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Thesis description





Logical foundations of fuzzy
mathematics

Preface

This is a commentary associated with the author’s PhD thesis in logic at the Faculty of
Arts, Charles University in Prague. The thesis is based on papers containing results
of five years of the author’s research in logic-based fuzzy mathematics. The papers have
been published in peer-reviewed international journals [14, 30, 34, 26, 28, 41], proceedings
of international conferences [33, 31, 32, 16, 17, 19, 22, 18, 37, 43, 42, 44, 29] and other
volumes [15, 21, 25, 35]. By the time of the submission of this thesis and according to the
author’s knowledge, the papers have been cited 25 times in peer-reviewed international
journals and 15 times in edited volumes and proceedings of international conferences,
excluding auto-citations and citations by co-authors. Two co-authored conference papers
won the Best Paper [32] and Distinguished Student Paper [42] awards (respectively at the
11th IFSA World Congress and the 5th Conference of EUSFLAT).

The work is part of a larger project in formal fuzzy mathematics, which is still in
progress (cf. the end of Section 4.1 below): several important topics in formal fuzzy
mathematics are being investigated by my colleagues and myself, with results not yet
complete for publication. Therefore it seemed more appropriate to present the results
of this research in the form of a commented collection of papers, rather than to compile
a monographic text, as at the time of submission the topic was still under permanent
construction and re-construction and not yet ripe for a book-style presentation.

Due to the brevity or purely expository nature of some of the conference papers and
the overlap of their topics with full journal articles, only the six journal papers [34, 30,
28, 41, 26, 14] and four of the proceedings papers [16, 19, 43, 42] have actually been
included in the thesis. The author’s contribution to co-authored papers is indicated in
Section 4.2.

The thesis is organized as follows: In the cover text (Part I), Section 1 provides a
general introduction to the area of research. A broader context and the state of the art
upon which the thesis is based is described in Section 2. The main features of the approach
developed in the thesis and the significance of the topic are discussed in Section 3. The
author’s own contribution to the topic and the papers included in the thesis are then
described in Section 4. The author versions of the published papers constitute the main
body of the thesis (Part II). The thesis is concluded by mandatory annexes (Part III).

Acknowledgments. Many people must be thanked for helping this thesis come to exis-
tence. I am grateful to Petr Jirk̊u, not only for his supervision and help with organizational
matters at the Faculty of Arts, but also for much needed support in the early years of my
study. Many thanks go to my co-advisor Petr Hájek, for countless benefactions including
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(but not limited to) his advice, support, and friendship: by adopting me to his working
group at the Institute of Computer Science, he has enabled me to participate in the sci-
entific life of the relevant community; and nearly all of my knowledge of fuzzy logic has
its ultimate roots in his lectures and tutoring.

I thank all my co-authors for fruitful co-operation. In alphabetical order they are
Ulrich Bodenhofer, Petr Cintula, Martina Daňková, Rostislav Horč́ık, and Tomáš Kroupa.
Without them, this thesis would either be much sparser, or would have to deal with
different topics. I am grateful to people who supported my research by including me in
their grant teams, supporting my fellowship applications, or providing funding for my
participation at conferences: Petr Hájek, Jǐŕı Š́ıma, Jeff Paris, Mirko Navara, Petr Jirk̊u,
Franco Montagna, and Andrzej Wísniewski.

The research presented in this thesis was supported by the Information Society project
1ET100300517 and grants No. B100300502, A1030004, A100300503, and A900090703 of
the Grant Agency of the Academy Sciences of the Czech Republic, grant No. 401/03/H047
of the Grant Agency of the Czech Republic, Institutional Research Plan AV0Z10300504,
COST action 274 TARSKI, fellowships from the Marie Curie Early Stage Training network
MEST–CT–2004–504029 MATHLOGAPS and the CEEPUS network SK–042, three joint
projects of the Academy of Sciences of the Czech Republic and Spanish Research Council,
and program KONTAKT projects 2005–15 Austria and 6–07–17 Austria. The conference
presentation of some results was furthermore supported by Polish Research Council, a
EUSFLAT grant for student participation, and a travel grant from the Faculty of Arts of
Charles University.

I have also benefited from discussions with many colleagues and kind advice given to
me by senior researchers in the field. Among those whose remarks helped me a lot are (in
alphabetical order and besides those listed above) Christian Fermüller, David Makinson,
Jeff Paris, and several anonymous referees. Thanks are due to Petr Cintula, Petr Hájek,
Tomáš Kroupa, and Carles Noguera for comments on a draft version of the cover chapter.
Many other people have helped me during the course of my PhD study with scientific and
organizational matters; I appreciate all help I have been given.

1 Introduction

Fuzzy mathematics is the study of fuzzy structures, or structures that involve fuzziness—
i.e., such mathematical structures that at some points replace the two classical truth
values 0 and 1 with a larger structure of degrees. Often, the real unit interval [0, 1] is
employed as the system of degrees, but other options are common as well—a finite set, an
arbitrary lattice, an algebra of some kind or other. The degrees are intended to provide
more flexibility to a fuzzy mathematical structure than the two truth degrees provide to
the corresponding classical (“crisp”) mathematical structure.

A simple example of a fuzzy mathematical structure is that of a fuzzy set. Instead of
classical two-valued characteristic functions χ : X → {0, 1}, fuzzy sets employ real-valued
membership functions µ : X → [0, 1], where X is a fixed universe of discourse. While
ordinary crisp sets clearly cut the elements of X between members and non-members, the
richer system of degrees in fuzzy sets allows modeling gradual change between membership
and non-membership.

Since the introduction of fuzzy sets by Zadeh [212] in 1965, a plethora of fuzzy mathe-
matical structures have been proposed and investigated in the literature. The degrees that
replace the classical truth values 0 and 1 (usually called membership degrees, as they serve
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as values of membership functions) can appear at various places in such fuzzy structures.
For instance in fuzzy topology, crisp families of open fuzzy sets (“fuzzy topologies”), fuzzy
families of open crisp sets (“fuzzifying topologies”), and fuzzy families of open fuzzy sets
(“bifuzzy topologies”) have all been investigated [55, 208, 130]. The membership degrees
themselves can form various structures. For example, the original notion of [0, 1]-valued
fuzzy set was soon generalized to L-valued fuzzy sets for L an arbitrary lattice [95], and
even more general (e.g., poset-valued) fuzzy sets and fuzzy structures are studied [184].

The large freedom in defining fuzzy mathematical notions correlates with freedom in
interpreting the informal meaning of membership degrees. Depending on the intended in-
terpretation, various structures of membership degrees and various definitions of fuzzy
mathematical notions are appropriate. Vice versa, particular structures of membership
degrees and particular definitions of fuzzy mathematical notions admit only some of all
possible informal interpretations and applications of the fuzzified theory. Unfortunately,
this fact is seldom reflected in the practice of the fuzzy community. The omission of
such considerations can result in arbitrariness of definitions, inappropriateness of applica-
tions, and completely unclear methodology, for all of which fuzzy mathematics has often
(and in many cases quite justly) been reproached and disrespected by the mainstream
mathematical community.

The present work is not intended to contribute to the chaotic and methodologically
confused development of the broad area of fuzzy mathematics. Instead, from the mixture
of possible interpretations of membership degrees it selects one particular interpretation
which has already been clarified enough to support a methodologically sound development:
namely, the interpretation of membership degrees as degrees of comparative truth, which
is studied by deductive fuzzy logic. Our approach to fuzzy mathematics can thus be
characterized as logic-based.1 More detailed methodological considerations justifying this
approach have been presented in [26]; here we only stress the most important points.

Deductive (or formal, symbolic, mathematical) fuzzy logic follows the modus operandi
of classical logic. Without necessarily claiming that the philosophical notion of truth as
such is (or is not) many-valued, it employs semantical models that assign intermediary
truth degrees to propositions. In deductive fuzzy logic, like in fuzzy mathematics in
general, a richer structure of truth degrees enables to model gradual change between truth
and falsity, which seems appropriate in many real-life situations. The interpretation of
membership degrees in terms of truth, moreover, allows studying transmission of truth
degrees in formalized arguments, in the same way as classical logic studies transmission
of bivalent truth.

The study of transmission of partial truth (in the technical sense of “partial truth” as
the graded quality preserved in sound arguments) is what in fact distinguishes deductive
fuzzy logic from traditional fuzzy logic. Fuzzy logic in the traditional sense has emerged
soon after the introduction of fuzzy sets [96], by generalizing the obvious correspondence
between elementary set operations and logical connectives. If the transmission of partial
truth is not taken into account, there are as many ways to define fuzzy logical connec-
tives as there are possibilities for pointwise elementary fuzzy set operations. This makes
traditional fuzzy logic subject to the same criticisms as fuzzy mathematics as a whole,
especially for arbitrariness and unclear methodology. Moreover for most choices of logical

1Other approaches to fuzzy mathematics exist, some of them quite far developed—for example
category-theoretical (see [106]) or sheaf-theoretical (see [129]). As far as they can address the methodolog-
ical issues hinted at above, they provide a legitimate grounding for those branches of fuzzy mathematics
that are compatible with their methodological assumptions. The logic-based approach then complements
rather than rivals such approaches.
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connectives, the resulting logical systems have very poor logical properties, which leads
to additional criticism from the point of view of formal logic.

It can nevertheless be shown [26, 22] that if certain basic principles governing the
transmission of partial truth are observed, the resulting logical systems are well-behaved
and well-motivated. These principles narrow down the choice of real-valued logical con-
nectives to a class based on left-continuous t-norms and described by deductive systems
of t-norm based fuzzy logics [110, 81]. These logics not only model the gradual change
from truth to falsity like other kinds of fuzzy logic, but also have a “deductive face” and
belong in a well-explored and well-behaved class of substructural logics [173, p. 208].

Since Hájek’s monograph [110], various propositional and first-order systems of de-
ductive fuzzy logic have been defined and intensively studied. Nowadays the discipline
is developed to the point that it is reasonable to construct and study axiomatic math-
ematical theories within the formal framework of deductive fuzzy logic. A systematic
development of axiomatic fuzzy mathematics based on deductive fuzzy logic has been
proposed as a research program in [34]; the present work can be viewed as a report on its
implementation.

The strategy proposed in [34] was to utilize the similarities between deductive fuzzy
logics and classical logic and employ the architecture that has proved useful in foundations
of classical mathematics. The classical foundational approach consists in developing a suf-
ficiently rich foundational theory that would harbor all (or almost all) other mathematical
theories. In classical mathematics, the role of a foundational theory can be assumed, e.g.,
by some variant of set theory, type theory, or category theory. For the foundations of
logic-based fuzzy mathematics, [34] proposes a fuzzy variant of Russell-style simple type
theory that has been introduced in [30]. It can equivalently be characterized as Henkin-
style higher-order fuzzy logic or a typed theory of cumulative fuzzy classes (i.e., Zadeh’s
fuzzy sets of all finite orders). The apparatus of this foundational theory, also called
Fuzzy Class Theory or FCT, is described in detail in [30, 31, 32, 35]; its methodologi-
cal issues are further discussed in [26, 37]. The basics of the theory of fuzzy sets and
relations, which are the prerequisites of all other branches of fuzzy mathematics, are de-
veloped in [30, 28, 41, 19]. Some more advanced topics of fuzzy mathematics have already
been developed, too, including the (graded) theory of fuzzy lattices [17, 15], fuzzy intervals
[16, 134], aggregation operators [64, 29], fuzzy filters [149], and fuzzy topology [43, 42, 44].
In [14, 38, 25], the apparatus is applied in metamathematics of fuzzified versions of other
non-classical logics.

The results achieved so far have already demonstrated that this style of development
of fuzzy mathematics is viable and can facilitate generalizing known theorems as well as
discovering new results. Indeed, from the point of view of formal logic the methodology
and foundational structure of the theory is quite standard and straightforward. On the
other hand, from the point of view of traditional fuzzy mathematics the theory presents a
radical shift of paradigm, embraced till now by very few authors (for notable exceptions see
Section 2). The main reasons justifying the development of logic-based fuzzy mathematics
are described in Section 3 below.

There are many open questions and areas for future research in formal fuzzy math-
ematics, as well as problems of philosophical and methodological nature. Even though
these problems are still distant from the applied practice or topics of mainstream interest,
their solution can give us better understanding of the phenomenon of gradedness and its
role, as well as possible applications.

For the adequate perspective on the present work with respect to the whole of fuzzy
mathematics, it is necessary to keep in mind the methodological restrictions of the logic-
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based approach. The definite interpretation of membership degrees as degrees of truth
transmitted under inference leads on the one hand to methodological clarity, but on the
other hand it restricts meaningful definitions to those compatible with the deductive
paradigm, and limits the scope of applicability of the results. For instance, as men-
tioned above and as shown in more detail in [26], the principles of deductive fuzzy logic
restrict the choice of the conjunction connective on the interval [0, 1] to left-continuous
t-norms. Consequently, the operation of fuzzy set intersection can meaningfully be de-
fined only by means of such conjunctions.2 Other possible notions of intersection that
may be meaningful in broader fuzzy mathematics, for instance those based on aggregation
operators different from left-continuous t-norms, may well be definable in a sufficiently
strong higher-order fuzzy logic (e.g., higher-order logic  LΠ), but are ill-motivated from
the point of view of logic-based fuzzy mathematics. Thus, as argued in [26], even though
the expressive power of higher-order fuzzy logic goes well beyond its intended scope, the
strength of its apparatus is best manifested within the limits of its motivation. Logic-
based fuzzy mathematics thus forms a specific, distinct part of fuzzy mathematics, which
is based on the notion of deduction and which should not be confused with other areas
of fuzzy mathematics that are based on different interpretations of membership degrees,
such as degrees of uncertainty, belief, frequency, preference, etc. (cf., e.g., [90, 74, 73] for
different interpretations of degrees and the concluding part of [26] for the need of their
clear separation).

Another connection that should be clarified is that to the philosophy of vagueness.
On the one hand, fuzzy logic is often claimed to be the logic of vague propositions, or
the logic of vagueness. On the other hand, it is as often criticized by philosophers as a
completely misled and inadequate theory of vagueness. Although this introduction is not
a suitable place to discuss this issue in detail, it should be stressed that both claims are
inaccurate and need certain qualifications. To be sure, fuzzy logic cannot claim to be the
logic of vagueness, as vagueness is a phenomenon with many facets, most of which are not
captured by deductive fuzzy logic (e.g., are not truth-functional). If anything, deductive
fuzzy logic can claim to be a logic of a certain kind of vagueness, related to properties
that can be understood as coming in degrees. Moreover, deductive fuzzy logic is only
a logic, rather than a fully fledged theory of vagueness meeting all requirements of the
philosophy of vagueness (including answers to questions not asked by logic, for instance
about the objectivity of the truth degrees etc.). Still, it can be argued that deductive
fuzzy logic is a good model of inference under (certain kinds of) vagueness and as such can
serve as a logical basis for a (prospective) theory of vagueness, or at least can help shed
light on some of its facets. The sweeping damnation of fuzzy logic by many philosophers
of vagueness is therefore unjustified and is for the most part caused by the ignorance of
recent advances in fuzzy logic.3

Finally, fuzzy mathematics is sometimes criticized by mainstream mathematicians as

2At least as long as we understand intersection as the operation expressing the fact that an element
belongs to the first and the second fuzzy set, i.e., require that one can infer both x ∈ A and x ∈ B from
x ∈ A ∩B and vice versa.

3For instance, many criticisms are caused by an inappropriate use of weak conjunction instead of strong
conjunction in  Lukasiewicz fuzzy logic (which is by far the most popular fuzzy logic among philosophers
of vagueness), cf., e.g., [205, §4] or [78, §3]. Bad logical properties of some systems of fuzzy logic which
are defective from the deductive point of view (e.g., Zadeh’s original system of connectives min, max, and
1−x) induce many philosophers (e.g., [201]) to condemn fuzzy logic as a whole, without considering better
options offered by present-day mathematical fuzzy logic. Further problems arise from misunderstanding
the role of fuzzy logic and expecting it to be applicable to situations that are beyond its scope (e.g.,
related to probability, levels of belief, etc.).
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giving nothing but cheap generalizations of classical results. One of the aims of the present
work is to show that indeed large parts of fuzzy mathematics are trivial, and demonstrate
their triviality by deriving them from easily provable metatheorems (e.g., [30, Th. 33–36]
or theorems in [41]). This shows that unlike more traditional approaches, the deductive
apparatus of higher-order fuzzy logic enables clearly to perceive the triviality of such
results. At the same time it provides means for reaching less trivial theorems (cf., e.g.,
[28, §6–7]) and possibly for achieving higher levels of fuzzy mathematics. It can be hoped
that this direction will eventually contribute to gaining a better reputation for fuzzy
mathematics among mainstream mathematicians.

