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Abstract

In three case studies on notions of fuzzy logic and fuzzy set theory (Dubois–Prade’s
gradual elements, the entropy of a fuzzy set, and aggregation operators), the paper
exemplifies methodological differences between traditional and deductive fuzzy logic.
While traditional fuzzy logic admits various interpretations of membership degrees,
deductive fuzzy logic always interprets them as degrees of truth preserved under
inference. The latter fact imposes several constraints on systems of deductive fuzzy
logic, which need not be followed by mainstream fuzzy logic. That makes deductive
fuzzy logic a specific area of research that can be characterized both methodologi-
cally (by constraints on meaningful definitions) and formally (as a specific class of
logical systems). An analysis of the relationship between deductive and traditional
fuzzy logic is offered.
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Introduction

Lotfi Zadeh [41] has made the distinction between fuzzy logic in broad sense
(FLb) and fuzzy logic in narrow sense (FLn). FLn is based on certain many-
valued logics, but its agenda differs from that of formal logic: it deals with
such concepts as linguistic variable, fuzzy if–then rule, defuzzification, inter-
polative reasoning, etc.; and FLb roughly coincides with the broad theory and
applications of fuzzy sets.

In this paper we shall focus on a sub-area of FLn that studies or uses formal
deductive systems of fuzzy logic. Prototypical examples of such systems are
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those centered around Hájek’s basic fuzzy logic BL of continuous t-norms [22],
including for instance  Lukasiewicz, Gödel, and product logics [22], the logics
MTL [20],  LΠ [21], etc., both propositional and first- or higher-order [22,35,4].
The area also covers those parts of fuzzy mathematics (i.e., of FLb) which
are built as deductive axiomatic theories based on these formal fuzzy logics
(cf. [38,25,26,6,4,5,9], etc.). To avoid a conflict of terms, we shall call this area
deductive fuzzy logic (FLd). Other parts of FLn and FLb will in the present
paper be labeled traditional fuzzy logic (FLt), as the latter has a much longer
tradition than the relatively newer FLd.

The aim of this paper is to point out and analyze certain fundamental dif-
ferences between FLd and FLt. The differences are illustrated in three case
studies, regarding respectively:

(1) Dubois and Prade’s notion of fuzzy element
(2) The notion of entropy of fuzzy sets
(3) Aggregation of fuzzy data

Since the paper is methodological rather than technical, I omit most technical
details and focus on the analysis of the principles behind the approaches of
FLt and FLd. I assume that the reader has a basic knowledge of some formal
system of fuzzy logic, for instance Hájek’s logic BL of continuous t-norms [22].
Here I only briefly recapitulate some characteristic features of deductive fuzzy
logics, which will be of importance for further considerations:

• Deductive fuzzy logic is a kind of (many-valued) logic. 1 Therefore, like other
kinds of logics, it primarily studies preservation of some quality (“truth”)
of propositions under inference. In the particular case of formal fuzzy logic,
the quality is partial truth, i.e., the degrees of truth. 2 Thus, deductive fuzzy

1 Fuzzy logic understood as part of the theory of many-valued logics is sometimes
called mathematical, symbolic, or formal fuzzy logic, as it employs the methods of
mathematical (symbolic, formal) logic [23]. Deductive fuzzy logic in our sense is a
proper part of mathematical fuzzy logic: it will be shown that in addition to being
formal systems of (mathematical, or symbolic) fuzzy logic, deductive fuzzy logics
should satisfy certain principles in order to be suitable for graded logical deduction.
2 Note that throughout the paper, “preservation of partial truth” or “graded infer-
ence” refers to the so-called local consequence relation. The more commonly studied
global consequence relation expresses the preservation of full truth between fuzzy
propositions. The global consequence relation is defined as follows: ψ globally fol-
lows from ϕ1, . . . , ϕn iff the following holds: whenever all ϕ1, . . . , ϕn are fully true
(i.e., of truth degree 1), so is ψ. The local consequence relation, on the other hand,
is defined by means of partial truth: ψ locally follows from ϕ1, . . . , ϕn iff the truth
degree of ψ is at least as large as the aggregation (by strong conjunction) of the
truth degrees of all ϕ1, . . . , ϕn.
Even though it is the global consequence relation which is most often studied in cur-
rent mathematical fuzzy logic, local consequence is important for actual reasoning
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logic interprets membership degrees exclusively as degrees of truth of the
membership predication. In this it differs from the rest of traditional fuzzy
logic, which admits various interpretations of membership degrees [17,16].

• As a kind of formal or symbolic logic, FLd strictly distinguishes syntax from
semantics. In syntax, deductive fuzzy logic works with some fixed language
composed of propositional connectives, quantifiers, predicate and function
symbols, and variables. The symbols (and formulae built up from these
symbols) are then interpreted in semantical models, which are composed of
usual fuzzy sets and fuzzy relations of FLt. In this way the formulae of the
symbolic language formally describe actual fuzzy sets.

• FLd is based on the axiomatic method and works in the formal deductive
way. Valid statements about fuzzy sets are derived in an axiomatic theory,
through iterated application of sound rules of a particular system of deduc-
tive fuzzy logic. Since FLd employs non-classical many-valued logic, formal
theories in FLd can have some peculiar features [9], which are not met in
standard axiomatic theories of FLt or classical mathematics.

