that are linearly
ordered, e.g., gallons of fuel, computation time, operational memory,
etc. Irrespective of their nature, we shall call all linearly ordered re-
sources costs, to distinguish them from resources that are not linearly
ordered. For convenience, costs with values in the interval [0,+∞], e.g.,
monetary prices (where 0 is “gratis” and +∞ may represent the price of
unattainable goods), will be called prices.

Deductive fuzzy logics can thus be regarded as logics of costs, in the
same sense as linear logics are regarded as logics of resources. Different
ways of adding up costs—given by the fusion operation—yield different
deductive fuzzy logics. The most typical examples are given below:

9Always if modus ponens is the only derivation rule of L (Cintula, 2006).
10This idea is due to Petr Cintula (pers. comm.).
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• If prices are summed by ordinary addition, we obtain the product
logic Π, since the residuated lattice [0,+∞] with the fusion + and
the lattice order ≥ is isomorphic (via the function p 7→ 2−p) to
the standard product algebra [0, 1] with the fusion · and the lattice
order ≤. Note that in the standard product algebra, 0 represents
the infinite cost and 1 the null cost. If the infinite cost is not
considered, the standard product algebra without 0 (called the
standard cancellative hoop) and its logic CHL (cancellative hoop
logic, see Esteva, Godo, Hájek, & Montagna, 2003) are obtained.11

• If prices are bounded by a value a ∈ (0,+∞) and summed by
bounded addition truncated at a, we obtain the  Lukasiewicz logic  L,
since the residuated lattice [0, a] with bounded addition and ≥ is
isomorphic via p 7→ (a − p)/a to the standard [0,1] algebra for
 Lukasiewicz logic. The bound a (corresponding to 0 in the stan-
dard algebra) appears naturally if, e.g., a fixed maximum price is
set, if there is a maximal possible cost in the given setting, or if
the price a is in the given context unaffordable.

• If prices are combined by the maximum, Gödel logic G (or its hoop
variant) is obtained (by the same isomorphism p 7→ 2−p as in the
case of addition). The maximum may seem a strange operation for
summation of prices, but it occurs naturally whenever the costs can
be shared by the summands. For example, if temporary results
can be erased before the computation proceeds, the memory needed
for temporary results is only the maximum (rather than sum) of
their sizes.

Logics of other particular t-norms are obtained by using variously dis-
torted ‘addition’ of prices. For instance, the logic of an ordinal sum of the
three basic t-norms corresponds to using different summation rules (of
the three described above) in different intervals of prices. The logic MTL
is obtained if all monotone commutative associative left-continuous op-
erations with the zero price acting as the neutral element are admitted
as ‘addition’ of prices; similarly for BL and continuous such operations,
etc. The logic UL and other uninorm logics only differ by permitting
also negative prices, which express gains rather than costs.

11If the costs come in packages (e.g., if one has to buy a whole pack of cigarettes
even if one needs only a few), the algebra is in general just a ΠMTL-chain instead of
a product algebra, and the resulting logic in general only extends the logic ΠMTL
(Esteva & Godo, 2001) or its hoop variant. A similar effect of packaging, which
destroys the divisibility of the algebra (see Section 3), can be observed in other
algebras of costs as well. (This observation is based on remarks by Rostislav Horč́ık
and Petr Cintula.)
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9 Fuzzy logics as logics of resources

In spite of the linear completeness theorem, which makes it possible to
regard deductive fuzzy logics as logics of linearly ordered costs, algebras
for deductive fuzzy logics need not be linear (consider, e.g., their direct
products). By the general completeness theorem (see Section 7), a de-
ductive fuzzy logic L is also sound and complete w.r.t. the class of all
L-algebras: thus L can also be interpreted as the the logic of all kinds of
resources that form the structure of a (possibly non-linear) L-algebra.

Let us restrict our attention to finitary deductive fuzzy logics only,
as they include all prototypical cases; for the sake of brevity, let us call
them just fuzzy logics further on. By the linear subdirect decomposition
theorem (see Section 7), any L-algebra for a fuzzy logic L can be decom-
posed into a subdirect product of linear L-algebras. Fuzzy logics can
thus be characterized as logics of such resources that either are linearly
ordered, or can at least be decomposed into linearly ordered compo-
nents. In other words, a sound and complete resource-based semantics
of fuzzy logics need not be just that of costs, but also that of resources
representable as tuples (possibly infinitary) of costs.

It can be observed that many kinds of non-linear resources can ac-
tually be represented as tuples of linearly ordered values. For example,
ingredients for making pizza and those for making spaghetti are not sub-
sets of each other, thus cooking ingredients do not form a linearly ordered
residuated lattice.12 Nevertheless, they can be decomposed into (poten-
tially infinitely many) linearly ordered components, as the amounts of
each individual item on an ingredient list are always comparable; and
indeed it can be checked that the prelinearity axiom is valid in this
residuated lattice.13

In fact, most typical resources (including those mentioned in Sec-
tion 3) are indeed decomposable in this way into linear components.
Even many resources for which such a decomposition is not known (e.g.,
human intelligence) can at least be believed to be linearly decomposable
(into some unknown and very fine linear components). It is actually
rather hard to find a kind of resources that demonstrably cannot be so
decomposed.

12The elements of the residuated lattice of all possible ingredient lists (such as
can be found in recipe books) are tuples of quantities of particular ingredient types
(e.g., [300 g of flour, 2 tomatoes, 2 lt of oil], zero amounts omitted). The tuples
are naturally ordered by inclusion (i.e., pointwise by component sizes), and fusion
represents adding up amounts of each ingredient.

13Since the fusion of amounts is (unbounded) addition in each component and
infinite amounts do not occur, by extending the considerations of Section 8 the resid-
uated lattice can actually be identified as a cancellative hoop, and the logic of cooking
ingredients as the cancellative hoop logic CHL.



12 Libor Běhounek

Thus we can conclude that all typical kinds of resources are linearly
decomposable, and therefore they satisfy the axiom of prelinearity, which
is not valid in linear logic nor in its affine or intuitionistic variants;
consequently, they are actually governed by deductive fuzzy logics rather
than linear logics. Linear logics are thus only adequate for a very general
structure of resources, which admits even the rare kinds of resources that
are not decomposable into linearly ordered components. As regards most
usual kind of resources, linear logic is too weak for them, as it does not
validate the law of prelinearity they obey. Assuming commutativity of
fusion, the weakest logic adequate for typical resources is the uninorm
logic UL (or MTL is weakening is assumed, i.e., if the empty resource
is the smallest). Specific structures of typical resources are governed by
even stronger fuzzy logics—in particular, product logic Π if resources
are combined by addition in each linear component,  Lukasiewicz logic
 L if the addition is bounded, and Gödel logic G in the case of shared
resources (i.e., if they componentwise combine by the maximum).

Thus it turns out that despite the common opinion, it is actually
fuzzy logics, rather than linear logics, that could be categorized as typical
logics of resources.14 The interpretation in terms of resources and costs
moreover provides an alternative motivation for deductive fuzzy logics
and an explanation of the meaning of their intermediary truth-values
that can in some respects be more easily justified than the standard
account based on degrees of partial truth.
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