2 State of the art

The enterprise of logic-based fuzzy mathematics is not isolated from other areas of math-
ematics and logic. It is based on formal fuzzy logic and its metamathematics, and can
be regarded as its higher-order extension. At the same time it can be regarded as a for-
malization, reconstruction, and further development of certain parts of traditional fuzzy
mathematics. In a broader context it is part of non-classical mathematics, i.e., mathemat-
ics that uses a non-classical logic for reasoning. This section gives an overview of previous
results upon which logic-based fuzzy mathematics in general and the author’s contribu-
tion in particular have built, as well as main results in related areas. However, due to
the breadth of the field, this section cannot give an exhaustive survey or full historical
account of all important works published in this area. Works which are most relevant to
particular topics of this thesis are referred to in the articles it consists of; only a brief
description of the state of the discipline at the time of the current project is given here,
with a focus on works relevant for formal fuzzy mathematics.

2.1 Non-classical mathematics

Non-classical mathematics can be defined as the development of mathematical theories
that employ some non-classical logic for informal reasoning or formal derivations. The
area of non-classical mathematics comprises several independent branches, according to
the kind of underlying logic used for mathematical reasoning. Each of these branches can
further be divided into many particular theories over particular logics of the respective
kind.

An example of non-classical mathematics is paraconsistent mathematics based on some
variant of paraconsistent logic. The common feature of paraconsistent logics is that con-
tradictions are in general not explosive (i.e., A and non-A do not in general entail an
arbitrary B). This fact can be used, e.g., for the development of mathematical analysis
based on the (contradictory) notion of infinitesimals [165]. Another application of para-
consistent mathematics is in naive set theory with full comprehension, where Russell’s
paradox is not destructive thanks to paraconsistency (e.g., [47]).

Avoiding Russell’s paradox is one of the most important motivations for non-classical
mathematics. Besides paraconsistency, there are several alternative ways in which Rus-
sell’s paradox can be eliminated by employing a non-classical logic. One option is based
on the observation that the structural rule of contraction (see, e.g., [182, 175, 173, 174])
is essential for the derivation of contradiction from the definition of Russell’s set. It has
indeed been proved that in various contraction-free substructural logics, set theory with
the unrestricted axiom scheme of comprehension is consistent, and some of such theories
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have indeed been developed—e.g., over variants of linear logic [195, 187].4 In fuzzy logics
(which belong among contraction-free logics, cf. [173]), the consistency of unrestricted
comprehension over  Lukasiewicz logic was conjectured in 1957 by Skolem ([190], accord-
ing to [204]). Skolem’s partial results [191] were later extended by Chang [53] and Fen-
stad [84], and the conjecture finally confirmed in 1979 by White [204]. The theory has
recently been investigated by Hájek [115] and Yatabe [207]. It is still an open question
whether the theory or some extension thereof is sufficiently strong to support non-trivial
mathematics (as conjectured by Skolem): Hájek’s paper [115] contains some negative re-
sults on this question regarding arithmetic.5 Although certainly worth investigating, this
style of fuzzy mathematics is very different from traditional fuzzy mathematics. Logic-
based fuzzy mathematics presented in this thesis avoids Russell’s paradox by different
means (namely in the style of type theory) and is only remotely related to fuzzy set
theories with unrestricted comprehension.6

Another way to avoid Russell’s paradox by means of non-classical logic has been pro-
posed by Kraj́ıček in [146, 147], namely by adding (epistemically interpretable) modalities
to the language of set theory. The resulting theory is an example of modal mathematics,
which in general can employ various kind of modalities serving various purposes. Modal
mathematics related to the phenomenon of vagueness (and thus remotely to fuzzy logic)
is proposed in [136].

Probably the most influential of all branches of non-classical mathematics is intu-
itionistic mathematics; related to the latter is constructive mathematics which usually
uses some variant of intuitionistic reasoning, plus or minus some principles considered
(non)constructive. The informal development of intuitionistic mathematics by Brouwer
and his followers (cf. its formalization [143]) and constructive mathematics by construc-
tivists can be considered the first non-classical mathematics ever developed. The later
development of formal theories over intuitionistic logic (e.g., [77, 183]) is of special impor-
tance for logic-based fuzzy mathematics, since deductive fuzzy logics can be characterized
as prelinear contraction-free intuitionistic logics;7 informally speaking, fuzzy logics show
in general intuitionistic features (especially in the behavior of quantifiers and negation).

The most important parts of intuitionistic mathematics for the foundations of fuzzy
mathematics are set theories over intuitionistic logic. Since they are directly connected
with the development of set theories over fuzzy logic, they will be described together with
the latter in Section 2.4.

Especially strong links exist between mathematics over intuitionistic logic and that
over Gödel fuzzy logic (for which see [76, 135, 110, 4]), as Gödel logic extends intuitionistic

4Related theories with unrestricted comprehension were originally studied by Grishin over the logic
known as (classical) logic without contraction, Grishin’s logic, or Ono’s CFLew (classical full Lambek
calculus with exchange and weakening, see [173]). A description and further elaboration of Grishin’s
work [108] can be found, e.g., in [51].

5Further negative results [181, 121] regard the related question (which classically is a variation of
Russell’s paradox or the Liar) whether a truth predicate can be added to arithmetic over  Lukasiewicz
logic.

6It should be noted that for the consistency of unrestricted comprehension, a necessary condition on
the underlying logic is that no bivalent connective be definable. Consequently, fuzzy set theories with
full comprehension cannot be based on Gödel or product logics (as they have bivalent negation), nor
any fuzzy logic with the Baaz 4 connective. Many important fuzzy logics are therefore excluded from
this style of fuzzy mathematics. Fuzzy set theory with unrestricted comprehension is thus a very specific
theory rather than a universal formalization of traditional fuzzy mathematics.

7More precisely, the weakest deductive fuzzy logic MTL, which is arguably [26] the weakest fuzzy logic
suitable for formal fuzzy mathematics, arises by adding the axiom of prelinearity to the intuitionistic
calculus LJ without the rule of contraction.
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logic just by Dummett’s axiom of prelinearity (ϕ→ ψ)∨(ψ → ϕ) and the first-order axiom
of constant domains (∀x)(ϕ ∨ ψ(x)) → (ϕ ∨ (∀x)ψ(x)). Fuzzy mathematics over Gödel
logic is thus stronger (i.e., closer to classical mathematics) than intuitionistic mathematics
and most results in intuitionistic mathematics are readily transferrable to Gödel fuzzy
mathematics. Since the connectives of Gödel logic are available in all extensions of the
fuzzy logic MTL4, the results in Gödel fuzzy mathematics have also some relevance in
general fuzzy mathematics.

Kripke semantics for predicate Gödel logics, characterized in [10] as countable lin-
ear Kripke frames for intuitionistic logic with constant domains, with a possible modal
interpretation of epistemic states of the idealized mathematician (or Brouwer’s creating
subject, cf. [199]) provides an additional link between fuzzy, modal, and intuitionistic
mathematics. The Kripke semantics can be extended to non-contractive first-order fuzzy
logics [163, 164] along the lines of [174] (i.e., equipping the Kripke frame with a monoidal
operation, or a ternary accessibility relation). Kripke semantics can provide another pos-
sible link, beside that based on the algebraic semantics of (linear) residuated lattices,
of logic-based fuzzy mathematics to other substructural (e.g., relevant [159, 88]) math-
ematical theories; this option has not yet been investigated, though. Since furthermore
intuitionistic logic is the inner logic of topoi (see, e.g., [98]), intuitionistic mathematics
may also provide a link between the logic-based and category-theoretic or sheaf-theoretic
approaches to fuzzy mathematics [106, 129]. This link, however, has not yet been inves-
tigated, either.

2.2 Formal fuzzy logic

Logic-based fuzzy mathematics could not be developed without previous sufficient ad-
vancement of formal fuzzy logic. The requisite advances in formal fuzzy logic were achieved
only in the past decade,8 even though there were some (rather isolated) predecessors to
this development.

Logics now regarded as belonging to the family of fuzzy logics were defined and studied
from about 1920 on by several logicians, including  Lukasiewicz [154], Wajsberg [200],9

Gödel [94], Dummett [76], Hay [125], Belluce and Chang [45], Horn [135], and others.
Fuzzy logic related to Zadeh’s idea of a fuzzy set first occurred in Goguen’s 1969 paper
[96], motivated by the obvious correspondence between elementary fuzzy set operations
and logical operations on truth degrees. In subsequent years, however, the term “fuzzy
logic” was used either in a very broad sense (cf. the distinction between fuzzy logic in
broad and narrow sense made by Zadeh in [214]), or only in reference to the semantical
truth tables defining some (often rather arbitrarily chosen) operations on truth degrees.

The first formal calculus specifically devised for fuzzy logic, later proved to be equiva-
lent to  Lukasiewicz fuzzy logic with real truth constants [110, 122], was given in 1979 by
Pavelka [177]. This line of research, further pursued and extended to first-order logic by
Novák [167, 166], studies the so-called fuzzy logic with evaluated syntax—a specific kind
of labeled-deduction calculus for fuzzy logic that enjoys the so-called Pavelka-style com-
pleteness (i.e., the correspondence between syntactic provability degrees of formulae and
their semantic truth degrees). The logical foundations of fuzzy mathematics presented
here are, however, based on systems of fuzzy logic with traditional logical syntax rather

8This explains why the logic-based approach to fuzzy mathematics started to be systematically inves-
tigated only a few years ago and almost forty years after fuzzy mathematics itself.

9The historical papers by  Lukasiewicz and Wajsberg are cited according to [110] and [172], respectively.
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than evaluated syntax, and utilize its similarity to classical Boolean logic and classical
foundations of mathematics.10

The best known fuzzy logics with traditional syntax are those that use left-continuous
t-norms as the truth functions of conjunction and their residua as the truth functions of
implication (see, e.g., [144] for the theory of t-norms). Members of this family of t-norm
fuzzy logics have systematically been studied since Hájek’s milestone 1998 monograph
[110], in which the ‘basic’ fuzzy logic BL of all continuous t-norms and its most important
extensions, both propositional and first-order, were described in detail. Since then, a
plenitude of formal systems of t-norm logics have been defined and their basic metamath-
ematical properties (incl. general and standard completeness of their axiomatic systems,
arithmetical or computational complexity, functional representation, etc.) investigated.

Of these systems, the most important for our present investigation are the logic MTL
(or its variant MTL4) of all left-continuous t-norms [81] and the logic  LΠ (or its variant
 LΠ1

2
) joining the three basic t-norms [83, 59]. As argued in [26], MTL is the weakest fuzzy

logic suitable for the deductive style of fuzzy mathematics, thus providing the largest
generality within certain reasonable constraints. The logic  LΠ1

2
, on the other hand, is

the most expressive system among best-known fuzzy logics that still possesses very good
metamathematical properties: a deduction theorem [59], introduction and elimination of
Skolem functions [60, 30], etc. Besides other features, its standard semantics contains all
basic arithmetical operations on truth degrees; thus it is a good approximation of the
needs of traditional fuzzy logic. Moreover, a broad class of propositional t-norm logics
is interpretable in  LΠ; thus it can serve as a common framework for integration of fuzzy
mathematics over more specialized fuzzy logics.11 Nevertheless, various modifications of
these logics can be useful for more specific purposes within the project (for example, the
involutiveness of negation was needed in [43]; therefore, IMTL4 was employed as the
ground logic). Higher-order logic and formal fuzzy mathematics can be based on any
t-norm fuzzy logic, and all of them may be useful for this purpose in specific situations.

General algebraic semantics of well-behaved propositional t-norm logics consists of
suitable quasivarieties of residuated lattices (possibly enriched with additional operators).
Consequently, t-norm fuzzy logics belong to the family of substructural logics, as the latter
can be identified with logics of (classes of) residuated lattices [173]. Both the theory of
residuated lattices [139, 89] and substructural logics [175, 182] thus provide a broader
background for the more specific study of t-norm fuzzy logics. In particular, t-norm
logics fall within contraction-free substructural logics [174], since their local12 consequence
relation in general fails to satisfy the structural law of contraction (or the idempotence of

10One of the reasons for the choice of traditional rather than evaluated syntax is the necessary condition
for the Pavelka-style completeness that implication be continuous, which limits fuzzy logic with evaluated
syntax to variants of  Lukasiewicz logic.

11These were the reasons why  LΠ was chosen as the ground logic of the foundational Fuzzy Class
Theory in the original paper [30], while later most of the more particular disciplines of logic-based fuzzy
mathematics have for the sake of generality been developed in Fuzzy Class Theory over the logic MTL4
(as combinations of connectives pertaining to different t-norms turned out to be used only rarely).

12Like in modal logics or other logics with partially ordered truth values, local and global consequence
can be distinguished in t-norm fuzzy logics [117, 26]. Even though the global consequence relation
(which transmits the full truth of fuzzy propositions) is more commonly studied in formal fuzzy logic, it
is the local consequence relation between partially true premises and a partially true conclusion which is
more important for formal fuzzy mathematics, as it allows deriving graded results with imperfectly true
premises. In the practice of formal fuzzy mathematics, we derive theorems of the form ϕ1 & . . .&ϕn → ψ
by the rules of global consequence, which is axiomatized by the usual systems of fuzzy logic; the latter
form internalizes precisely the local consequence between the premises ϕ1, . . . , ϕn and the conclusion ψ.
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conjunction), while the laws of exchange and weakening do hold in t-norm fuzzy logics.
Related systems that lack some of the latter structural laws, e.g., Metcalfe’s uninorm
logic UL which drops weakening or logics with non-commutative conjunction like pseudo-
BL or the flea logic, are studied as well [157, 150, 71, 114]. With appropriate changes,
higher-order logic and formal fuzzy mathematics can be developed over these related
systems, too.

As contraction-free substructural logics with exchange and weakening, t-norm fuzzy
logics extend Ono’s logic FLew (full Lambek calculus with exchange and weakening, see,
e.g., [173]), also known as affine multiplicative additive intuitionistic linear logic [157],
Höhle’s monoidal logic [127] or intuitionistic logic without contraction [1], i.e., the logic
of commutative bounded integral residuated lattices. The distinctive feature of t-norm
fuzzy logics among contraction-free logics is the validity of the axiom of prelinearity
(ϕ→ ψ) ∨ (ψ → ϕ). In [36] we argued that prelinearity (in a more general form) can be
regarded as a characteristic feature of the class of fuzzy logics (i.e., not just t-norm based)
among Cintula’s weakly implicative logics [62]. A general theory of weakly implicative
fuzzy logics as the logics of classes of linearly ordered logical matrices is also described
in [62].

The conditions of weakly implicative fuzzy logics, however, only ensure suitable prop-
erties of implication as the principal connective in formulae true to degree 1. For the
deductive style of fuzzy mathematics aimed at graded theorems that transmit partial
truth, further conditions are needed that ensure that implication and conjunction respec-
tively internalize the local consequence relation and cumulation of premises. The resulting
class of deductive fuzzy logics [26] can be characterized as the intersection of the classes of
Cintula’s weakly implicative fuzzy logics and Ono’s substructural logics (optionally with
exchange and weakening, which will be assumed further on), or as the class of fragments
or expansions of MTL (or Metcalfe’s [156] uninorm logic UL when working without weak-
ening) with all connectives congruent w.r.t. bi-implication. Deductive fuzzy logics (which
include all common t-norm logics) are the intended background logics for logic-based fuzzy
mathematics as studied in the present project.