• Most systems of FLd impose specific constraints on some of its components.
For example, most systems of formal fuzzy logic require that conjunction
be realized as a left-continuous t-norm, and are much less interested in
other conjunctive operators studied in FLt. A partial explanation of this
selectiveness of FLd will be elaborated in the present paper. It can be shown
that such restrictions largely follow from the features of FLd listed above
(viz. the interpretation of degrees in terms of truth, the study of partial
truth preservation, formal deducibility, etc.).

A further explanation and illustration of these points, as well as an analysis of
the difference between FLd and FLt which results from the above features of
FLd, will be given in the following sections. I will argue that FLd is a rather
sharply delimited area of FLt, and that the agenda of FLd differs significantly
from that of FLt. Therefore, to avoid confusion in fuzzy set theory, we should
clearly distinguish between their respective areas of competence.

in formal fuzzy logic, as it can be used even when premises are only partially true.
Notice that usual systems of deductive fuzzy logic axiomatize the global (rather
than local) consequence relation; however, the relation of local consequence be-
tween ϕ1, . . . , ϕn and ψ can in these logics be defined as the (global) validity of
(ϕ1 & . . .& ϕn) → ψ, where & is strong conjunction and → implication. As argued
in Case Study 3 below, the requirements on good behavior of local consequence and
its interplay with & and → form the constitutive features of deductive fuzzy logics.
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Case study 1: Dubois and Prade’s gradual elements

In [18], Dubois and Prade have introduced the notions of gradual element and
gradual set by the following definitions:

Definition 1 Let S be a set and L a complete lattice with top 1 and bottom 0.
A fuzzy (or gradual) element e in S is identified with a (partial) assignment
function ae:L \ {0} → S.

Definition 2 A gradual subset G in S is identified with its assignment func-
tion aG:L \ {0} → 2S. If S is fixed, we may simply speak of gradual sets.

A prototypical example of a fuzzy element is the fuzzy middle-point of a
fuzzy interval A, which assigns the middle point of the α-level of A to each
α ∈ L\{0}. Notice that the assignment function of a gradual element need not
be monotone nor injective (cf. the middle points of certain asymmetric fuzzy
intervals). Fuzzy elements of this kind are met in many real-life situations
(e.g., the average salary of older people). Gradual elements and gradual sets
are claimed by the authors to be a missing primitive concept in fuzzy set
theory.

The authors proceed to define the fuzzy set induced by a gradual set, the
membership of a gradual element in a fuzzy set, etc. As these notions are not
important for our present case, I refer the reader to the original article [18]. We
shall only notice that the operations proposed for gradual sets are defined cut-
wise (with possible rearrangements of cuts in the case of complementation).

The declared motivation for introducing gradual elements is to distinguish
impreciseness (i.e., intervals) from fuzziness (i.e., gradual change from 0 to 1).
As implicit in [18,19], a general guideline for definitions of fuzzy notions should
be the following principle (we shall call it the principle of cuts):

Principle of cuts: The α-cuts of a fuzzy notion FX should be instances
of the corresponding crisp notion X.

I.e., the fuzzy version FX of a crisp notion X should be defined in such a way
that the α-cuts of FX ’s are X’s. Thus the fuzzy counterpart of the notion of
element is exactly the fuzzy element of Definition 1, that of the notion of set
is the gradual set of Definition 2, etc.

The definitions of gradual sets and gradual elements are clearly sound and the
notions will probably prove to be of considerable importance for FLt. Let us
see if they can be represented in FLd as well. A more detailed analysis of this
question has been done in [13]; here we extract its important parts:

4



Apparently there are no direct counterparts of gradual elements or sets among
the primitive concepts of current propositional or first-order fuzzy logics. Nev-
ertheless, it can be shown that gradual elements and gradual sets are repre-
sentable in higher-order fuzzy logic [4,7] or simple fuzzy type theory [35,4].
For technical details of the representation see [13]; here we only sketch the
construction:

(1) By the comprehension axioms of higher-order fuzzy logic, the notions of
crisp kernel, fuzzy subset, fuzzy powerset, and crisp function are definable
in higher-order fuzzy logic (see [4], [13] or a freely available primer [7] for
details).

(2) By a standard construction (cf. [38]), an internalization of truth degrees is
definable in higher-order fuzzy logic (see [13] or [10] for the details of the
construction and some meta-mathematical provisos). The lattice that rep-
resents truth degrees within the theory is defined as L = Ker(Pow({a})),
i.e., the kernel of the powerset of the crisp singleton of any element a of
the universe of discourse. (In fuzzy type theory of [35], this step can be
omitted, since the set of truth values is a primitive concept there.)

(3) Since Definitions 1 and 2 need no further ingredients beyond those listed
in items (1)–(2), crisp functions from L to the domain of discourse or
its powerset represent respectively the notions of gradual element and
gradual set in higher-order fuzzy logic. By similar means, all other notions
defined in [18] can be defined in higher-order fuzzy logic as well (see [13]).

In particular, the definitions of gradual elements and gradual sets in the stan-
dard framework of higher-order logic (or fuzzy class theory [4,7]) run as follows:

Definition 3 A fuzzy element of S (in higher-order fuzzy logic) is any (second-
order) class E such that

Crisp E & ∆(Dom E ⊆ L \ {∅}) & ∆(Rng E ⊆ S) & Fnc E .

Definition 4 A gradual subset of S in higher-order fuzzy logic is any (second-
order) class G such that

CrispG & ∆(Dom E ⊆ L \ {∅}) & ∆(Rng E ⊆ Ker Pow S) & FncG.