Propositional fuzzy logic is of course insufficient for the development of formal fuzzy
mathematics, which besides fuzzy logical connectives also needs some means for (prefer-
ably fuzzy) quantification over its individuals. Some first-order systems of particular fuzzy
logics were developed already during the pre-fuzzy and early fuzzy era [125, 45, 194]. A
systematic treatment of first-order variants of t-norm based fuzzy logics has started with
Hájek’s book [110]. Those first-order fuzzy logics that are most important for logic-based
fuzzy mathematics are described in [110, 59, 81]; a comprehensive survey of first-order
t-norm fuzzy logics is [118]. The basics of model theory for t-norm fuzzy logics have been
developed in [119] and [118, §6]. Metamathematical properties of first-order fuzzy logics
relevant to the important question of their completeness w.r.t. the standard real-valued
semantics can be found in [161, 113, 116, 163].13 Initial steps toward a general theory of
first-order weakly implicative fuzzy logics are given in [60], which largely conforms with
Rasiowa’s general approach to first-order implicative logics [180]. Higher-order systems
of fuzzy logics and axiomatic theories over first-order fuzzy logics will be mentioned in
Section 2.4.

The quantifiers in all of the first-order systems studied in the papers mentioned above
are the lattice quantifiers, corresponding to lattice conjunction and disjunction.14 This

13Of the most important first-order fuzzy logics, the standard completeness holds only for MTL and
Gödel logic. The standard incompleteness of other logics is usually proved by showing that the arith-
metical complexity of the set of their standard real-valued tautologies is larger than Σ1.

14Recall that in contraction-free substructural logics there are two different meaningful conjunctions and
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is fully sufficient for the needs of formal fuzzy mathematics, since the first-order systems
with just the lattice quantifiers turn out to be strong enough to enable the construc-
tion of Henkin-style higher-order logic, in which various classes of strong (multiplicative)
quantifiers become definable [39, 65, 64].

First-order fuzzy logics containing a strong quantifier as a logical symbol have been
studied by Montagna in [160]; cf. also another strong quantifier introduced for the real-
valued semantics by Thiele [196, 197] (as described in [160]). However, these quantifiers
do not coincide with the weakest quantifier Π that allows the inference (Πx)ϕ(x) →
&t∈M ϕ(t) for any finite multiset M of terms.15 According to our knowledge, the lat-
ter ‘inferentially optimal’ multiplicative quantifier has so far only been sketched in our
abstract [65].

Besides the special case of multiplicative quantifiers, also a general notion of quantifier
is of importance for formal fuzzy mathematics. Generalized quantifiers formally studied
in a logic-based setting by Novák [168, 171] and Holčapek [132] are motivated mainly
by modeling natural language (cf. generalized quantifiers in classical logic [203, 178] and
linguistically-motivated fuzzy quantifiers in traditional fuzzy mathematics [215, 93]) or
applications in fuzzy control. From the point of view of formal fuzzy mathematics, crisp
generalized quantifiers such as for infinitely many x, fuzzy counting quantifiers like for
many x, or quantifiers relativized to a fuzzy mathematical condition like for all large
numbers x are of the greatest interest; however, these have apparently not yet been sys-
tematically studied in the framework of formal fuzzy logic, although some of the linguistic-
oriented approaches mentioned above are undoubtedly applicable in this area as well. Such
quantifiers are nevertheless implicit in many constructions of formal fuzzy mathematics:
for example, Bandler and Kohout’s “local properties” of fuzzy relations [8, 9] are instances
of fuzzily relativized quantifiers. The initial studies on fuzzy quantifiers in formal fuzzy
logic mentioned above mostly employ higher-order systems (Novák’s fuzzy type theory
[169] or our higher-order fuzzy logic [30]), since fuzzy quantifiers can be regarded as fuzzy
sets of fuzzy sets. Apart from strong quantifiers mentioned above, the possibility of having
generalized fuzzy quantifiers as primitives in the logical language has probably not been
considered in formal fuzzy logic yet; for the development of formal fuzzy mathematics
they are not indispensable, as they can be introduced internally in higher-order systems
that are based on lattice quantifiers.

Perhaps even more important for formal fuzzy mathematics than various kinds of
strong and generalized quantifiers is the related notion of exponentials. Exponentials (in
our sense of [65]) can be seen as propositional counterparts of truth-functional strong
quantifiers.16 They are motivated by similar considerations as Girard’s exponentials for
linear logic [91], which are used generally in substructural logics (see, e.g., [175]). Expo-
nentials studied in fuzzy logic so far include Montagna’s storage operator of [160], which
corresponds to his strong quantifier mentioned above, and Baaz’s operator 4, introduced

disjunctions. One of the pair of connectives is in the literature variably called weak, lattice, comparative,
extensional, or additive and the other one strong, group, parallel, intensional or multiplicative. For the
difference between them see, e.g., [175]. The distinction can be extended to quantifiers, see [176].

15A multiset, since the strong conjunction & is not contractive (idempotent); therefore multiple oc-
currences of the same term have to be taken into account. Thiele’s quantifier only ensures the property
for a set of terms, while Montagna’s quantifier additionally ensures the idempotence of (Πx)ϕ(x) w.r.t.
conjunction; the latter quantifier therefore coincides with the optimal one in extensions of BL, but not
generally in extensions of MTL, as was already proved in [160], even though the optimal quantifier was
only implicit there.

16They can be defined from the latter by dummy quantification, i.e., ϕ∗ ≡df (Πx)ϕ if x is not free
in ϕ. As propositional modifiers they are special hedges in the terminology of [151] (followed in [112]),
or modalities in that of [58].
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in [2] for Gödel logic, transferred to the most important fuzzy logics in [110, 81], and gen-
eralized for all weakly implicative fuzzy logics in [62]. A proof-theoretical investigation of
logics expanded with certain classes of exponentials is given in [58].

The importance of exponentials for formal fuzzy mathematics stems from their role
as lower estimates for the truth values of propositions ϕ, ϕ2, ϕ3, . . . (where ϕn is the n-
tuple strong conjunction of ϕ). Formulae of the form ϕn occur frequently in formal fuzzy
mathematics due to the general non-idempotence of strong conjunction; exponentials ∗
such that ϕ∗ → ϕn for any n then provide a common bound on the strength of ϕn

for all n. Although Baaz 4 can always be taken for such an estimate, in many cases
it is too strong (e.g., if there is an idempotent w.r.t. & below the truth value of ϕ).
Montagna’s storage operator provides a better alternative, but is still unnecessarily strong
in some cases (cf. footnote 15). The inferentially optimal exponential ϕω, related to the
inferentially optimal multiplicative quantifier mentioned above, has by now only been
sketched in [65].17

The general state of the art of formal fuzzy logic can be characterized as follows: Cha-
grov [52] distinguishes three stages in the development of a new area of non-classical logic.
In the first stage, the concepts and logics of the area emerge without a clear methodol-
ogy or well-developed metamathematics. In the second stage, when the methodology
and metamathematics has become available, the area is systematically explored: often,
many new logics are defined and their properties studied by advanced techniques. The
third stage then offers a synthesizing view on the area, when common properties of whole
classes of logics are obtained by generalized methods, and unifying insights are achieved
by mature understanding of the area. The three phases need not be sharply separated and
may chronologically overlap. As observed by Chagrov, this account, though abstracted
from the particular development of modal logic, can be applied to the history of most
disciplines of non-classical logic.

In formal fuzzy logic, these three stages can be found as well. The first phase com-
menced with the early study of  Lukasiewicz and Gödel–Dummett logics in the 1920–60’s,
and continued by the informal development and applications of fuzzy logic since the 1970’s.
The second phase was announced by the first works on formal fuzzy logic since the late
1970’s, especially those by Pavelka [177], Novák [166], and Gottwald [102]. The heyday
of the second stage came after Hájek’s 1998 monograph [110], when an explosion of new
systems of fuzzy logic and their systematic metamathematical study has begun. Now
we find ourselves in the maturity of the second stage and the beginning of the third, as
the exploration of the fuzzy-logical landscape is far advanced (though new logics still do
emerge—recently, e.g., uninorm [156, 157] and weakly cancellative [162] logics) and the
properties of known fuzzy logics have already been deeply investigated (including their
arithmetical [113, 116] and computational [3, 123, 124] complexity, expansions by various
kinds of connectives [82, 160, 80, 58], standard completeness theorems [138, 79, 133], proof
theory [57, 158], etc.). One of the first works that clearly belongs to the third stage is
Cintula’s [62], in which a unified metamathematical treatment of all weakly implicative
fuzzy logics is given. This framework was further generalized to weakly implicational
(fuzzy) logics in [66]; a narrower class of (4-)core fuzzy logics [119] was further studied

17As a primitive symbol of propositional logic, the exponential ω is axiomatizable by a straightforward
infinitary rule. It can moreover be approximated by a finitary axiomatization such that the finitarily
axiomatized exponential coincides with the optimal one if the latter does exist on the algebra of truth
values (which in general need not be the case). The exponential ω is of course definable in higher-order
fuzzy logic, though only with the qualification that the Henkin-style axiomatization of higher-order fuzzy
logic admits its non-intended models (it is nevertheless the optimal internal exponential in the theory).
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in [63]. The second stage, however, cannot be considered completed, as is apparent for
instance from the as yet insufficient investigation of exponentials in fuzzy logic.

An indispensable precondition for the development of logic-based fuzzy mathematics
was to achieve at least an advanced phase of Chagrov’s second stage in formal fuzzy logic.
In particular, it was the extensive exploration of the logical landscape in the fuzzy area
that enabled finding the most suitable systems of fuzzy logic that could support formal
fuzzy mathematics (esp. the logics MTL4,  LΠ, and t-norm fuzzy logics in general), allowed
applying their basic metamathematical properties in the development of the formalism
and helped clarify the area of their applicability. The emergence of logic-based fuzzy
mathematics indeed coincides with this stage of development of formal fuzzy logic. The
above considerations can partly explain why it had not appeared earlier during the four
decades of the existence of traditional fuzzy mathematics.

2.3 Traditional fuzzy mathematics

As fuzzy mathematics has been developed by many researchers for more than forty years,
it is impossible to present an overview of all its developments in this brief survey. Therefore
we shall only deal with those areas of fuzzy mathematics to which the papers included in
this thesis are related, namely the theory of fuzzy sets and fuzzy relations, fuzzy topology,
and fuzzy numbers. The developments in other areas of traditional fuzzy mathematics are
described, e.g., in the surveys [73, 142]. A compendium of application-oriented traditional
fuzzy mathematics is, e.g., [145]. For each of the relevant disciplines of fuzzy mathematics,
only the works that initiated the research and recent representative books or surveys of the
area will be mentioned here. Approaches that are close to logic-based fuzzy mathematics,
where they exist, will also be noticed. Further details can be found in the introductions
and references to the papers included in this thesis, and in the literature cited in the
surveys.

The theory of fuzzy sets (and fuzzy mathematics as the whole) is usually considered
to have started with Zadeh’s 1965 paper [212], which introduced the concept of fuzzy
set (and coined the term fuzzy), identifying fuzzy sets with membership functions from
a crisp ground set to [0, 1]. There have, nevertheless, been several predecessors who
proposed similar or identical concepts, most notably Max Black [48], Abraham Kaplan
and Hermann Schott (see [73, §1.2.4]), Karl Menger (ibid.), and Dieter Klaua (see [105]).
In 1967, the notion of fuzzy set was generalized to lattice-valued membership functions by
Goguen [95]; since then, various structures of membership degrees have been considered.

Graded properties of fuzzy sets have been considered mainly in the setting related to
or based on formal fuzzy logic (esp. by Bandler and Kohout [7] and Gottwald [99]). For
axiomatic theories of fuzzy sets based on formal systems of fuzzy logic, in which graded
properties of fuzzy sets appear quite naturally, see Section 2.4.

Important monographs with chapters on fuzzy sets include [166, 145, 104]. An overview
of basic notions in the theory of fuzzy sets is given, e.g., in [73]. Besides the direct represen-
tation by means of membership functions, various alternative foundations for the notion of
fuzzy set have been considered in the literature: category-theoretical approaches to fuzzy
sets are surveyed in [131, 106], and categories of fuzzy sets are treated in detail in [206]
and [172, Ch. 7]. A sheaf-theoretic foundation of fuzzy sets is described in [129]. Ax-
iomatic theories of fuzzy sets based on formal fuzzy logic are described in more detail in
Section 2.4 below.

The notion of fuzzy relation was defined already in Zadeh’s first paper on fuzzy
sets [212]. It was generalized to lattice-valued relations in Goguen’s 1967 paper [95],
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in which several important fuzzy-relational concepts (including, e.g., sup-product compo-
sitions) were studied. Many important concepts, incl. fuzzy similarity and fuzzy ordering,
were introduced in Zadeh’s 1973 paper [213]. Important contributions to the theory of
fuzzy relations were made by Bandler and Kohout, esp. regarding generalized relational
products [6]. Further references to the vast literature on fuzzy relations can be found in
the papers on fuzzy relations included in this thesis [28, 41].

Graded properties of fuzzy relations, which are fundamental in logic-based theory
of fuzzy relations (cf. [28]), were first proposed by Gottwald in [101]. They are sys-
tematically studied in Gottwald’s monographs [102] and [104, §18.6] and Bělohlávek’s
book [46]. The graded approach has been applied by Gottwald to the solvability of fuzzy
relational equations in [103]. Several graded notions of fuzzy function have been studied
by Demirci [70].

The discipline of fuzzy topology was established in the 1960’s and 1970’s in papers
by Chang [55], Goguen [97], Lowen [152], and others.18 It has been given a considerable
attention throughout the history of fuzzy mathematics and elaborated by a number of
researchers. Several approaches to fuzzy topology have been developed: besides those
based on membership functions and fuzzy sets, the most prominent are the (point-free)
lattice-theoretical and categorial treatments. Various definitions of fuzzy topology were
surveyed by Höhle and Šostak in [130]. Many results are also surveyed in the (more recent,
but somewhat self-promoting) historical overview [142, §6]. A detailed exposition based
on the categorial viewpoint is given in Höhle’s monograph [128].

An early example of logic-based fuzzy topology is Ying’s investigation of fuzzifying
and bifuzzy topologies in the early 1990’s [208, 209, 210]. His definitions and proofs were
based on the semantics of  Lukasiewicz predicate logic (or complete residuated lattices
later in [211]), which naturally led him to graded fuzzy topological notions and theorems.
Graded topological notions (of compactness and connectedness) had even earlier been
studied by Šostak (see the references in [70], esp. to [192]).

Two main competing approaches to fuzzy numbers have originally been proposed: one
of them treats fuzzy numbers as fuzzy intervals (Mizumoto and Tanaka 1979, see [142,
§11]), while the other regards them as (certain equivalence classes of) distribution func-
tions (Rodabaugh 1982, see [142, §11]).19 In the interval approach, Dubois and Prade
(1980, see [142, §11]) have added further conditions of monotony and continuity. The
distribution-based approach has been extensively studied in relation to the construction
of fuzzy real numbers and the topology of the fuzzy real line, by Lowen, Höhle and others
[153, 126].

The interval-based approach was recently criticized by Dubois and Prade [75] as rep-
resenting the fuzzified notion of interval rather than number. Their proposal to define a
fuzzy number as a gradual element, i.e., a function from truth values to the domain of
discourse rather than vice versa, is discussed from the point of view of formal fuzzy logic
in [26, §2] included in this thesis.

2.4 Formal fuzzy set theories

In this section we shall describe the state of the art in formal theories of fuzzy sets. We
shall leave aside set theories with the unrestricted comprehension scheme, mentioned in
Section 2.1, as these are very specific theories, unrelated to logic-based mathematics as

18These papers are cited according to [130].
19It can be observed that the approach of [16] (included in this thesis) in fact combines both approaches,

since it treats fuzzy numbers as intervals between two distribution functions (or fuzzy Dedekind cuts).
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presented here and constrained to a very narrow class of fuzzy logics (cf. footnote 6 on
page 9 above). Instead, we shall focus on theories which are closest to our approach to
fuzzy set theory, namely such theories over fuzzy logics whose axioms ensure that basic
set-theoretical constructions (such as forming unions, intersections, singletons, or power
sets) can be carried out. As this is exactly the motivation of the axioms of classical
Zermelo–Fraenkel set theory, we shall call such theories ZF-style fuzzy set theories. Akin
to ZF-style fuzzy set theories are fuzzy type theories (including Fuzzy Class Theory upon
which our logic-based fuzzy mathematics is founded), since their hierarchy of types and the
comprehension axioms (or the mechanism of λ-abstraction in Church-style type theories)
are aimed at ensuring the availability of basic set-theoretic constructions, too (and vice
versa, the set-theoretical constructions, esp. those of power set and union, guaranteed by
the axioms of ZF-style set theories usually impose a cumulative structure on the universe
of sets analogous to the hierarchy of types in type theories).

At least two strands can be recognized in the history of ZF-style theories of fuzzy
sets.20 One of them attempted at formal treatment of fuzzy (or many-valued) sets from
the outset, while the other originated in ZF-style set theories over intuitionistic logic,
whose methods were subsequently transferred to fuzzy logics (with systems close to Gödel
logic as an intermediary step).

Early works in the former strand are due to Dieter Klaua (in 1965–1973, see Gottwald’s
survey [105]), who defined (variants of) a cumulative hierarchy of fuzzy sets using defi-
nitions based on  Lukasiewicz logic. This approach was followed and further modified by
Siegfried Gottwald [99, 100] who derived many results on fuzzy sets in this framework.

While Klaua’s and Gottwald’s fuzzy set theories were essentially based on ( Lukasiewicz)
fuzzy logic, other early axiomatizations of fuzzy sets were based on membership functions
and classical logic. Chapin’s axiomatic fuzzy set theory [56] considered a ternary mem-
bership predicate, with the third argument representing the degree of membership. An
important feature of Chapin’s theory was a homogeneity of its objects (which is desirable
in foundational theories—cf. classical set theory, where all objects are sets), as the mem-
bership degrees were not external objects different from fuzzy sets: rather, the role of
membership degrees was played by some of the fuzzy sets themselves (hence the papers’
title ‘Set-valued set theory’). Basic parts of the formal theory of so defined fuzzy sets
were derived from the proposed axioms in the two parts of the paper (the announced
third part was never published). A similar setting was presented by Weidner [202], whose
system (called Zadeh–Brown set theory ZB) aimed at emending some features of Chapin’s
axioms; to this effect, the ordering relation between the degrees was taken as an additional
primitive notion besides the ternary membership predicate. Consistency of ZB was shown
by constructing a Boolean-valued model in ZF.

The construction of formal ZF-models valued in an appropriate structure of degrees
was also a main motive in a series of papers, by several different authors, that originated
in set theory over intuitionistic logic and subsequently shifted towards formal theories of
fuzzy sets. In his 1975 paper [179], Powell constructs a syntactic interpretation (called the
inner model) of classical ZF in a certain reformulation of ZF over intuitionistic logic (Int).
To this end, he first needs to introduce and investigate various set-theoretical notions
(e.g., ordinal numbers) and prove several results (e.g., the transfinite recursion theorem)
within the formal intuitionistic set theory.21 Grayson’s 1979 paper [107] studies in detail
various properties of ordinal numbers in a similar reformulation of ZF over Int, and shows

20A much more refined classification of formal theories of fuzzy sets can be found in Gottwald’s recent
survey [105], which also includes approaches distant from ours.

21A similar Heyting-valued model was much later studied by Shimoda [186].
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counterexamples to some classically valid theorems on ordinals in a Heyting-valued sheaf
model of the theory (which is a generalization of Boolean-valued models of Scott and
Solovay). Even though the main results of those papers are metamathematical (viz,
mutual interpretability of the theory and classical ZF), the theory itself is proposed as
a prospective axiomatic setting for intuitionistic set theory in the sense of non-classical
mathematics (see Section 2.1 above), and the theorems derived within the theory are
regarded as results on intuitionistic (Heyting-valued) sets. This attitude differs from
that of an earlier book [85] by Fitting, who only employs a reformulation of ZF over
Int for metamathematical purposes, namely as a means for classical independence proofs
by forcing. Driven mainly by this motivation, Fitting’s axioms arise from the classical
axioms of ZF by replacing all occurrences of ∀ by ¬∃¬, which yields a rather unintuitive
axiomatic system from the point of view of non-classical set theory over Int.

Powell’s results and methods were in 1984 adapted by Takeuti and Titani [193] for a
ZF-style set theory over a variant of Gödel logic (with a rule ensuring density of truth
values). Besides the main result on mutual interpretability with classical ZF by means of
inner models, they developed some parts of the formal theory, incl. the properties of real
numbers.22 In 1992 the same authors [194] presented a ZF-style set theory over a richer
logic which contained further connectives besides those of Gödel logic, representing the
basic arithmetical operations (except division) in the standard [0, 1]-interpretation of the
logic. Again they constructed a cumulative [0, 1]-valued model of their theory and proved
mutual interpretability with classical ZFC. The paper also contains the construction of
internal truth values (adapted in [41] for FCT over MTL) and various definitions and
results within the theory.

Takeuti and Titani’s definitions mostly employ Gödel connectives as primary ones, and
make use of the arithmetical operations only where necessary for their metamathematical
purposes (mainly in the construction of internal truth values); the theory thus retains
the structure of intuitionistic and Gödel set theories of the previously mentioned papers.
Titani’s 1999 lattice-valued set theory of [198] is also largely based on lattice connectives
in the underlying logic (although the implication connective is generalized so that it also
admits a quantum-logic interpretation). The results and methods of Gödel set theory
are, however, hardly transferable to other fuzzy logics, as they depend heavily on the
idempotence (i.e., contractivity) of the minimum conjunction. The step to non-contractive
fuzzy logics was undertaken by Hájek and Haniková in their 2003 paper [120], in which
they adapt the previous methods (using also ideas from Shirahata’s work on set theory
over linear logic [188]) for a set theory over the logic BL4.23

A (Church-style) fuzzy type theory FTT over the logic IMTL4 has been introduced
in 2004 by V. Novák [169]. Although it has been mainly used as a formal background for
linguistic modeling [171, 170], some parts of fuzzy mathematics have necessarily been de-
veloped in its framework, too (e.g., the theory of feasible natural numbers, [170, §3.5.3]).

Fuzzy Class Theory FCT of [30], which is the foundational theory of logic-based fuzzy
mathematics as studied in this thesis, can be regarded as a (Henkin-style) simple type
theory (of Russell’s type), too.24 The developments of the theory by the present author

22Basic notions of set theory over Gödel logic, motivated by both intuitionistic and fuzzy considerations,
have also been developed in the present author’s master thesis [12] (in Czech; a short English summary
can be found in [13]).

23The 4 connective is used for limiting the size of powersets, which otherwise would be inconsistently
large, and ensuring full existence of postulated sets, which is justifiable by the Skolem function equivalents
of the axioms.

24FTT and FCT (in logics over which FTT has been defined) seem to be mutually faithfully inter-
pretable.
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and his co-authors (U. Bodenhofer, P. Cintula, M. Daňková, R. Horč́ık, S. Saminger-
Platz, and T. Kroupa) are described in detail in other parts of this thesis. Further works
that contributed to the study of FCT and formal fuzzy mathematics developed within its
framework are [64, 149, 148, 134] by P. Cintula, R. Horč́ık, and T. Kroupa.

3 Significance of the area of research

Logic-based fuzzy mathematics is a minor, rather than mainstream, current in fuzzy
mathematics. This fact may raise questions about the meaningfulness of the enterprize
and the significance of this area of research. In this section we shall summarize some
reasons why the study of logic-based fuzzy mathematics is worthwhile.

There are general arguments in favor of the importance of any kind of non-classical
mathematics (cf. also Section 2.1). Changing the logical principles that underlie mathe-
matical reasoning may reflect some external motivation under which these principles are
no longer valid—compare, e.g., the rejection of certain laws of classical reasoning by intu-
itionistic mathematics; this is also the case in fuzzy mathematics, as for instance the law
of excluded middle is in general implausible for graded propositions. Non-classical mathe-
matics can, however, also be justified independently of such ‘applied’ motivations, and be
studied for the intrinsic reason of developing an alternative view on classical mathematics,
as removing some assumptions of classical logic may reveal various kinds of dependen-
cies between classical notions and present classical mathematical structures as special (or
degenerate) cases of more general non-classical structures. This enables us, for instance,
to compare the robustness of various mathematical definitions and theorems with respect
to the changed logical assumptions.25 The splitting of classically equivalent notions in
weaker logics (in which their equivalence may no longer be provable), can shed light on
classically indistinguishable aspects of the notions and provide a better understanding of
the interdependencies between such aspects. (For an illustration, compare the various
notions of finiteness in intuitionistic mathematics, cf. [87, §IV.6] and [77]—or, for that
matter, in classical mathematics without the axiom of choice, see, e.g., [137, §4.6].) In
the particular case of logic-based fuzzy mathematics, the change of the underlying logic
yields linear-valued (and often continuous-valued) mathematical structures as semantical
models, variants of which have been studied—mainly for such intrinsic reasons rather
than for the sake of applications—since the 1960’s [54, 55, 152].

Besides being a sub-area of non-classical mathematics, logic-based fuzzy mathematics
is also a specific sub-area of the theory of fuzzy sets. The importance of fuzzy sets for
certain kinds of engineering applications is beyond doubt. In such applications, the richer
system of membership degrees allows modeling the gradual change of a property, using it
as a feedback measure for fine-tuning the value of the property by approximation steps—
which would not be enabled by a crisp jump from 0 to 1 without intermediate values.
Giving a formal foundation to various engineering fuzzy methods was one of the original
motivations for the development of formal fuzzy logic, e.g., in [110, p. 2]. Although logic-
based fuzzy mathematics does not directly address all methods of engineering-applicable
fuzzy mathematics (cf. [26]), it provides a unifying framework for at least some of its
parts [34, 26]. A consistent application of the logic-based approach moreover yields certain

25For example, it is known [107] that the axiom of choice entails bivalence already in very weak set
theories over intuitionistic logic, while Zorn’s lemma does not do so even in rather strong intuitionistic
set theories. This shows, not only that the classical theorem on their equivalence uses the law of double
negation in an essential way, but also that Zorn’s lemma is a more robust variant of the axiom of choice
with respect to the behavior of negation.
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favorable features of the resulting theory that provide further reasons for developing fuzzy
mathematics in this specific manner; we shall list some of them in the next paragraphs.

One of the most important characteristics of the logic-based approach to fuzzy mathe-
matics is the universal gradedness of defined notions. Traditional fuzzy mathematics em-
ploys classical logic for mathematical reasoning, therefore its defined concepts are by
default crisp; gradedness has to be intentionally introduced in each definition. In logic-
based fuzzy mathematics, on the contrary, defined notions are introduced by formulae of
many-valued logic, and therefore are by default many-valued. This applies not only to
fuzzy structures themselves (where adding gradedness is usual even in traditional fuzzy
mathematics), but also to their properties, which in logic-based fuzzy mathematics are
naturally fuzzy as well. Such graded properties of fuzzy structures have occasionally been
studied in traditional fuzzy mathematics, too, often in partially logic-based setting. In
fuzzy relations they have been first studied by Gottwald [101, 102, 104] and later by
Bělohlávek [46]. Graded properties of fuzzy structures are also met in fuzzifying topology
[208, 209, 211, 185]. Measures of defects of a broad range of mathematical properties,
though motivated by other than logic-based considerations, were studied by Ban and
Gal in [5]. A few properties like fuzzy set inclusion are commonly introduced as graded
even in mainstream fuzzy mathematics [6, 7]. The idea of gradedness is also very strong
in Pavelka-style fuzzy logic with evaluated syntax [177, 167, 172], which fuzzifies even the
concept of provability. Full gradedness is a general feature of fuzzy mathematics based
on formal fuzzy logic, be it a higher-order logic like FCT, a fuzzy type theory [169], or
a formal fuzzy set theory [194, 120]. There are many reasons why graded properties of
fuzzy structures are important; some of them are given in [19, §1], [35, §2.1], and [28, §1].
A reason which has not been stressed in these papers is that graded properties, like all
fuzzy sets, enable one to optimize the property that is only imperfectly satisfied, where
the degrees give a feedback for the optimization that cannot be provided by a crisp jump
from 0 to 1. (Generalized fuzzy quantifiers would provide more kinds of logically mean-
ingful measures of graded properties, thus enabling more kinds of optimization besides
that on the infimum; however, a logic-based theory of generalized quantifiers is only in its
beginnings, see Section 2.2.)

A related feature of logic-based fuzzy mathematics is a smooth accommodation of fuzzy
sets of fuzzy sets. This is desirable in many branches of fuzzy mathematics: prototypically
in fuzzy topology, as topological structures are usually formed of sets of sets (namely, sets
of open sets, systems of neighborhoods, etc.), but also in other areas (consider, e.g., fuzzy
sets of fuzzy numbers, of fuzzy points, of fuzzy events, etc.). Since formal fuzzy set
theories axiomatize fuzzy sets of all kinds, their theorems apply as well to fuzzy sets of
complex structures as to simple fuzzy sets of atomic urelements. Thus even though their
semantical models are as complex as required, the syntactic logic-based apparatus that
describes them is much simpler than their direct semantical description that is usual in
traditional fuzzy mathematics. This demonstrates an advantage of the strict separation
of syntax from semantics in the approach based on formal logic.

A related advantage of logic-based fuzzy mathematics ensues from its radical axiomatic
approach, which contributes to its methodological clarity. An axiomatic approach has
proved beneficial in countless fields of mathematics; it has occasionally been employed in
traditional fuzzy mathematics, too (cf., for instance, de Luca and Termini’s [67] axioms
for fuzzy entropy or various axioms for aggregation operators—see, e.g., [145, Ch. 3]).
However, grounding the axiomatic method on formal fuzzy logic offers an additional
advantage for fuzzy mathematics, as the assumptions on the structure of truth degrees
are then isolated and encapsulated in the logic itself, rather than re-introduced at each
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definition. Fuzziness is thus only introduced into the theory by the set of rules that can
generally be employed for sound reasoning about fuzzy propositions.26 By this treatment,
the general properties of fuzziness are removed from a particular theory to the level of
logic; the theory itself can then deal with its specific notions only, and need not be
concerned at the same time with the properties of truth degrees.

By hiding truth degrees in the semantics of fuzzy logic, logic-based fuzzy mathematics
also alleviates one of the criticisms of traditional fuzzy mathematics, namely the artificial
over-precision of fuzzy sets: an argument often raised against fuzzy set theory points out
that instead of giving less information about the membership in a vague concept, fuzzy
sets provide more (indeed too much) information by specifying its value to a precise real
number (or an element of another lattice of truth degrees). However, by screening off
direct references to truth degrees, logic-based fuzzy mathematics avoids (in a principled
way) computing with particular truth degrees: not only are such calculations absent from
formulae of the theory, but the theory in fact abstracts from them, in consequence of the
definition of validity in formal logic by generalization over all models.

Another appealing consequence of hiding fuzziness into the rules of logic is the result-
ing similarity of formulae of fuzzy mathematics to those of classical mathematics. Since
deductive fuzzy logics are not too different from classical logic, many concepts of classical
mathematics can be naturally transferred to fuzzy mathematics simply by reinterpreting
the logical connectives that appear in their formal definitions (cf. [126, §5]).27 Quite of-
ten, classical definitions reinterpreted in fuzzy logic yield useful and interesting notions of
fuzzy mathematics. The meaning of fuzzy concepts obtained in this way can be clarified
by taking the meaning of fuzzy connectives and quantifiers into account. For instance,
fuzzy inclusion A ⊆ B ≡df (∀x)(Ax → Bx), defined by the same formula as in classical
mathematics (since Ax is just an abbreviation for x ∈ A), is not just some measure of
inclusion of fuzzy sets, as it is understood in traditional fuzzy mathematics, but is the
strongest measure which allows for any x to infer28 Bx from Ax & (A ⊆ B), which is a
transparent generalization of the same idea underlying the classical notion of inclusion.
The parallel with classical logic and the meaning of fuzzy connectives thus provides ad-
ditional motivation and guidance in defining concepts of fuzzy mathematics, besides the
criteria of traditional fuzzy mathematics (which in practice often fail to prevent ad hoc
definitions).

A further consequence of the closeness between classical and fuzzy logic is the fact that
the three-layer architecture of classical mathematics (with the layers of logic, foundations,
and particular theories) can be paralleled in fuzzy mathematics. (This was the leading
idea of the position paper [34], included in this thesis.) The layer of foundations, provided
by a sufficiently general formal theory over fuzzy logic, establishes a common language
and a unifying framework for different disciplines of fuzzy mathematics. The foundational
theory thus facilitates the exchange of concepts and results across the subfields of fuzzy
mathematics.