In this way, the FLt notions of gradual element and gradual set can also
be defined in FLd of higher order. However, their rendering in FLd is not
very satisfactory. First, the formal representatives in FLd of the simple FLt
notions are rather complex—namely certain very special second-order predi-
cates, whose relationship to traditional fuzzy sets (i.e., first-order predicates)
is far from perspicuous. 3 Although this presents no obstacle to handling them

3 It can, e.g., be observed that the FLd models of Definitions 3 and 4 do not exactly
follow the principle of cuts, since the crisp elements or sets are in fact functional
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in the formal framework of higher-order fuzzy logic, the apparatus of FLd does
not much simplify working with these notions (unlike it does with traditional
fuzzy sets), since they are represented by crisp functions like in their semantic
treatment by FLt. Considering the fundamental role fuzzy elements are to
play in Dubois and Prade’s recasting of fuzzy set theory, it would certainly
be desirable to have fuzzy elements and gradual sets rendered more directly
in FLd—as primitive notions rather than defined complex entities, preferably
of propositional or first-order rather than higher-order level. These demands,
however, encounter the following deep-rooted difficulty:

The new notions represent the horizontal (cut-wise) view of a fuzzy set (con-
strued as a system of cuts), while usual fuzzy set theory represents fuzzy sets
vertically (by membership degrees of its elements). Predicates in first-order
fuzzy logic only formalize the vertical view of fuzzy sets; and although the
latter can also be represented by systems of cuts, all usual FLd systems of
first-order fuzzy logic require that the cuts be nested. This requirement is
already built in the propositional core of common formal fuzzy logics, all of
which presuppose the following principle (further on, we shall call it the prin-
ciple of persistence):

Principle of persistence: If a proposition ϕ is guaranteed to be (at least)
α-true, then it is also guaranteed to be (at least) β-true for all β ≤ α.

The principle is manifested, i.a., in the transitivity of implication, which is sat-
isfied in all systems of FLd and is indispensable for multi-step logical deduction
(more on this in Case Study 3 below). Since Dubois and Prade’s gradual sets
do not meet this requirement (the α-cuts need not be nested), the known
systems of first-order fuzzy logic cannot represent them as fuzzy predicates.
(Similarly, known systems of propositional fuzzy logic cannot represent them
as fuzzy propositions.)

The reason why Dubois and Prade’s notions depart so radically from the
presuppositions of FLd resides in the conceptual difference between the ap-
proaches to fuzziness in FLd and FLt. In FLt, there are many possible in-
terpretations of the meaning of membership degrees [16,17]. In particular (as
stressed by Dubois and Prade in [18]), fuzzy sets may in FLt represent impre-
cision and membership degrees the gradual change. In FLd, however, mem-
bership degrees are only interpreted as guaranteed degrees of truth; and fuzzy
sets in FLd represent the degree of satisfaction of truth conditions rather than
interval-like imprecision. Thus in FLt, membership degrees can be understood
as mere indices which parameterize the membership in a fuzzy set and which
allow the gradual change from 0 to 1 (“fuzziness by fibering”). In FLd, truth
degrees are what is preserved in graded inference, i.e., preserved w.r.t. the

values rather than α-cuts of the crisp functions that represent gradual elements and
sets in higher-order FLd.
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ordering of truth values; and this enforces the principle of persistence.

It should be noticed that the principle of cuts, which motivates the distinction
between gradual elements and fuzzy sets in [18], is not itself alien to FLd. On
the contrary—when following a certain FLd-sound methodology, many fuzzy
counterparts of crisp notions do satisfy the principle of cut. The methodology
was already sketched in [27, §5] by Höhle, then elaborated in [4, §7], and
proposed as a general guideline for FLd in [6]; it consists in re-interpreting the
formulae of classical crisp definitions in many-valued logic. If fuzzy notions
are defined in this natural way, then the principle of cuts is often observed:
the α-cuts of fuzzy sets are crisp sets, the α-cuts of fuzzy relations are crisp
relations, the α-cuts of fuzzy Dedekind or MacNeille cuts [27,11,3,2] come
out as crisp Dedekind–MacNeille cuts, etc. Unlike in FLt, however, in FLd
the fuzzy notions have also to conform with the principle of persistence; this
constrains the α-cuts to nested systems of the corresponding crisp objects. In
the particular case of fuzzy elements, the α-cuts of an FLd fuzzy element a
must not only be crisp elements (as in FLt), but also must satisfy the principle
of persistence for all formulae, in particular for the formula x = a. The latter
already necessitates that the α-cut of a equals its β-cuts for all β ≤ α; and
since this should hold for all α, the fuzzy element a has to be constant. Thus
in FLd we can only have constant fuzzy elements, which can be identified
with ordinary crisp elements. Similarly, by enforcing the nesting of α-cuts, the
principle of persistence reduces in FLd gradual sets to common fuzzy sets.

No doubt fuzzy elements are a natural notion, abundant in many real-life sit-
uations; therefore the above difficulties should not stop us from investigating
them. There are no obstacles to investigating them in the framework of FLt.
However, current FLd can only render them indirectly in a higher-order set-
ting, since they do not conform to the principle of persistence upon which all
current systems of FLd are founded. Thus even though (advanced) FLd can
(clumsily) capture the new notions, they actually do not fall into its primary
area; and so the way in which FLd can contribute to the investigation of these
notion is rather limited. 4 This of course does not diminish the importance
of the new notions for FLt and does not even exclude the usefulness of their
formal counterparts in some parts of FLd. The above analysis only shows that
when employing fuzzy elements in FLd, we shall have to deal with complex
objects (crisp functions from the set of internalized truth values) rather than
some kind of more primitive notion.