As stressed above (p. 19), logic-based fuzzy mathematics directly formalizes only a
limited part of traditional fuzzy mathematics. Nevertheless, its clearly isolated pre-

26Particular sets of inference rules—i.e., particular fuzzy logics—then reflect special assumptions on
the structure of degrees.

27Though of course not too mechanically, as there are usually more options for finding a fuzzy coun-
terpart to a crisp notion (e.g., if classically equivalent definitions are no longer equivalent in fuzzy
logic). Some selection is needed, based on pragmatic criteria; often it leads to splitting classical no-
tions, cf. [37, §4].

28I.e., to ensure that the truth degree of the consequent is at least as large as that of the antecedent.
This kind of inference in deductive fuzzy logic is based on the local consequence relation, cf. [26].
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theoretical assumptions, captured in the form of the axioms of the background fuzzy
logic, enable it to find applications even beyond the traditional realm of fuzzy logic,
namely in the areas where these extracted assumptions are applicable. An example of
such application is the interpretation of deductive fuzzy logics in terms of resources or
costs [11], similar to the resource-based interpretation of linear logic (cf. [92]). Under this
interpretation of deductive fuzzy logic, the semantic values of formulae represent (prelin-
ear) resources or costs rather than degrees of truth.29 Deductions in formal fuzzy logic
then preserve costs rather than partial truth, and particular fuzzy logics correspond to
different ways how the costs can be summed by conjunction. The resource-based ap-
plications of deductive fuzzy logic (esp. in epistemic, deontic, and dynamic logics) are
yet to be elaborated: currently they are just sketched in the present author’s conference
abstracts [20, 23, 25].

The latter connection between fuzzy logic and linear logic is just an instance of sim-
ilar connections between fuzzy logic and other substructural logics. These links follow
from the fact that deductive fuzzy logics are specific substructural logics (namely those
with the law of prelinearity), and so usual motivations for having dropped structural
rules apply to them as well. Logic-based fuzzy mathematics can therefore model specific
(namely, prelinear) situations modeled by substructural logics. Even though substruc-
tural logics are mostly studied in their propositional forms (because of the problems with
strong quantifiers, see Section 2.2), it is clear that more complex situations modeled by
substructural logics would require first- or higher-order language. This motivates the need
for substructural mathematics (cf. Section 2.1), of which logic-based fuzzy mathematics
is a specific and important part. Possible generalizations of the methods of logic-based
fuzzy mathematics to broader classes of higher-order substructural logics with a wider
area of applications thus give another reason for the development of fuzzy mathematics
in the logic-based setting.

The above paragraphs summarized motivations, i.e., “ex ante” reasons for developing
logic-based fuzzy mathematics. However, there is also an “ex post” reason, namely the
results already achieved in the framework of Fuzzy Class Theory. As witnessed by the
papers included in this thesis (esp. [30, 41]), the logic-based approach is capable of trivial-
izing certain parts of traditional fuzzy mathematics. This demonstrates that logic-based
fuzzy mathematics is capable of providing powerful tools for traditional fuzzy set theory
(which in turn is directly applicable in engineering practice).

4 Description of the author’s contribution

This section provides a commentary on the papers comprising this thesis, with a special
focus on several points. First, the relation of each paper to the topic of the thesis and to
other papers connected with the project is explained. Second, some of the older papers
are commented from the point of view of the later development of the theory. Finally,
the author’s contribution to the joint papers included in this thesis is indicated. (The co-
authors have read the descriptions of author contribution and explicitly confirmed their
accuracy by email.)

In order also to clarify the author’s contribution to the project of logic-based fuzzy
mathematics itself, a short history of the development of Fuzzy Class Theory is given
first. Though unavoidably subjective, it tries to describe the emergence of ideas related
to the project in as accurate way as possible. For the account of predecessor ideas and
results upon which the project has been built see Section 2.

29Parts of this idea arose in discussions with Petr Cintula.
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4.1 A short history of Fuzzy Class Theory

The author’s master thesis [12] dealt with axiomatic set theory over Gödel logic.30 The
thesis was written shortly after the period (ca. in 2000–2001) when a small semi-regular
seminar was organized in Prague by Petr Hájek, which was devoted to developing formal
set theories over t-norm fuzzy logics and in which the present author actively partici-
pated.31 The attempt at investigation of some basic disciplines of fuzzy mathematics
(with fuzzified set theory and arithmetic as first choices) seemed to be a natural next step
after first-order fuzzy logic and its metamathematics had advanced enough [110] to provide
a meaningful machinery for such theories. The study of set theory based on Gödel logic
was a reasonable choice as the latter logic extends intuitionistic logic in which successful
variants of set theory had been built [179, 107, 85], and is closely related to the (slightly
stronger) logic in which Takeuti and Titani’s fuzzy set theory [193] had been constructed;
also Takeuti and Titani’s subsequent variant of fuzzy set theory [194], even though defined
over a much stronger logic similar to  LΠ, employs mainly Gödel operations in definitions,
and therefore most of its constructions can be modified for set theory over Gödel logic,
too. The seminar was, nevertheless, partly devoted to set theories and arithmetics over
other fuzzy logics (esp.  Lukasiewicz and BL), which later resulted in Hájek’s study of
Cantor– Lukasiewicz set theory with full comprehension over  Lukasiewicz logic [115] and
the construction of Hájek and Haniková’s ZF-style set theory over BL [120]. The seminar
laid stress on actual developing mathematics formally within the theories (in the spirit of
Klaua’s, Chapin’s [56], and Gottwald’s [99, 100] papers), and not just on the metamathe-
matical study of their properties. Although the seminar stopped meeting in 2001, several
participants continued investigating formal fuzzy set theory individually (including the
present author, whose master thesis on the topic was defended in 2002). An attempt by
Cintula, Hájek, and the present author to revive the seminar in 2003 led instead to the
employment of the present author at the Institute of Computer Science (where the former
two were working) and a close collaboration by the three on the topic, and eventually to
the development of Fuzzy Class Theory and the current research project.

Fuzzy Class Theory was conceived in discussions between Petr Cintula and the present
author during their research stay in Barcelona (at IIIA CSIC, Bellaterra) in October 2003.
At that stage, only the first-order classes over the logic  LΠ were considered, and the aim
was to construct a common framework for the study of elementary operations and relations
on fuzzy sets and fuzzy relations (such as various kinds of intersection, union, inclusion,
etc.) over first-order fuzzy logic. The authors’ motivations for this study, however, slightly
differed from each other. P. Cintula had shortly before (in 2002) solved a problem on fuzzy
orderings, presented to him by U. Bodenhofer, by means of first-order fuzzy logic (so in
fact by using first-order classes) and wanted to continue the study of fuzzy orderings to
see how far could the theory be developed with the limited means of elementary theory of
fuzzy classes. The present author, on the other hand, had the experience from his work
on Gödel set theory that a very large number of concepts of applied fuzzy mathematics
can be defined and investigated just by means of first-order fuzzy classes (i.e., without
considering membership of fuzzy sets in fuzzy sets). Even though elementary class theory
consists for the most part just in translating the first-order predicate calculus into the set-

30The thesis was written in Czech; an English overview of its topic and methodological principles can
be found in [13].

31Establishing the new focused seminar followed a series of talks on the same topic at the Seminar in
Applied Mathematical Logic (an activity of the Czech Society for Cybernetics and Informatics) held at
the Institute of Computer Science of the Academy of Sciences of the Czech Republic. Regular attendants
were P. Cintula and Z. Haniková (then students of Petr Hájek), K. Bendová (later the supervisor of the
author’s master thesis related to the topic of the seminar), A. Sochor, K. Trlifajová, and several others.
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theoretical language, it is actually just a theory of fuzzy classes which is mostly used in
applied fuzzy set theory, rather than a fully fledged fuzzy set theory.32 In particular, such
concepts as the empty and universal class; the relations of inclusion, equality, disjointness,
and compatibility; the properties of fuzziness and crispness, normality, and height; the
unary class operations of complement, kernel, and support; the binary class operations
of intersection, union, and difference; the properties of reflexivity, symmetry, transitivity,
antisymmetry, and functionality of fuzzy relations; the operations of composition and
inversion of fuzzy relations; and many other important relations and operations on fuzzy
sets and fuzzy relations can all be expressed and investigated in the theory of first-order
classes, not needing a theory with fuzzy sets of higher ranks (or orders).

The aim therefore was to have an axiomatic framework for the study of such concepts,
with the possibility of quantification over classes (rather than just over atomic elements
as in first-order fuzzy logic) and with the apparatus for handling tuples in order to in-
ternalize fuzzy relations (besides fuzzy classes). Since the tuples were intended just to
represent multiple arguments of predicates with arities larger than 1, there was no need
to fuzzify tuples, and the classical axioms for crisp tuples (regarded as crisp logical func-
tions in the sense of [111]) could be adopted.33 As fuzzy classes were to be treated in the
same manner as crisp classes in classical second-order logic, axioms analogous to those
of classical second-order logic could be adopted to describe them: the axiom scheme of
comprehension, ensuring that each fuzzy property expressible in a fixed formal language
defines a fuzzy class; and the axiom of extensionality, ensuring that a fuzzy set is uniquely
determined by its members (i.e., by the truth values of membership of x in A for all x—in
other words, by its membership function). The fuzzy logic  LΠ was chosen for the back-
ground logic in order to have full arithmetic power over the system of truth degrees34 in
a system that would still enjoy good metamathematical properties. The logic was also
suitable as a unified framework for the investigation of many different fuzzy set opera-
tions, by virtue of the representability of a large class of truth functions in the standard
 LΠ-algebra.

Initially, the theory was expected to provide little more than a convenient framework
for easy proofs of schematic theorems on several kinds of intersection, union, inclusion,
etc. However, the full potential of the theory was realized soon (before the end of 2003).
The present author observed that the fragment of class theory reducible to propositional
logic [30, Th. 33–36] is so large that it covers most interesting elementary theorems of
traditional fuzzy set theory. Jointly we observed that by iterating the machinery for
classes of higher orders, the expressive power of the resulting simple fuzzy type theory
(FCT) is sufficient for a large part of traditional fuzzy mathematics, as classical higher-
order theories are interpretable in FCT [30, L. 41] (so we can assume any crisp structure
on the universe of discourse), and moreover such concepts of fuzzy set theory as Zadeh’s
extension principle become definable objects of FCT [30, Def. 39]. In this form, the theory

32By a class theory we mean the study of classes that contain atomic individuals from some fixed
domain, but the membership of classes in classes is not considered. Set theory proper, on the other hand,
is the study of sets as objects that contain other sets or objects and are themselves members of other
sets.

33Subsumption of sorts of variables had to be introduced for convenient handling of tuples; this was
done by Petr Cintula when our discussions convinced us that other possibilities would probably not be
more easily implementable. Even though sorted first-order languages had been used before [110, 46],
subsumption of one sort by another had not yet been considered in formal fuzzy logic.

34Insufficient expressive power could lead to the undefinability of various notions of traditional fuzzy
mathematics. For instance in set theory over Gödel logic without 4, even such basic concepts as the
normality and the crisp kernel of a fuzzy set are undefinable [12].
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was presented at the FSTA conference in January 2004, where also the first version of the
paper [30] was finished.

The expressive power of the theory suggested the possibility of its foundational role
for fuzzy mathematics, analogous to that of Russell’s simple type theory for classical
mathematics. Furthermore, the fact that the underlying logic of the theory was fuzzy
offered a consistent methodology of fuzzification of classical notions by a (controlled)
reinterpretation of classical defining formulae in fuzzy logic (cf. [126, §5]), building upon
the corresponding roles of classical and fuzzy logical symbols (cf. p. 21 above). The
idea of a foundational research program based on this methodology and implemented by
means of FCT emerged in a discussion between P. Cintula and the present author at
an institutional workshop in March 2004. The foundational program was then described
in the manifesto [34] (presented at The Challenge of Semantics in Vienna, July 2004)
and the research program was elaborated into a grant proposal in April 2004. The grant
was awarded for 2005–2007 and the grant team included, besides P. Cintula (the principal
investigator) and the present author, also T. Kroupa (as the principal co-investigator) and
R. Horč́ık. The latter two focused on the development of particular disciplines of fuzzy
mathematics in FCT: R. Horč́ık on fuzzy intervals [134] and fuzzy quantifiers [65, 64] and
T. Kroupa on fuzzy filters [149] and fuzzy topology [43, 42, 44]. The description [32] of
the foundational program won the Best Paper Award at the 11th IFSA World Congress
in Beijing, July 2005.

The next task after the development of the basic apparatus of FCT was to advance a
formal theory of fuzzy relations within its framework, as fuzzy relations are indispensable
in all disciplines of fuzzy mathematics. Following P. Cintula’s previous contacts in this
area, in November 2004 we started a cooperation with Ulrich Bodenhofer, focusing on
basic properties of fuzzy preorders and similarities. The first joint results [33, 49] were
presented at the Linz Seminar in February 2005, and the cooperation eventually led to
the comprehensive paper [28], finished in 2007.

Since 2005, the investigation of particular disciplines of fuzzy mathematics has begun
and the project participants turned their interests to various directions; only a sketchy
description of these activities can be given here.

A different approach to basic properties of fuzzy relations, making them relative to a
fuzzy relation representing indistinguishability of elements, was proposed by the present
author at IPMU 2006 [19]. In 2005, the present author started working with M. Daňková
on properties of fuzzy relational operations that had not been covered by his joint pa-
per with Cintula and Bodenhofer. It was soon realized that many relational operations
had a form similar to either Zadeh’s [213] sup-T relational composition or Bandler and
Kohout’s [6] BK-product (i.e., inf-R composition) of fuzzy relations. The informal corre-
spondence was made precise by means of internalized truth values (cf. [194]) and formal
interpretations [21] by the present author, and systematically explored in a joint paper
with M. Daňková [41]. The method described in the paper provides a reduction to a
simpler calculus for fuzzy relational operations, in a similar manner as the metatheorems
of [30] do for class operations.

The internalization of truth values described in [41] initiated later (in 2007) an in-
vestigation of graded properties of truth-value operators (e.g., t-norms, copulas, etc.)
under a Czech–Austrian project on aggregation operators. The first results (by U. Bo-
denhofer, P. Cintula, S. Saminger-Platz, and the present author) were presented at the
Linz Seminar 2008 [29]; a full paper is in preparation. In 2004–5, the first steps were also
done in the logic-based theory of measures on clans of fuzzy set by T. Kroupa [148] and
fuzzy Dedekind–MacNeille lattice completion and fuzzy Dedekind reals by the present au-
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thor [15, 16]. An application of the formalism to the fuzzified logic of questions, sketched
by the present author at the VlaPoLo workshop in Zielona Góra as early as in Novem-
ber 2003, was turned into a full paper [14] in 2004. Several further areas are currently
under investigation; for an overview of the work in progress and future plans see the end
of this section.

During the work on formal fuzzy mathematics, several peculiar features of axiomatic
theories over fuzzy logic have been noticed which are not met in classical nor mainstream
fuzzy mathematics. These features, due mainly to the non-idempotence of strong conjunc-
tion and thus common to mathematical theories in all contraction-free substructural logics,
have been summarized in [37]. The different style of fuzzy mathematics ensuing from these
peculiarities has been gradually introduced in papers since 2006, cf. [19, 28, 29, 43, 42].
This also emphasized the need of exponentials and generalized fuzzy quantifiers for fully
fledged formal fuzzy mathematics (to be worked out yet, with initial results in [65, 64])
and directions for further elaboration of the basic apparatus of FCT.

The experience with fuzzy mathematics also helped to analyze fundamental differences
between the fundamental assumptions of mainstream fuzzy mathematics and logic-based
fuzzy mathematics. As argued by the present author in [26], logic-based fuzzy mathemat-
ics directly addresses only a very specific portion of traditional fuzzy mathematics, and
even though its apparatus is powerful enough to encompass a much larger area of tradi-
tional fuzzy mathematics, the advantages of the logic-based approach are manifested best
in problems close to its own principles and motivation (i.e., logical inference preserving the
degrees). The scope of the logic-based approach thus should be specified more narrowly
than originally in the manifesto [34]. Nevertheless, its applicability is still broad enough
to make it a significant part of mainstream fuzzy mathematics, with clear methodology
and interpretation.

At present, the project of logic-based foundations of fuzzy mathematics is by no means
finished and continues to be under permanent progress. Among the proximate future tasks
is the elaboration of the theory of fuzzy quantifiers and their application in all disciplines
of logic-based fuzzy mathematics (which would include revisiting areas that have already
been developed, and a thorough study of new notions defined by means of such quanti-
fiers). Another important topic is the notion of fuzzy function, which has not yet been
sufficiently investigated in FCT, either. The notion can then be employed for defining in
FCT the concepts of fuzzy cardinality (based on fuzzily bijective fuzzy functions) and fuzzy
morphism of fuzzy structures. Various properties of fuzzy orderings have not yet been
systematically studied, for instance linearity, directedness, or well-foundedness. Fuzzy
topology, fuzzy aggregation operators, and fuzzy interval arithmetic are currently under
study; fuzzy lattices, measures, and metric spaces are possible candidates for forthcoming
topics of research in FCT.

4.2 The papers comprising the thesis

This section comments on the papers comprising the thesis. The papers are grouped and
ordered by topic rather than chronologically, in order to give an exposition of the theory
proceeding in a logical way from the methodological assumptions and the basic apparatus
of FCT to more advanced disciplines of fuzzy mathematics. The texts of the papers were
recompiled for inclusion in the thesis, and may therefore differ from the published versions
in such details as formatting, numbering of footnotes or references, etc.35 Several typos
that occurred in the published papers have also been fixed in the present version.

35The applicable copyright transfer agreements allow including the papers in a thesis.
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L. Běhounek: On the difference between traditional and deductive fuzzy logic
[26]. The paper analyzes methodological principles of logic-based fuzzy mathematics and
demonstrates them to be fundamentally different from those of traditional fuzzy mathe-
matics. The paper shows that even though most concepts of traditional fuzzy mathemat-
ics can be modeled in higher-order fuzzy logic (as its expressive power includes classical
mathematics), the logic-based rendering of notions that are based on principles alien to de-
ductive fuzzy logic is rather artificial and gives little advantage over studying such notions
by traditional methods. Therefore, the logic-based approach is best suited to a specific
area of fuzzy mathematics consonant with its methodological assumptions (namely those
related to the deductive treatment of partial truth), and its foundational significance is
smaller in other areas of fuzzy mathematics.

The paper was based on several years of experience with developing logic-based fuzzy
mathematics; therefore it could make distinctions that had not been recognized in the
Manifesto [34] written at the beginning of the research program. Even though the more
precise delimitation of the scope of the foundational program could be seen as a retreat
from the too optimistic tone of the Manifesto (which purported to give foundations to
all fuzzy mathematics), it can on the other hand be interpreted as a clarification of the
fact that traditional fuzzy mathematics actually deals with several phenomena that are
too different from each other, and therefore it in fact comprises several different fields of
research. The field in which the logic-based approach is most fruitful is marked by a clear
interpretation of membership degrees as degrees of truth (preserved under inference), while
other areas of fuzzy mathematics work with a mixture of several different conceptions of
membership degree (cf. [74]), often not clarified enough. Naturally, logic-based methods
apply in a less straightforward manner to such fields. The paper thus presents a more
precise delimitation of the area of research, rather than a retreat from the foundational
program.

Although the paper uses the term partial truth frequently, it was not meant to engage
in the philosophical dispute on the nature of truth and its (un?)necessary bivalence:36 the
term should be understood in the technical sense of “the (gradual) quality of propositions
that is preserved under the deductions in fuzzy logic”. The gradual quality is in the paper
called “partial truth” in analogy with the (bivalent) quality transmitted in deductions of
classical logic, which is usually called—and understood as—truth. Whether we call the
gradual quality “partial truth” or another name has no effect on the observations made
in the article: the only important thesis is that, similarly as classical logic operates salva
veritatis, deductive fuzzy logics infer their conclusions salvo gradu—i.e., preserving the
grades assigned to propositions,37 no matter whether the grades are interpreted as degrees
of truth, a measure of the underlying attributes [140], utility values [90], costs [11, 25], or
grades of any other kind.

The term deductive fuzzy logic is in the paper used for logic-based fuzzy mathematics
in general (i.e., not only for formal fuzzy logic in the strict sense), since the intended
audience usually employs the term fuzzy logic (both in Zadeh’s [214] broad and narrow
sense) in the broader sense of fuzzy mathematics. The term is in the paper additionally
given a concrete mathematical meaning of the logics of linear residuated lattices, which
delimits the class of logics upon which logic-based fuzzy mathematics in our sense can be
built.

36This was not stressed in the paper, as the intended audience were researchers in traditional fuzzy
logic rather than philosophers.

37Preserving should here be understood in the sense of the local consequence in substructural logics
(cf. footnote 12 on page 11 above and see [26] for details), not in the sense of [50, 86].
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In the paper, the structural rule of exchange (i.e., commutativity of conjunction) is
assumed for deductive fuzzy logics. This assumption was based on the idea that while
the absence of the rules of contraction and weakening can be motivated by considerations
about truth degrees,38 non-commutativity of conjunction is motivated by (e.g., tempo-
ral) considerations that are not related to degrees of truth. However, since fuzzy logics
can [11, 20, 23, 25] also be motivated as logics of resource-aware reasoning (or logics of
costs), and the rule of exchange can fail for resources (i.e., fusion of resources need not
be commutative), it is more reasonable to discard in general the assumption of commu-
tativity, too.

In [86], Josep Maria Font proposed to call the intervals {β ∈ L | β ≥ α} for each
α ∈ L truth degrees, as opposed to the truth values α ∈ L. Then one can say that it is a
truth degree what is preserved by fully true implication in deductive fuzzy logics, rather
than a truth value. Font’s distinction is consonant with the considerations presented in
the discussed paper and provides a better formulation of what in the discussed paper is
described as “guaranteed degrees of truth”, “guaranteed truth thresholds”, etc.

L. Běhounek, P. Cintula: From fuzzy logic to fuzzy mathematics: A method-
ological manifesto [34]. The paper was written in June 2004 and presented at the
workshop The Challenge of Semantics in Vienna in July 2004. The main motivation for
writing the paper was to have a concise description of the methodology of logic-based
fuzzy mathematics (called Hájek’s program in the Manifesto) that could be referred to in
subsequent papers. The contents of the paper arose from extensive discussions between
both authors and is their joint work. The structure and actual wording of the paper was
drafted by the present author and finalized by both.

At the moment of writing it was assumed that deductive fuzzy logics could provide
foundations for the whole of traditional fuzzy mathematics. While this is true to some
extent, the best-suited area of applicability of the approach was later clarified in [26]; see
the previous paragraph on [26] for details.

A skeptical attitude towards the methodology described in the Manifesto (and towards
non-classical many-valued mathematics in general) was expressed by D. Dubois in [72,
p. 195–6]:

Although some may be tempted to found new mathematics on many-valued
logics [34], this grand purpose still looks out of reach if not delusive. It sounds
like a paradox of its own since we use classical mathematics to formally model
many-valued logic notions. What could be named “many-valued mathemat-
ics” essentially looks like an elegant way of expressing properties of many-
valued extensions of Boolean concepts in a Boolean-like syntax. For instance,
the transitivity property of similarity relations is valid in  Lukasiewicz logic,
and, at the syntactic level, exactly looks like the transitivity of equivalence
relations, but should be interpreted as the triangular inequality of distances
measures.

To answer the criticism, the following clarification should be given first. Formal fuzzy
mathematics based on the methodology of [34] can essentially be understood in any of
the following two ways:

38Namely, by observing that combining imperfect truths combines their imperfection, which justifies
the general non-idempotence of conjunction; and that there can be degrees of full truth (e.g., in such
predicates as acute angle)—i.e., that the residuated lattice of truth degrees need not be integral.
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• In a “traditionalist view”, logic-based fuzzy mathematics is just a methodologically
advantageous treatment of traditional fuzzy mathematics, where in exchange for
voluntary restrictions on the language and methods we obtain a formalism that
enables us to derive theorems of certain forms more easily (cf. [30, §3.4] or [41]).
Under this view, the formulae of higher-order fuzzy logic indeed describe the behav-
ior of membership functions valued in the real unit interval or more generally in an
appropriate semilinear residuated lattice.

One of the benefits of this approach indeed comes from the fact that many notions
of traditional fuzzy mathematics turn out to be expressed by formulae of exactly
the same form as analogous notions of classical mathematics—e.g., T-transitivity
by a formula expressing classical transitivity, only reinterpreted in many-valued
logic. This enables to treat fuzzy notions in a similar way as classical notions: e.g.,
the proofs of theorems often just copy classical proofs. Moreover, it allows us to
extrapolate this observed correspondence and find new important notions of fuzzy
mathematics by reinterpreting classical definitions in fuzzy logic. Furthermore, when
employing many-valued logic, all defined notions become naturally graded, which
radically facilitates the study of graded properties (in the sense of [101]) of fuzzy
notions.

• Alternatively, in a “foundationalist view”, logic-based fuzzy mathematics presents
a fundamental treatment of fuzzy mathematics (indeed a “new mathematics”, as
called by Dubois in the cited passage of [72]), based on non-classical logics. This in-
terpretation understands fuzzy sets as a primitive notion, axiomatized (or governed)
by the axioms and rules of the non-classical logic, in a similar manner as crisp sets
are governed (and can be axiomatized) by the axioms and rules of classical logic.

Under this approach, fuzzy sets are not represented or modeled by their member-
ship functions, but are primitive objects sui generis. Pre-theoretical considerations
(cf. [22, 117]) about (certain kinds of) vague propositions suggest that they can be
assumed to be governed by the laws of the fuzzy logic MTL or some of its varia-
tions. Importantly, the justification of the logical laws governing vague propositions
is pre-theoretical and independent of any model of fuzzy sets in classical mathe-
matics. Based on the axioms and rules of fuzzy logic, a formal theory of fuzzy
sets can be developed, with the intended informal semantics of actual fuzzy sets,
i.e., unsharply delimited collections of objects—similarly as the intended informal
semantics of classical sets is that of sharply delimited collections of objects. The
formal semantics of fuzzy logic is then formed by fuzzy sets described by (a frag-
ment of) the very same theory itself—similarly as the semantics of classical logic is
formed by sets described by (a fragment of) classical set theory (i.e., the same form
of ‘circularity’ is encountered as in the foundations of classical mathematics).

It turns out that, incidentally, the theory of fuzzy sets can be formally interpreted in
classical mathematics: this formal interpretation is what more usually is called “the
many-valued semantics” of fuzzy set theory, in which fuzzy sets become interpreted
by “membership functions”. Although classical mathematics is thus, by means of
the formal interpretation, capable of faithful modeling fuzzy mathematics, it does
not establish its priority over fuzzy mathematics, as both theories can be founded
independently of each other and are faithfully interpretable in each other.39

39A formal interpretation of classical mathematics in fuzzy mathematics can be done by means of
the propositional connective 4—which is no wonder as the connective is intended to represent crisp
propositions among fuzzy ones and is axiomatized by the laws valid for crisp sets.
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Both classical and fuzzy mathematics are therefore of equal standing as foundational
theories, and precedence can be given to one of them only on the basis of some
pragmatic criteria. Classical mathematics may be preferred because of our long
experience with it or because of its simplicity (as it only considers crisp sets). Fuzzy
mathematics, on the other hand, can be preferred in vague contexts because it
renders vaguely delimited sets more directly, and because of the advantages of its
apparatus in proving theorems on fuzzy sets as described under the traditionalistic
view above.

It can be seen that the three points of the above criticism of many-valued mathematics
from [72, pp. 195–196], namely that

1. “we use classical mathematics to formally model many-valued logic notions”,

2. “what could be named ‘many-valued mathematics’ essentially looks like an elegant
way of expressing properties of many-valued extensions of Boolean concepts in a
Boolean-like syntax”, and that

3. “the transitivity property of similarity relations [. . . ] should be interpreted as the
triangular inequality of distances measures”,

only apply to the traditionalistic view of the non-classical theory. The second statement
is explicitly admitted in the Manifesto [34, p. 643]:

Admittedly, a formal theory over fuzzy logic is just a notational abbreviation
of classical reasoning about the class of all models of the theory.

Still, the advantages of the logic-based approach fully justify the development of logic-
based fuzzy mathematics even under the traditionalistic interpretation. The possibility
of the foundationalist attitude, however, shows that the non-classical theory need not be
regarded just as formally modeling many-valued notions while still using classical math-
ematics. Rather, the non-classical notions can be regarded as primitive and independent
of classical mathematics: since the theory is syntactical, it does not need to presuppose
that classical mathematics has been developed first. And under the foundationalist ap-
proach, the transitivity of similarity relations is not interpreted as the triangular inequality
of distance measures, but indeed as transitivity of unsharply delimited relations (regarded
as primitive entities). The application of the name “transitivity” to fuzzy relations is then
justified by the fact that TransR ≡df (∀xyz)(Rxy & Ryz → Rxz) is the necessary and
sufficient graded condition ensuring that Rxz can for any instances of x, y, z be inferred40

from Rxy and Ryz (which is exactly the property we usually call “transitivity”). Only
accidentally the property coincides, when fully true, with the notion of T-transitivity that
is known from traditional fuzzy mathematics and that expresses the triangle inequality
of distance measures.

In sum, Dubois’ criticism of [72] only applies to the traditionalist understanding of
logic-based fuzzy mathematics, and not to the foundationalist one. But even under the tra-
ditionalistic view, logic-based fuzzy mathematics has undisputable advantages described
above, which fully justify its development.

40In the graded way, i.e., preserving the truth degrees in the sense of the local consequence of deductive
fuzzy logics, see footnote 12 on page 11 or [26].
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L. Běhounek, P. Cintula: Fuzzy class theory [30]. This chronologically first paper
on Fuzzy Class Theory introduced its apparatus, demonstrated its expressive power (by
interpreting notions of fuzzy and classical mathematics) and hinted at benefits of its
formal methods (by reducing a large part of graded elementary theory of fuzzy classes to
propositional calculations).41

In the paper, the logic  LΠ was used as the background logic of the theory, because of
its expressive power. The aim of the paper was to construct a unified framework for most
of fuzzy mathematics, which required having a large class of t-norm based propositional
connectives interpretable in the underlying logic. The logic  LΠ which interprets all finite
ordinal sums of the three basic continuous t-norms ( L, G, and Π) and many left-continuous
t-norms (e.g., NM) as well as their residua while still retaining good metamathematical
properties provided a suitable compromise between the expressive power and simplicity
of the logic. For the sake of generality, all notions were in the paper defined relative
to an arbitrary  LΠ-representable t-norm (intended to interpret the connectives in the
defining formula), and theorems and proofs were formulated schematically, with connec-
tives indexed by  LΠ-representable t-norms. Later the practice showed that connectives
pertaining to different t-norms are seldom mixed in particular disciplines of logic-based
fuzzy mathematics, and that it is therefore more convenient to work in a fragment of
 LΠ containing just the connectives needed for the particular purpose. The schematic
formulae indexed by an  LΠ-representable t-norm can then be replaced by formulae of the
logic MTL4, which is sound for any left-continuous t-norm. If needed, the logic MTL4
can be strengthened by additional assumptions (e.g., to IMTL4 if the involutiveness of
the residual negation is required) or expanded by additional connectives (e.g., to MTL∼
if an independent involutive negation is needed). Currently, therefore, logic-based fuzzy
mathematics is mostly done in FCT over MTL4 or a similarly weak logic rather than
over  LΠ.42 It is obvious that the apparatus of FCT can straightforwardly be transferred
to any deductive fuzzy logic that extends MTL4. Fuzzy Class Theory over  LΠ, nev-
ertheless, remains being the common framework for the study of notions pertaining to
different  LΠ1

2
-representable t-norms in one theory, and thus (a candidate for) the common

foundational theory for logic-based fuzzy mathematics.
The paper, though necessarily technical, was also aimed at the audience not special-

ized in formal fuzzy logic; therefore some technical details were only sketched (e.g., the
apparatus of tuples) or not discussed at all (for instance, that the comprehension schema
should be extended to formulae of the enriched language if new symbols are added to the
language, as in Section 6 of the paper). As it was sufficient for the basic development
of logic-based fuzzy mathematics, only the axioms of extensionality and comprehension
(and, optionally, fuzziness) were considered in the paper, although it was already clear
that advanced topics in logic-based fuzzy mathematics will sooner or later require some
forms of the axiom of choice or similar principles. Since only the basics of fuzzy math-
ematics have been investigated by now, such a need has not arisen yet. The expected
complexity of the relationships between possible variants of choice principles over fuzzy
logic makes them another topic for future investigation.