4 One of the few advantages of studying gradual elements in formal higher-order
setting might be the possibility of generalizing them easily to “fuzzy gradual ele-
ments” by dropping the condition of the crispness of the function that represents a
gradual element or set in Definitions 3 and 4. The apparatus of higher-order fuzzy
logic then facilitates the investigation of this higher-order fuzzy notion, which could
be more difficult to study in the classical models of FLt.
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A further analysis will be needed to find out if Dubois and Prade’s gradual
elements and sets can be treated propositionally or as a primitive first-order
notion in a radically new system of deductive fuzzy logic. Since a direct logical
rendering of gradual sets would need to drop the principle of persistence, it
would have to adopt an entirely different concept of truth preservation under
inference; such a radical change would consequently affect virtually all logical
notions. Unfortunately, many straightforward approaches are not viable, as
they would trivialize the theory. E.g., a notion of truth preservation based on
the identity (rather than order) of truth degrees would reduce truth degrees
to mere indices exactly in the way FLt does; however, it would trivialize the
logic to classical Boolean logic. 5 From the opposite point of view, this could
be an indication that by treating membership degrees as mere indices (rather
than truth degrees that should be preserved under graded inference), FLt does
not in fact step out of the classical framework; it is the gradual inference what
makes things genuinely fuzzy from the FLd point of view, rather than just
employing some set of indices like [0, 1].

Case study 2: The entropy of a fuzzy set

Various definitions of the entropy of a fuzzy set have been proposed in tradi-
tional fuzzy mathematics, for instance:

• De Luca and Termini’s [15] entropy Ek(A) = Dk(A) +Dk(Ac)
• Yager’s [39] entropy Yp(A) = 1− `p(A,Ac)/(`p(A, ∅))p

• Kaufmann’s [29] entropy Kp(A) = 2n−1/p · `p(A,A)
• Kosko’s [31] entropy Rp(A) = `p(A,A)/`p(A,A)

where A is a finite [0, 1]-valued fuzzy set; Ac is its additive complement,
Ac(x) = 1−A(x); A is defined as A(x) = 1 if A(x) ≥ 0.5, and 0 otherwise; A =
(A)c; p, k are parameters, p ≥ 1 and k > 0; Dk(A) = −k∑

iA(xi) logA(xi);

and `p is the distance between finite fuzzy sets defined as `p(A,B) = (
∑

i |A(xi)−B(xi)|p)
1/p

.

The common feature of all such entropy measures is that they assign the
minimal (zero) entropy to crisp sets, and maximal (unit) entropy to fuzzy sets
with A(x) = 0.5 for all x in the universe of discourse. 6

5 The α-levels of fuzzy or gradual notions are crisp, therefore they follow the rules of
classical logic, i.e., the logic of Boolean algebras. An α-level based definition of truth
preservation would correspond to taking the direct product of Boolean algebras Bα

for all levels α ∈ [0, 1]. However, the direct product of Boolean algebras is a Boolean
algebra, therefore the resulting logic would remain classical.
6 In more detail, they satisfy de Luca and Termini’s [15] axioms for entropy mea-
sures E: [0, 1]X → [0, 1], namely: (i) E(A) = 0 iff A is crisp; (ii) E(A) = 1
iff A(x) = 0.5 for all x ∈ X; (iii) E(A) ≤ E(B) if for every x ∈ X either
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The definition is motivated (and the name entropy justified) by the idea that
the membership degree 0.5 tells us the least amount of information (“nothing”)
about the membership of x in A. In other words, that the membership degree
of 0.5 gives us the same degree of “certainty” that x belongs to A as that x
does not belong to A, and so it provides us with no information (knowledge)
as to whether x belongs to A. The membership degrees of 0 and 1, on the other
hand, give us full “knowledge” or “certainty” about the membership of x in A,
and thus provide us with maximal information as regards the membership of
x in A. The degree of fuzziness, measured by the entropy measures, thus (in
FLt) expresses the informational contents contained in the fuzziness of the
fuzzy set.

In FLd, on the other hand, such concepts of entropy do not have good motiva-
tion. 7 This is because in FLd, the membership degree cannot be interpreted
as the degree of knowledge or certainty of whether x belongs to A or not, but
only as the degree of the (guaranteed) truth of the statement that x belongs
to A. From the FLd point of view it is not true that A(x) = 0.5 gives us the
least information on the membership in A. On the contrary—each member-
ship degree gives us the same (namely, full) information about the extent of
membership in A.

The difference between the information conveyed by membership degrees in
FLt and FLd can be illustrated by the following consideration. We have the
following trivial observation in all usual systems of FLd that contain a well-
behaved implication connective ⇒.

Fact 5 If it is provable that A(z) ⇒ ϕ(z) for all z, then for any membership
degree α, if the truth degree of A(x) is α, then the truth degree of ϕ(x) is at
least α.