41Theorems on fuzzy sets that are typically found on the first several dozens of pages in standard text-
books in fuzzy set theory (e.g., [166, 145]) are corollaries of the metatheorems [30, Th. 33–36] and simple
theorems of propositional fuzzy logic. Since usual propositional deductive fuzzy logics are decidable, the
metatheorems show that basic properties of fuzzy sets could easily be generated by a computer program.
A similar comment applies to the theorems on fuzzy relations from the paper [41] described below.

42Working in MTL4 is slightly more general than the schematic work in  LΠ, since it admits interpreting
the connectives by all left-continuous t-norms rather than only those representable in  LΠ. Notice, however,
that propositional MTL is complete w.r.t. all left-continuous t-norms representable in  LΠ1

2 [155].
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The paper was written in January 2004; the authors’ motivations for the study of the
theory are described in Section 4.1. In the actual preparation of the paper, all parts were
extensively discussed by both authors, and most sections are their joint work. Of particu-
lar developments that are due mainly to one of the authors, the apparatus of subsumption
of sorts in first-order fuzzy logic was prepared by Petr Cintula, while the metatheorems of
Section 3 were observed by the present author.

L. Běhounek, U. Bodenhofer, P. Cintula: Relations in Fuzzy Class Theory:
Initial steps [28]. The paper treats basic properties of fuzzy relations in the graded
setting of FCT. Since relations occur in all parts of mathematics, the investigation of
basic properties of fuzzy relations in FCT is an indispensable prerequisite for all disci-
plines of logic-based fuzzy mathematics. A parallel aim of the paper was to present Fuzzy
Class Theory to researchers in traditional fuzzy mathematics and introduce to them the
fully graded approach in fuzzy mathematics. To this end we wanted to recast in FCT
known theorems on graded properties of fuzzy relations (esp. those from Gottwald’s mono-
graph [104, Ch. 18]), and to give graded generalizations of some representative non-graded
results of traditional fuzzy mathematics; a few previously unknown concepts and results
were discovered along the way, too. As it was impossible to cover the whole area of fuzzy
relations, the paper focused mainly on fuzzy preorders and similarities; but even with
this reduction of scope, the paper could only treat a selection of their most basic proper-
ties. Further classes of fuzzy relations (e.g., fuzzy orderings or functions) still wait for a
thorough investigation.

Several parts of the paper have preliminary versions in conference proceedings [33, 49,
61, 16, 27]. In order to keep the introduction to the paper short, a primer in Fuzzy Class
Theory [35] was written and made freely available online as a research report.

The paper was written over the period of more than three years (2004–7), mostly dur-
ing several research stays of the Czech co-authors at Johannes Kepler University in Linz.
All parts of the paper were edited, discussed, and checked for correctness by all of the
co-authors. Particular contributions of the co-authors (so far as they can be determined)
were as follows: Ulrich Bodenhofer provided the examples and links to known results of
traditional fuzzy mathematics (cf. [49]), wrote most of the Introduction, edited many pas-
sages in other sections, and collaborated on several parts of the paper (esp. in Sections 4,
6, and 7). Most of the introductory Section 2 and the Appendices were written by Petr
Cintula and the present author (cf. [37, 35]); the latter is also responsible for Section 5
(on bounds, cf. [16]) and smaller parts of other sections. Section 6 (on Valverde represen-
tation, cf. [27]) is a joint work of all three co-authors. Section 7 (on partitions, cf. [61])
is mostly due to Petr Cintula, who also produced most proofs in Sections 3 and 4 (all of
these proofs were presented in the paper in order to keep the exposition self-contained,
even though some of the properties follow independently from more general theorems
of [41]).

The clumsy proof of Corollary 4.11(I52) in the published version of the paper resulted
from a trivial mistake discovered only when the final version was already submitted. The
statement has in fact a trivial proof that uses just the monotony of the opening and
closure operators and of min-intersection and max-union with respect to inclusion.

L. Běhounek, M. Daňková: Relational compositions in Fuzzy Class Theory
[41]. The paper, written in 2006–2007, was originally intended to deal with properties
of relational notions not covered by [28] (then under preparation) such as Cartesian prod-
ucts or preimages. However, it was soon realized by the present author that most of
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such notions are just instances of (sup-T or inf-R) relational compositions for arguments
with lesser arities, and that this relationship, which had only informally been sketched in
Bělohlávek’s monograph [46, Rem. 6.16], can be made precise in the formal framework
of FCT by means of syntactic interpretations (cf. [21]). The systematic exploitation of
the correspondence (including classes of arity 0 that represent truth values, cf. [18, §2])
resulted in a systematic and uniform description of more than 30 relational notions, with
many properties translated automatically from a few basic properties of relational compo-
sitions. A large class of properties of these notions furthermore turns out to be derivable
from a few identities in a simple equational calculus for fuzzy relations. The method
thus provides a reduction of a large fragment of the elementary theory of fuzzy relations
to a much simpler calculus, comparable to the reduction of a fragment of the theory of
fuzzy classes to fuzzy propositional calculus by the metatheorems of [30, §3]. The fact
that the fuzziness of the relations under consideration does not play a significant role in
the application of the equational calculus to the relational notions further supports the
thesis that with a suitable apparatus (here, of deductive fuzzy logic), the generalization of
some parts of classical mathematics to fuzzy sets is rather straightforward (cf. the end
of Section 1).

Even though a larger part of the paper is due to the present author, Martina Daňková
had an indispensable role in the exhaustive derivation of relational properties in the
equational calculus and providing links to the applied practice (esp. Examples 5.12–13).
She also prepared and presented the preliminary conference version [40] of the paper and
made a search for relevant literature. All parts of the paper were discussed and checked
for correctness by both co-authors.

L. Běhounek: Extensionality in graded properties of fuzzy relations [19].
The conference paper, presented at IPMU 2006, offers new definitions of basic graded
properties of fuzzy relations, relative to a fuzzy indistinguishability relation between the
objects of discourse. The approach is part of the effort to avoid hidden crispness in def-
initions, suggested already in the original FCT paper [30, §7]: the proposed definitions
eliminate the implicit crisp identity of traditional graded definitions that is hidden in
using multiple references to the same variable, and replace it by an explicit fuzzy in-
distinguishability relation E; the traditional definitions are then the special cases for E
equal to the crisp identity relation Id. The paper gives arguments supporting the need
for such definitions, answers the counter-argument referring to an infinite regress, and
shows that the traditional property of extensionality of a fuzzy relation w.r.t. an in-
distinguishability, which in the non-graded setting has the same motivation as the new
definitions, cannot substitute the new definitions in the graded setting (although it can
do so in the non-graded setting). The paper furthermore offers an explanation why only
some of the indistinguishability-based properties have previously been defined in the non-
graded setting.

It was not mentioned in the paper, though it should have been, that alsoE-functionality
had been defined in the traditional non-graded setting (alongside several variant defini-
tions of a fuzzy function) by Demirci [68, 69].

The conference paper only gave results relevant to its main theses, rather than a
comprehensive list of properties of indistinguishability-based properties; these will be
given in a full paper, which is currently under construction.43 The full paper will also

43Incidentally, all results included in the conference paper were first-order; therefore just first-order
logic (MTL4) could be employed. The higher-order setting is, nevertheless, needed for the study of
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extend the game-theoretically motivated generalization sketched in Section 4 of the paper
and a systematization of the properties in terms of sup-T and inf-R compositions.

L. Běhounek: Towards a formal theory of fuzzy Dedekind reals [16]. The
conference paper, presented at EUSFLAT 2005, presents a sketch of a theory of fuzzy
real numbers and fuzzy intervals based on the Dedekind completion of an underlying
structure of crisp numbers. Besides purely theoretical motivations, one of the aims of the
investigation was to model the traditional notion of fuzzy number (cf. Section 2.3 above,
p. 16) in the logic-based framework. The (fuzzified) lattice completeness of the resulting
fuzzy real numbers, construed as fuzzy Dedekind cuts, is proved, and the transition from
Dedekind cuts to fuzzy intervals representing traditional fuzzy numbers is sketched.

Only fuzzy reals satisfying the defining conditions to degree 1 were considered in the
paper, partly for simplicity and partly in order to adhere to the motivation that Dedekind
cuts express the distribution of the fuzzy real number (which would be violated by any
misbehavior of its distribution function, and therefore the condition should be satisfied
to the full degree). The definitions are thus regarded as the axioms for fuzzy Dedekind
cuts, rather than graded conditions. Results on the graded notion of fuzzy real would for
a large part be obtainable by replacing 4’s by suitable exponents, but this generalization
might not be very interesting for mainstream fuzzy mathematics, as traditional fuzzy reals
form a crisp class, too.

Even though only crisp rationals were considered for the underlying structure in this
paper (as they are sufficient for generating a structure of fuzzy reals), the results obviously
hold for each dense linearly ordered field of numbers (e.g., crisp real numbers, which are
more often used for a construction of fuzzy numbers in the mainstream fuzzy mathemat-
ics). Fuzzy lattice completions of crisp dense linear orders are studied in more detail in
the author’s workshop paper [15], where two methods of obtaining a fuzzy lattice from
such crisp orderings (viz, by Dedekind cuts and MacNeille stable sets, which differ in the
fuzzy setting) are described.

The fuzzy lattice completion employed in the paper differs from fuzzy lattice comple-
tions described earlier in the literature [126, 46]: while [126] and [46] study the minimal
fuzzy lattice completions of fuzzy orderings (achieved by MacNeille stable fuzzy sets), the
present paper is concerned with a fuzzy completion of a crisp ordering, which need not
be minimal, but should contain all fuzzy Dedekind cuts. Despite different settings and
definitions in [126, 46], some results are nevertheless similar (for more details see [15]).

A similar approach to fuzzy numbers (or intervals) has later been taken by Horč́ık in
his paper [134] on fuzzy interval analysis, where analogous results on representation and
arithmetic of fuzzy intervals have been derived.

The results of [28, §5] on suprema were originally derived by the present author for the
purposes of the discussed conference paper [16]. Therefore most proofs omitted from [16]
can be found in [28, §5]. A full paper on this topic is still in progress; the main obstacle to
finishing it is an as yet unclarified suitable definition of multiplication of fuzzy Dedekind
cuts. (Observe that Horč́ık [134] also defines just multiplication by a scalar, i.e., a crisp
number, which is unproblematic.) The aim is to extend the operations from the under-
lying crisp numbers to fuzzy cuts A in such a way that Aq can be interpreted as the
truth value of A ≤ q (or a measure of the distribution of the fuzzy real A in (−∞, q]),
with the ordering preserved by the extended operations (cf. [16, §4]). Zadeh’s extension

preservation of the indistinguishability-based properties w.r.t. class unions, intersections, etc., which will
be given in the full paper.
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principle works to this effect only if the original operation on crisp numbers is mono-
tone; a suitable definition of multiplication of fuzzy cuts therefore has to separate positive
numbers from negative ones (cf. the definition of multiplication for crisp Dedekind cuts),
but the details of the construction that would capture the informal motivation correctly
are not yet clear enough.44 The ‘game-theoretical’ considerations on the interpretation
of the truth values of the operands hinted at in Horč́ık’s paper [134] (similar to those
sketched in [19, §4]) should also be taken into account. At present, a sound treatment of
the extended operations on fuzzy intervals remains a subject for future work.

L. Běhounek: Fuzzification of Groenendijk–Stokhof propositional erotetic
logic [14]. This early (and in many respects premature) paper is included in the disser-
tation in order to demonstrate a possible application of logic-based fuzzy mathematics as
a formal semantics for fuzzified non-classical logics. By defining a fuzzified consequence
relation of a non-classical logic in Fuzzy Class Theory, the fuzzified non-classical logic gets
formally interpreted in FCT (i.e., in higher-order fuzzy logic). The apparatus of FCT then
provides a well-defined framework for introducing semantical notions of the non-classical
logic and deriving its metamathematical properties.

The paper avoids the problem of quantification over a fuzzy domain W by requiring
the crispness [14, §6] or full contractivity [14, §7] of W ; an adequate account for arbitrary
fuzzy logical spaces would need a better understanding of quantification over a fuzzy
domain (cf. footnote 45 and comments on [43, 42] below). The paper only deals with
yes–no questions, since yes–no partitions of a logical space are explicitly definable by
means of negation; a logic-based theory of fuzzy partitions, needed for choice questions
and first-order fuzzy erotetic logic, had not yet been developed in the time of writing
the paper. A possible extension to fuzzy choice questions or to first-order fuzzy erotetic
logic, generalizing the framework of [109], could use the results of [28, §7] on graded T-
partitions: by [28, §7], T-partitions correspond to fuzzy equivalences (even in the graded
manner); graded T-partitions thus provide a well-motivated basis for a partition semantics
of fuzzy questions. This approach would enable to fuzzify the notion of question itself,
by considering the fuzzy notion of T-partition. (In the discussed paper [14], the concept
of fuzzy yes–no question itself is crisp, although it admits fuzzy answerhood.)

Further applications of the apparatus of FCT in the semantics of non-classical logic
are sketched by the present author in the workshop paper [25] on fuzzified propositional
dynamic logic (employed for modeling costs of program runs) and the Czech conference
papers [23, 24] on fuzzified epistemic logic (employed for modeling feasible and vague
knowledge). Full journal papers based on these conference papers are being prepared.

L. Běhounek, T. Kroupa: Topology in Fuzzy Class Theory: Basic notions [43];
Interior-based topology in Fuzzy Class Theory [42]. The conference papers [43]
and [42] were presented, respectively, at the IFSA World Congress 2007 and the Con-
ference of EUSFLAT 2007 (where the latter paper won the Distinguished Student Paper
Award). The papers present the first treatment of fuzzy topology in the framework of
FCT: they investigate the mutual relationships between alternative graded definitions of a
fuzzy topology, namely by open or closed fuzzy sets [43, §3], fuzzy neighborhoods [43, §4],
and fuzzy interior operators [42].

44The definition of multiplication for fuzzy cuts over the discrete domain of integers, extending a
cardinality-based multiplication of natural numbers, could help to clarify the matter; however, the theory
of fuzzy functions and cardinalities has to be developed first.
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Only fuzzy topologies over crisp universes have been considered in [43, 42]. This
restriction has rather been chosen for methodological than technical difficulties. Even
though it would be technically quite straightforward to generalize the notions for fuzzy
universes (in exchange for several more exponents in definitions), the meaningfulness
of such definitions would need a much more thorough discussion. For example, fuzzy
domains are not preserved under the usual (sup-T) composition ◦ of fuzzy mappings,
which makes many straightforward constructions over fuzzy topological spaces ill-defined
(as the mapping F ◦G is defined on another fuzzy space, different from the domain of F )
or ill-motivated. The motivational discussion needed to avoid ad hoc solutions exceeds
the scope of fuzzy topology, as the questions encountered here are particular instances of
more general problems of quantification over a fuzzy domain, which have not yet been
satisfactorily addressed by deductive fuzzy logic.45 The discussion of topologies over a
fuzzy universe in the fully graded setting of FCT thus remains a task for future work,
which can only be successfully solved after the general questions of quantification over
fuzzy domains are addressed.

Although the underlying logic employed in [43] was IMTL, most results hold generally
in MTL: the involutiveness of negation was only used to obtain the duality between open
and closed fuzzy sets (which, moreover, seems to be inessential for fuzzy topology: cf. the
successful development of constructive topology [183] where the duality fails as well).

The general approach and the definitions of basic concepts arose from joint discussions
of both authors. Actual derivations of most particular properties listed in the papers have
been done by T. Kroupa (some of them followed easily from his results in [149] on fuzzy
filters), while the present author is responsible for most of the examples. Both authors
participated in writing the papers and checking the results for correctness. P. Cintula gave
us a hint on the importance of the inner exponent in the definition of U2c [43, Def. 4.3].
The papers have been followed by an abstract [44] on the notions of continuity in the
present setting; a full paper summarizing these results is under construction.