Thus in FLd, if we know that x ∈ A is true to degree 0.5 and that all elements
of A satisfy some property ϕ (in the sense of FLd—i.e., that A(z) ⇒ ϕ(z)
is valid for all z), then we know that x satisfies ϕ at least to degree 0.5.
Therefore in FLd, the truth degree of 0.5 does not represent “no knowledge”
or “equal possibility of both cases”. Rather, like any other membership degree,
it represents a certain guaranteed degree of participation of x on the properties
of A. In other words, any membership degree α of x ∈ A tells us in FLd that
the properties entailed by the membership in A will be satisfied by x at least
to degree α.

A(x) ≤ B(x) ≤ 0.5 or A(x) ≥ B(x) ≥ 0.5; and (iv) E(A) = E(Ac).
7 At least not as measures of the informational contents of fuzziness. If definable in
a particular fuzzy logic, they can only serve as measures of fuzziness, without any
connection to information.
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From the informational point of view, in FLd (as shown by Fact 5) the mem-
bership degree 0.5 restricts the possible truth values of ϕ(x), for any property
ϕ entailed by the membership in A, to the interval [0.5, 1]. In this sense, the
least informative membership degree should in FLd be 0 (as it does not re-
strict the interval at all) and the most informative degree should be 1 (as it
maximally restricts the interval to the single value 1). However, 0 is also the
most informative (and 1 the least informative) degree as regards the satis-
faction by x of the properties of another set, namely Ac. Therefore in FLd,
the informational contents of membership degrees is not determined simply
by their value.

Thus from the point of view of FLd, no membership degree conveys more
information than another just by its value. Therefore, no concept of entropy
which assigns the least informational contents to the fuzzy set with A(x) = 0.5
for all x is well-motivated in FLd. Consequently we have to conclude that the
notions of entropy belong to the area of FLt rather than FLd; and even though
they can be defined in higher-order FLd, 8 their significance in FLd and the
extent to which FLd can help investigate them is limited. This does not deny
their importance and good motivation in FLt under the interpretations of
membership degrees as indicated above (of knowledge, certainty, etc.); only
they are not meaningful for the concept of guaranteed truth, which is the
domain of FLd.

As stressed above, the unmotivatedness of the concept of entropy in FLd is
caused by the fact that membership degrees represent in FLd the degrees of
truth (of the statement “x ∈ A”) rather than the degrees of knowledge or
certainty about x ∈ A. The uncertainty about x ∈ A would not in FLd be
expressed by an intermediate membership degree, but rather by an uncertain
membership degree. The first idea how to render uncertain membership de-
grees in FLd is, obviously, to take a crisp or fuzzy set of possible membership
degrees, like in interval-valued fuzzy sets [1] or type-2 fuzzy sets [40]. However,
in the framework of FLd, this idea has to be refined: a fuzzy set of membership
degrees does not in FLd represent the degree of certainty or knowledge about
the membership degrees, either, but only expresses the degree of truth of some
property of membership degrees. Thus it would be necessary to introduce some
modality, e.g., “it is known that”, and interpret the fuzzy set of membership

8 For instance, Yager’s entropy Y1 and Kosko’s entropy R1 can be defined in the
higher-order fuzzy logic  LΠ [4], since it contains all arithmetical ingredients nec-
essary for their definitions: additive negation (1 − x), product implication (i.e.,
division), and the Baaz ∆ connective which ensures [4, §7] the definability of crisp
finite sequences, needed for the inductive definition of sums of membership degrees.
Any classically definable entropy measure is eventually definable in higher-order
FLd by more sophisticated means, since classical mathematics is interpretable in
standard higher-order fuzzy logics [4, §7]. (By definability we mean here definability
in standard [0, 1] models.)
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degrees α as expressing the truth degree of the statement “it is known that
the membership degree of x ∈ A is α”, rather than the degree of knowledge
itself. This subtle difference is insignificant for atomic epistemic statements,
but plays a role when considering complex epistemic statements composed by
means of propositional connectives. (For more on this distinction see [24,22].)
The rendering of the uncertainty of membership in a fuzzy set, which moti-
vates the notion of entropy in FLt, is thus in FLd much more complicated
than what is expressed by simple intermediary membership degrees.

Case study 3: Aggregation of fuzzy data

The exclusive interpretation of membership degrees as guaranteed degrees of
truth leads to certain restrictions on admissible logical systems of FLd. Since
the intended interpretation “truth at least to α” is based on an order (“at
least”) of truth degrees, logical systems suitable for FLd have to be among the
logics of partially ordered (or at least preordered) algebras or logical matrices,
i.e., among Rasiowa’s implicative logics [37] or Cintula’s weakly implicative
logics [14]. 9 The property of prelinearity, advocated in [8] as the character-
istic feature of deductive fuzzy logics, then leads to Cintula’s class of weakly
implicative fuzzy logics [14]. Another condition that further constrains the
class of logical systems best suitable for deductive fuzzy logic is the law of
residuation [22,36]. As will be shown in this section, the law of residuation
and related requirements present another important difference between FLd
and FLt.

One of the typical tasks of applied FLt is to gather some fuzzy data ϕ1, . . . , ϕk,
aggregate their truth values by means of some aggregation operator

⊙
, 10 and

draw some conclusion ψ (possibly, about the action to be performed or the
answer to be given) based on

⊙k
i=1 ϕi. In symbols, to perform an inference

(
⊙k

i=1 ϕi) → ψ, where → is a suitable implication. We have in mind, e.g., the
following kinds of applications:

9 The defining conditions of (weakly) implicative logics embody the correspondence
between the full truth of implication and the (pre)ordering of truth degrees. Besides
the conditions of substitution-invariant Tarski consequence (common to most sys-
tems of formal logic), weakly implicative logics require the logical validity of (i) the
axiom ϕ→ ϕ and the rules of (ii) modus ponens (from ϕ and ϕ→ ψ infer ψ), (iii)
transitivity of implication (from ϕ→ ψ and ψ → χ infer ϕ→ χ), and (iv) congru-
ence of all connectives w.r.t. bi-implication ϕ→ ψ and ψ → ϕ. Weakly implicative
logics in general admit multiple degrees of full truth; Rasiowa’s implicative logics
forbid them by the additional rule (v) of weakening (from ϕ infer ψ → ϕ).
10 The term “aggregation operator” is here understood in a broad sense, without
requiring any fixed set of axioms for the operator.
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Example 6 In a fuzzy controller based on if-then rules, the input data ϕi are
the truth values of the evaluating expressions “Xi is Yi” given by the measured
values of linguistic variables Xi; the output of a single rule is the truth value
of “X is Y ”, inferred from ϕi’s by suitable operations

⊙
and →.

Example 7 A fuzzy logic based engine for answering database queries (say,
for accommodation search) may ask for the degrees of the user’s preferences,
i.e., the weights of such variables as price, distance, etc. Based on the aggre-
gated weighted values of these variables for particular hotels, the engine lists
the hotels in descending order by their suitability for the user.

An important observation about this kind of applications is that just one
inference step is performed for each set of input data:

• When a fuzzy controller performs an action based on the fuzzy inference,
the values of measured variables change, and the next inference is based on
the new (changed) data.

• When listing hotels in the order of the user’s preferences, the evaluation
of each hotel is based on the hotel’s own parameters; the evaluation of the
next hotel takes new (i.e., the next hotel’s) data.

In such cases, therefore, the device may work in a cycle, but each iteration
processes a new set of data. The modus operandi of such applications of FLt
is as depicted in Figure 1.

fuzzy data ⇒
⇒ truth values

ϕ
(1)
1 . . . ϕ

(1)
k1

A
A
AU

�
�

��

aggregation⊙k1
i=1 ϕ

(1)
i

-
inference

result1 ⇒
⇒ action1

ψ(1)

new fuzzy data ⇒
⇒ new truth values

ϕ
(2)
1 . . . ϕ

(2)
k2

A
A
AU

�
�

��

aggregation⊙k2
i=1 ϕ

(2)
i

-
inference

result2 ⇒
⇒ action2

ψ(2)
etc.

Fig. 1. Modus operandi of applied FLt

Another observation is that the data that enter the aggregation and inference
are usually extra-logical (measured in the real world, read from a database
etc.). In particular, they usually do not contain the operators

⊙
and → of the

inference mechanism, and so in FLt inference one usually need not consider
nested implications (the formulae expressing the inference laws are “flat”).

The operations used for aggregation of the input data vary widely among
particular applications. Consequently, various classes of aggregation operators⊙

are studied in theoretical FLt, including t-norms and co-norms, uninorms,
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copulas, semi-copulas and quasi-copulas, various kinds of averages and means,
etc. (for a brief overview see, e.g., [30, Ch. 3]).

The situation in FLd is different, as is the typical modus operandi of FLd. The
formally-deductive aims of FLd require the preservation of guaranteed truth
values also in successive (iterated) inferences, which are typical for multiple-
step deductions. In formal derivations we often have intermediary steps and
results, lemmata, partial conclusions, etc., and we want the guaranteed truth
degree of a conclusion to remain coherent throughout long deductions. There-
fore, a typical modus operandi of FLd is the one depicted in Figure 2.

fuzzy premises
⇒ truth values
ϕ1 . . . ϕk1

A
A
AU

�
�

��

conjunction
k1⊙
i=1

ϕi -
inference

partial
result1

ψ(1)

truth ≥
⊙k1

i=1 ϕi

-

more fuzzy premises
⇒ truth values
ϕk1+1 . . . ϕk2

A
A
AU

�
�

��

conjunction

ψ(1) �
k2⊙

i=k1+1

ϕi -
inference

partial
result2

ψ(2)

truth ≥
⊙k2

i=1 ϕi

- etc.

Fig. 2. Modus operandi of FLd

Observe first that in the multiple-step derivations of FLd, the premises of
the first steps still play a role in the following steps, since partial results
enter further deductions. Furthermore, in the formally logical setting of FLd,
formulae entering deductions need not be purely extralogical and can have
inner logical structure, i.e., be built up from subformulae by means of logical
connectives, including those used for inference, i.e., � and →. Thus unlike in
FLt, the formulae in FLd inference need not be “flat” and nested implications
can occur. Implication thus plays a double role in FLd deduction: it is used
for making inferences, but can also occur as a connective within a formula
that enters the inference as a premise or comes out as a conclusion. Similarly
conjunction is used for the aggregation of premises, but can also appear as a
connective inside the premises and conclusions. If both roles of the operators
are to match, they have to satisfy conditions that describe the match of the
roles. Namely, whenever ϕ1 is a premise of implication (inference) and ϕ2 → ψ
is its conclusion, both roles of implication will accord iff ϕ1 and ϕ2 together
(i.e., aggregated) imply ψ (since both ϕ1 and ϕ2 are after all premises for
ψ—one in implication-as-inference and one in implication-as-connective); and
vice versa, if ϕ1 and ϕ2 jointly imply ψ, then ϕ1 alone should imply ϕ2 → ψ
(for the same reason). Similarly, ϕ1 and ϕ2 aggregated should imply ψ if and
only if ϕ1 � ϕ2 implies ψ (this corresponds to the match of both roles for
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conjunction). Since by the earlier considerations implication-as-inference is in
FLd understood as truth-preservation (i.e., the relation ≤), the requirement
can be formulated as the condition