The present author’s current view (which may not be shared by his co-author) on
how logic-based fuzzy topology should further be developed differs somewhat from that
presented in the above papers and is based on a more radical reading of [37, §7] on
deprecating fixed preconditions in definitions. Obviously, the notions of fuzzy topology
as presented in [43, 42] have to be parameterized by several indices that determine the
multiplicities of conjuncts in the compound notion. The list of such indices, which is
already too long, can further grow if more special properties of fuzzy topologies (like
stratification [128] or separation axioms) are considered. Even the defining conditions
proposed for open fuzzy topology (OTop) in our papers [43, 42] are themselves disputable
as they are not independent (since ∅ ∈ τ is implied by the union-closedness of τ); yet
it would not be reasonable to omit the condition ∅ ∈ τ in favor of the union-closedness,
as the latter is much stronger and many properties only need the former. It is not at
all clear which are the ‘right’ counterparts in fuzzy topology of the classical conditions
that the empty set and the whole space are open. This suggests that the notion of
fuzzy topological space is even less rigid than in classical mathematics or in traditional
fuzzy mathematics (cf. the plenitude of variant kinds of topological spaces defined in
both), and that there is no predetermined set of properties which together would form a
well-motivated and sufficiently stable notion of fuzzy topology. Rather, there is a vague

45Observe that the apparatus of deductive fuzzy logic itself only considers crisp domains of discourse,
and thus is best suited to modeling fuzzy structures over crisp universes. Possibly, a proper use of strong
quantifiers (see Section 2.2) might provide an adequate treatment of quantification over fuzzy domains:
a detailed investigation in this direction has yet to be done.
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informal set of independent ‘topologically flavored’ graded properties of arbitrary fuzzy
systems of fuzzy subsets (or of fuzzy neighborhoods), and various combinations of such
properties should be studied without restricting our attention in advance to a fixed set
of conditions. Under this approach, fuzzy topology would not ask the properties of a
pre-defined notion of fuzzy topology, but rather proceed in a reverse manner, by deriving
preconditions ensuring such ‘topologically flavored’ properties (cf. the research program of
reverse mathematics, e.g., in [189, Ch. 1]). This reverse style of logic-based fuzzy topology
may well be the right manner of developing logic-based fuzzy mathematics in general, as
the problem of too many indices and the absence of a fixed set of defining conditions are
not specific for fuzzy topology (being due just to the non-contractivity of conjunction).
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In S. Gottwald, P. Hájek, and M. Ojeda-Aciego, editors, Proceedings of LSC IV &
4th Workshop of the ERCIM Working Group on Soft Computing, pages 90–95,
Málaga, 2006.
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[38] L. Běhounek and P. Cintula. Modal fuzzy logics based on Scott-Montague semantics.
In Volume of Abstracts of Trends in Logic V, pages 2–3, Canton, 2007.

39
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ences et Letters Varsovie, cl. III, 24:126–148, 1931.

[201] B. Weatherson. True, truer, truest. Philosophical Studies, 123:47–70, 2005.

[202] A. J. Weidner. Fuzzy sets and Boolean-valued universes. Fuzzy Sets and Systems,
6:61–72, 1981.

[203] D. Westerst̊ahl. Quantifiers in formal and natural languages. In D. M. Gabbay and
F. Guenthner, editors, Handbook of Philosophical Logic, volume IV, pages 1–131.
D. Reidel, Dordrecht, 1989.

[204] R. B. White. The consistency of the axiom of comprehension in the infinite-valued
predicate logic of  Lukasiewicz. Journal of Philosophical Logic, 8:509–534, 1979.

[205] T. Williamson. Vagueness. Routledge, London, 1994.

[206] M. Winter. Goguen Categories: A Categorial Approach to L-fuzzy Relations, vol-
ume 25 of Trends in Logic. Springer, Dordrecht, 2007.

[207] S. Yatabe. Distinguishing non-standard natural numbers in a set theory within
 Lukasiewicz logic. Archive for Mathematical Logic, 46:281–287, 2007.

[208] M. Ying. A new approach for fuzzy topology (I–III). Fuzzy Sets and Systems,
39:302–321 (1991), 47:221–232 (1992), 55:193–202 (1993).

[209] M. Ying. Compactness in fuzzifying topology. Fuzzy Sets and Systems, 55:79–92,
1993.

49



[210] M. Ying. Fuzzifying topology based on complete residuated lattice-valued logic (I).
Fuzzy Sets and Systems, 56:337–373, 1993.

[211] M. Ying. Fuzzy topology based on residuated lattice-valued logic. Acta Mathematica
Sinica (English Series), 17:89–102, 2001.

[212] L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

[213] L. A. Zadeh. Similarity relations and fuzzy orderings. Information Sciences, 3:177–
200, 1971.

[214] L. A. Zadeh. Fuzzy logic and approximate reasoning. Synthese, 30:407–428, 1975.

[215] L. A. Zadeh. A computational approach to fuzzy quantifiers in natural languages.
Computers and Mathematics, 9:149–184, 1983.

50



Part II

Papers comprising the thesis





Note: Papers omitted in this copy

Part II (pp. 53–250), consisting of the published papers comprising the thesis, is omitted
in this copy. See the full version of the thesis or refer to the original articles (preprints
are freely available online).



Part III

Mandatory annexes





Abstracts

English abstract

The dissertation consists of the author’s published papers on logic-based fuzzy mathe-
matics. It is accompanied with a cover study (Part I of the thesis), which introduces
the area of logic-based fuzzy mathematics, argues for the significance of the area of re-
search, presents the state of the art, indicates the author’s contribution to the field, and
comments on the papers comprising the thesis.

Fuzzy mathematics can be characterized as the study of fuzzy structures, i.e., math-
ematical structures in which the two values 0, 1 are at some points replaced by a richer
system of degrees. Under the logic-based approach, fuzzy structures are formalized by
means of axiomatic theories over suitable systems of fuzzy logic, whose rules replace
the rules of classical logic in formal derivation of theorems. The main advantages of the
logic-based approach are the general gradedness of defined notions, methodological clarity
provided by the axiomatic method, and the applicability of a foundational architecture
mimicking that of classical mathematics. Logic-based fuzzy mathematics is part of a
broader area of non-classical mathematics (i.e., mathematical disciplines axiomatizable
in non-classical logics), as well as a specific subfield of general fuzzy methods. Following
earlier isolated developments in logic-based fuzzy set theory and arithmetic, a systematic
logic-based study of fuzzy mathematics was made possible by recent advances of first-
order fuzzy logic that opened the way for Henkin-style higher-order fuzzy logic (or simple
fuzzy type theory), which is capable of serving as a foundational theory for logic-based
fuzzy mathematics. The author’s contribution to the development of logic-based fuzzy
mathematics has been presented in the published papers that comprise the main body of
the thesis.

The paper On the difference between traditional and deductive fuzzy logic clarifies
methodological assumptions of formal fuzzy logic, contrasts them to those of traditional
fuzzy mathematics, and indicates necessary conditions on systems of fuzzy logic suitable
for logic-based fuzzy mathematics as developed in this thesis. The paper From fuzzy logic
to fuzzy mathematics: a methodological manifesto (co-authored by P. Cintula) formu-
lates methodological guidelines for logic-based fuzzy mathematics and proposes a founda-
tional architecture analogous to that of classical mathematics, with three layers formed
by first-order fuzzy logic, a foundational theory axiomatized in fuzzy logic, and particular
mathematical disciplines developed within the foundational theory.

The paper Fuzzy class theory (co-authored by P. Cintula) introduces Henkin-style
higher-order fuzzy logic (also called Fuzzy Class Theory or FCT) as an axiomatic ap-
proximation of Zadeh’s notion of fuzzy set, and proposes it as a foundational theory for
logic-based fuzzy mathematics. Metatheorems are proved for FCT that reduce a large
part of elementary fuzzy set theory to propositional fuzzy logic, and the interpretability
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of classical higher-order theories in FCT (by which classical mathematical structures are
available within the theory) is shown in the paper.

The paper Relations in Fuzzy Class Theory: initial steps (co-authored by U. Boden-
hofer and P. Cintula) develops the basic theory of fuzzy relations in FCT, which is a
prerequisite for all other parts of formal fuzzy mathematics. The topics studied include
basic graded properties of fuzzy relations, relational images and bounds, Valverde char-
acterization theorems, and fuzzy partitions. The paper Relational compositions in Fuzzy
Class Theory (co-authored by M. Daňková) reduces a large family of fuzzy relational and
set-theoretical notions to fuzzy relational compositions, and presents methods for mass
proofs of theorems on these notions. The paper Extensionality in graded properties of
fuzzy relations introduces indistinguishability-relative graded properties of fuzzy relations
and studies their relationship to the property of extensionality, to which they reduce in
traditional fuzzy mathematics, but not in the logic-based setting.

The paper Towards a formal theory of fuzzy Dedekind reals constructs fuzzy real
numbers as the lattice completion of the classical real line by fuzzy Dedekind cuts and
gives some hints for logic-based fuzzy interval arithmetics. The paper Fuzzification of
Groenendijk–Stokhof propositional erotetic logic employs FCT as the formal semantics for
a logic of fuzzy questions. Finally, the papers Topology in Fuzzy Class Theory: basic no-
tions and Interior-based topology in Fuzzy Class Theory (both co-authored by T. Kroupa)
introduce logic-based notions of fuzzy topology defined respectively by open or closed sets,
neighborhoods, and interior operators, and study their mutual relationships.

Český abstrakt (Czech abstract)

Předložená disertačńı práce sestává z autorových publikovaných článk̊u o logických
základech fuzzy matematiky, doplněných shrnuj́ıćı studíı (tvoř́ıćı úvodńı část disertace), ve
které je představen na formálnělogický př́ıstup k fuzzy matematice. Dále je v ńı dokládána
d̊uležitost výzkumu v tomto oboru a charakerizován jeho současný stav, popsán auto-
r̊uv př́ıspěvek k oboru a podány komentáře k jednotlivým článk̊um, z nichž se disertace
skládá.

Fuzzy matematiku lze vymezit jako studium fuzzy struktur, tj. takových matematic-
kých struktur, v nichž je dvojice hodnot 0, 1 na některých mı́stech nahrazena bohatš́ım
systémem stupň̊u. V př́ıstupu založeném na formálńı logice jsou fuzzy struktury zachyceny
prostřednictv́ım axiomatických teoríı ve vhodných systémech fuzzy logiky, jejichž pravidla
jsou použita pro formálńı odvozováńı teorémů namı́sto pravidel klasické logiky. Hlavńımi
výhodami logického př́ıstupu k fuzzy matematice jsou všeobecná gradualita definovaných
pojmů, metodologická čistota daná aplikaćı axiomatické metody a použitelnost podobné
základové architektury jako v klasické matematice. Na logice založená fuzzy matema-
tika je součást́ı neklasické matematiky (tj. rodiny matematických teoríı axiomatizovatel-
ných v neklasických logikách), a zároveň tvoř́ı specifickou část širš́ıho oboru fuzzy metod.
Systematické zkoumáńı fuzzy matematiky v př́ıstupu založeném na logice, navazuj́ıćı na
předchoźı ojedinělé výzkumy podobného př́ıstupu k teorii fuzzy množin a aritmetice, bylo
umožněno nedávným pokrokem v oblasti prvořádové fuzzy logiky. Dı́ky němu bylo možno
vyvinout henkinovskou fuzzy logiku vyšš́ıho řádu (čili jednoduchou fuzzy teorii typ̊u), jež
může sloužit jako základová teorie pro formálńı fuzzy matematiku. Autorovy př́ıspěvky
k výzkumu logických základ̊u fuzzy matematiky byly publikovány v článćıch, které tvoř́ı
hlavńı část disertace.
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Článek On the difference between traditional and deductive fuzzy logic (K rozd́ılu mezi
tradičńı a deduktivńı fuzzy logikou) vyjasňuje metodologické předpoklady formálńı fuzzy
logiky ve srovnáńı s předpoklady tradičńı fuzzy matematiky a stanovuje požadavky na
systémy fuzzy logiky vyhovuj́ıćı takovému př́ıstupu k fuzzy matematice, jaký je rozv́ıjen
v této disertaci. V článku From fuzzy logic to fuzzy mathematics: a methodological mani-
festo (Od fuzzy logiky k fuzzy matematice – metodologický manifest, spoluautor P. Cin-
tula) jsou formulovány metodologické zásady na logice založeného př́ıstupu k fuzzy ma-
tematice a je navržena jej́ı základová architektura zp̊usobem analogickým k základ̊um
klasické matematiky, se třemi vrstvami tvořenými prvořádovou fuzzy logikou, v ńı axio-
matizovanou základovou teoríı a jednotlivými matematickými discipĺınami vyv́ıjenými
v rámci této základové teorie.

V článku Fuzzy class theory (Teorie fuzzy tř́ıd, spoluautor P. Cintula) je zavedena hen-
kinovská fuzzy logika vyšš́ıho řádu (zvaná též teorie fuzzy tř́ıd, zkr. FCT z angl. Fuzzy
Class Theory), jakožto axiomatická aproximace Zadehova pojmu fuzzy množiny. Tato
teorie je zde navržena za základovou teorii pro formálńı fuzzy matematiku. V článku jsou
dokázány metavěty FCT, které redukuj́ı značnou část elementárńı teorie fuzzy množin na
výrokovou fuzzy logiku, a je ukázána interpretovatelnost klasických teoríı vyšš́ıho řádu
v FCT (d́ıky ńıž jsou v FCT k dispozici klasické matematické struktury).

V článku Relations in Fuzzy Class Theory: initial steps (Relace v teorii fuzzy tř́ıd –
počátečńı kroky, spoluautoři U. Bodenhofer a P. Cintula) jsou v rámci FCT vybudovány
základy teorie fuzzy relaćı, jež tvoř́ı nezbytný předpoklad zkoumáńı ostatńıch partíı fuzzy
matematiky. V článku se zkoumaj́ı zejména základńı graduálńı vlastnosti fuzzy relaćı,
obrazy, závory, valverdovské charakterizace a fuzzy rozklady. V článku Relational composi-
tions in Fuzzy Class Theory (Skládáńı relaćı v teorii fuzzy tř́ıd, spoluautorka M. Daňková)
popisuje redukci rozsáhlé rodiny pojmů teorie fuzzy relaćı a fuzzy množin na pojem sklá-
dáńı fuzzy relaćı a ukazuje metodu hromadných d̊ukaz̊u vět o těchto pojmech. Článek
Extensionality in graded properties of fuzzy relations (Extenzionalita u graduálńıch vlast-
nost́ı fuzzy relaćı) zavád́ı graduálńı vlastnosti fuzzy relaćı definované relativně v̊uči dané
relaci nerozlǐsitelnosti a studuje jejich vztah k vlastnosti extenzionality, s ńıž v tradičńı
fuzzy matematice splývaj́ı, v př́ıstupu založeném na logice se však od ńı lǐśı.

Článek Towards a formal theory of fuzzy Dedekind reals (Předběžné poznámky k for-
málńı teorii dedekindovských fuzzy reálných č́ısel) podává konstrukci fuzzy reálných čisel
pomoćı svazového zúplněńı klasické reálné č́ıselné osy fuzzy dedekindovskými řezy a uvád́ı
některé výsledky potřebné k vybudováńı fuzzy intervalové aritmetiky. V článku Fuzzifi-
cation of Groenendijk–Stokhof propositional erotetic logic (Fuzzifikace výrokové Groenen-
dijkovy–Stokhofovy erótetické logiky) je aparát FCT použit jako formálńı sémantika pro
logiku fuzzy otázek. V závěrečných článćıch Topology in Fuzzy Class Theory: basic notions
(Topologie v teorii fuzzy tř́ıd – základńı pojmy) a Interior-based topology in Fuzzy Class
Theory (Topologie definovaná pomoćı operátoru vnitřku v teorii fuzzy tř́ıd, spoluautor
obou článk̊u T. Kroupa) jsou v rámci př́ıstupu založeném na logice zavedeny pojmy fuzzy
topologie definované pomoćı otevřených či uzavřených množin, okoĺı bod̊u a operátoru
vnitřku a prozkoumány jejich vzájemné vztahy.
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