ϕ1 � ϕ2 ≤ ψ iff ϕ1 ≤ ϕ2 → ψ (1)

The general form for an arbitrary number of premises as in Figure 2 already fol-
lows from (1). This law of residuation is therefore required in FLd for ensuring
the coherence of the guaranteed truth thresholds in multiple-step deductions
with nested implications, while it need not be required in one-step inferences
with flat formulae in FLt.

The principle of residuation restricts significantly the class of conjunctive op-
erators admissible in FLd. Together with a few reasonable additional require-
ments (see Remark 10 below) it confines the FLd-suitable [0, 1]-conjunctions &
to left-continuous t-norms (or residuated uninorms, if we admit degrees of full
truth) [20,28,33]. Other operators for fuzzy data aggregation are not mean-
ingful in FLd, though they are both meaningful and important in FLt (as FLt
need not preserve guaranteed truth degree in nested and iterated inferences).

Like in the case of fuzzy elements and the notion of entropy, many FLt con-
junctive operators are still definable in systems of deductive fuzzy logic: e.g.,
a broad class of t-norms which are not left-continuous is representable in the
logic  LΠ [21,34]. Nevertheless, as in the cases above, the apparatus of FLd
is most efficient for conjunctions to which the FLd systems are tailored, i.e.,
which respect the above constraints.

Remark 8 The constraints on admissible conjunction connectives rule out
the meaningfulness of most cut-wise definitions in FLd. Since most left-continuous
t-norms are not idempotent, α-cuts are in general not preserved by conjunc-
tion in most systems of FLd (except in Gödel fuzzy logic of the minimum
t-norm). 11 Thus, e.g., the cut-wise definition of the intersection of fuzzy sets
is from the FLd point of view only meaningful in Gödel logic; in other systems
of FLd, the cut-wise intersection (which equals the minimum-intersection)
does not satisfy the defining condition of intersection that the membership
degree of x in A ∩B be the conjunction of the membership degrees of x in A
and B, i.e., that (A ∩B)x = Ax&Bx.

Thus, e.g., Dubois and Prade’s definitions of elementary operations on gradual
sets proposed in [18] (which are cut-wise, as we noted in the first case study),
can only be well-motivated in FLt. Similar considerations restrict the FLd-
meaningfulness of many parts of categorial (sheaf) approach to fuzzy sets,

11 Most FLd conjunctions thus do not satisfy the axiom often required in FLt of
aggregation operators, namely that x� · · · � x = x.

14



which often works cut-wise (i.e., fiber-wise) and thus belongs to FLt rather
than FLd.

Again, this does not diminish the importance of cut-wise notions in FLt; only
we should be aware that they are not well-motivated in FLd. In deductive
fuzzy logic, many cut-wise notions can still be defined, and some of them
do have some importance even in FLd. For instance, in all logics based on
continuous t-norms, the minimum conjunction ∧ and maximum disjunction
∨ are definable, and by means of these connectives one can define the cut-
wise operations of min-intersection and max-union. However, their role in
FLd systems is different than that of the notions based on usual (strong)
conjunction &; in particular, min-conjunction cannot be used as a surrogate
for strong conjunction, since both connectives have different meaning. Strong
conjunction & represents the use of both conjuncts, while min-conjunction
∧ represents the use of any one of the conjuncts, as can be seen from the
following equivalences valid in BL and related systems:

[(ϕ1 & ϕ2) → ψ] ↔ [ϕ1 → (ϕ2 → ψ)] (2)

[(ϕ1 ∧ ϕ2) → ψ] ↔ [(ϕ1 → ψ) ∨ (ϕ2 → ψ)] (3)

Since it is (2) that we need in iterated inference rather than (3), minimum
conjunction cannot be used for aggregation of premises in FLd. Similarly, min-
intersection does not represent membership in both fuzzy sets, but only in any
of them, and cannot be used in contexts when both Ax and Bx are required.
The following example demonstrates the methodological consequences of the
distinction between the two conjunctions in FLd.

Example 9 The notion of antisymmetry of a fuzzy relation R w.r.t. a simi-
larity E defined with min-conjunction, i.e., by infxy(Rxy ∧Ryx→ Exy) as in
[11] or similarly in [27], is not well-motivated in FLd, since in antisymmetry we
clearly need both Rxy and Ryx to infer Exy (neither Rxy nor Ryx alone is suf-
ficient for Exy in antisymmetric relations; cf. (3)). Thus in FLd, we have to de-
fine antisymmetry with strong conjunction, i.e., as infxy(Rxy&Ryx→ Exy),
even though some theorems of [27,11] will then fail. From the deductive point
of view, min-conjunction antisymmetry is only well-motivated in Gödel logic.

Remark 10 As mentioned at the beginning of this section, the requirements
on the transmission of truth in FLd lead to the defining conditions of Rasiowa’s
implicative logics or Cintula’s weakly implicative (fuzzy) logics. However, these
conditions only ensure good behavior of fully true implication, which then
corresponds to the order of truth degrees [14]. Inferentially sound behavior of
partially true implication and conjunction requires further axioms, including
the law of residuation (as seen above), since only then implication internalizes
the transmission of partial truth and conjunction internalizes the cumulation
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of premises in graded inference. The latter law also makes formal systems of
FLd belong to the well-known and widely studied class of substructural logics
(in Ono’s [36] sense, i.e., the logics of residuated lattices).

Thus from the point of view of deductive fuzzy logic, Cintula’s class of weakly
implicative fuzzy logic is still too broad. Best suitable logics for FLd are only
those weakly implicative fuzzy logics that satisfy residuation and several nat-
ural requirements of the internalization of local consequence (namely the log-
ical axioms expressing the antitony resp. isotony of implication in the first
resp. second argument, and associativity and commutativity of conjunction;
cf. [12]). The resulting class can be understood as the formal mathematical
delimitation of deductive fuzzy logics. The above conditions characterize them
as those weakly implicative fuzzy logics which are extensions or expansions of
the logic UL of residuated uninorms [33] or, if we add the law of weakening
ϕ→ (ψ → ϕ), of the logic MTL of left-continuous t-norms [20]. 12

Again this does not imply that other weakly implicative fuzzy logics or logics
used in FLt are deficient. However, only logics from the above defined class suit
best to the motivation of FLd (i.e., transmission of guaranteed partial truth
in multi-step deductions) and admit the construction of formal fuzzy mathe-
matics in the sense of [6]. This is because their implication and conjunction
respectively internalize the local consequence relation and the cumulation of
premises: they have, in Ono’s [36] words, a “deductive face”. Other logics 13

lie outside the primary area of interest of FLd, though they may be of their
own importance and interest in FLt.

Conclusions

The three case studies show that FLd differs from broader FLt in many as-
pects, including the area of competence, methods, motivation, formalism, etc.
It should perhaps be admitted that symbolic fuzzy logicians on the one hand
and researchers in “mainstream fuzzy logic” on the other hand do rather dif-
ferent things and work in two distinct, even though related, areas (with some
non-empty intersection). Since after the years of usage there is no chance for
changing the name “fuzzy logic” in either tradition, a suitable determinative

12 The class is only slightly broader than Metcalfe and Montagna’s class of “sub-
structural fuzzy logics” [33], which in addition requires the completeness w.r.t. stan-
dard [0, 1] semantics.
13 Including Zadeh’s original system with min-conjunction, max-disjunction, (1−x)-
negation and S-implication, as well as  Lukasiewicz logic with strong conjunction
replaced by min-conjunction—a system both favored and targeted by many philoso-
phers of vagueness.
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adjective (like symbolic, formal, mathematical, or as proposed here, deductive)
attached to the name of the narrower and younger of both areas is probably
the best solution to possible terminological confusions.

It is sometimes complained that fuzzy logic does not have a clear method-
ology for defining its notions and the direction of research. FLd, as its very
narrow and specific branch, however, does possess a rather clear methodology,
inherited for a large part from the methodology of non-classical logics and
classical foundations of mathematics [22,6]. This may be a consequence of the
fact that FLd has chosen and clarified one of all possible interpretations of
membership degrees, and now studies the properties of this single clarified
concept. FLt, on the other hand, admits many interpretations of membership
degrees and often tries to investigate them together, without separating them
properly and without clarifying carefully which of the possible interpretations
is considered. 14

A historical parallel can be seen in the early history of classical (crisp) set
theory. As noticed by Kreisel in [32], Cantor’s notion of set was a mixture
of at least three concepts—finite sets of individuals, subsets of some domain,
and properties (unbound classes). Part of the opposition against set theory
was due to its confusion of these notions of set: the crude mixture (as Kreisel
calls it) did not possess good properties, and the paradoxes of naive set theory
confirmed the bad feeling. Only after one element of the crude mixture (viz.
iterated subsets) was clearly separated by Russell and Zermelo and shown to
have good and rich enough properties, the notion of set could start playing its
foundational role in mathematics.

Similarly the theory of fuzzy sets presents a mixture of various different no-
tions of fuzzy set (truth-based, possibilistic, linguistic, frequentistic, proba-
bilistic, etc.). While FLd has distilled one element of the mixture (namely the
truth-based notion of fuzzy set), FLt often continues to investigate the crude
mixture as a whole, only partially aware of the distinctions needed to be made.
(Not that it never distinguishes the areas of applicability of its own notions:
sometimes it does; but often it forgets to do so or is not careful enough.)

The methodological success of FLd and its advances should stimulate FLt to
distinguish with similar clarity the exact components of the crude mixture of
notions of fuzzy set. Theoretical gains from their clear separation and investi-

14 For instance, general definitions (e.g., cut-wise) of operations on fuzzy sets are of-
ten given, regardless of what is the intended interpretation of membership functions.
(This is also the case with the operations on gradual sets defined in [18].) However,
suitable definitions may depend on the intended meaning of membership degrees (as
also demonstrated by the unsuitability of many such definitions for FLd), since dif-
ferent underlying phenomena may have different properties (and thus also different
demands on the behavior of suitable operations).
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gation of the most promising ones would certainly be large (as was, e.g., the
gain from conceptual and methodological clarification of the notion of proba-
bility); some areas of FLt besides FLd (e.g., possibility theory) already seem
to be close to such clarification.
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